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Abstract: PipX is a unique cyanobacterial protein identified by its ability to bind to PII and NtcA,
two key regulators involved in the integration of signals of the nitrogen/carbon and energy
status, with a tremendous impact on nitrogen assimilation and gene expression in cyanobacteria.
PipX provides a mechanistic link between PII, the most widely distributed signaling protein,
and NtcA, a global transcriptional regulator of cyanobacteria. PII, required for cell survival unless
PipX is inactivated or down-regulated, functions by protein–protein interactions with transcriptional
regulators, transporters, and enzymes. In addition, PipX appears to be involved in a wider signaling
network, supported by the following observations: (i) PII–PipX complexes interact with PlmA, an
as yet poorly characterized transcriptional regulator also restricted to cyanobacteria; (ii) the pipX gene
is functionally connected with pipY, a gene encoding a universally conserved pyridoxal phosphate
binding protein (PLPBP) involved in vitamin B6 and amino acid homeostasis, whose loss-of-function
mutations cause B6-dependent epilepsy in humans, and (iii) pipX is part of a relatively robust, six-node
synteny network that includes pipY and four additional genes that might also be functionally connected
with pipX. In this overview, we propose that the study of the protein–protein interaction and synteny
networks involving PipX would contribute to understanding the peculiarities and idiosyncrasy of
signaling pathways that are conserved in cyanobacteria.
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1. Introduction

Cyanobacteria, phototrophic organisms that perform oxygenic photosynthesis, constitute an
ecologically important phylum that is responsible for the evolution of the oxygenic atmosphere, and are
the main contributors to marine primary production [1]. Their photosynthetic lifestyle and ease of
cultivation make them ideal production systems for a number of high-value compounds, including
biofuels [2]. However, cyanobacteria have developed sophisticated systems to maintain the homeostasis
of carbon/nitrogen (reviewed by [3,4]), the two most abundant nutrient elements in all living forms;
therefore, understanding the regulatory mechanisms affecting their metabolic balance is of paramount
importance from the biotechnological as well as the environmental points of view.

Cyanobacteria can use different nitrogen sources that are then converted into ammonium
and incorporated via the glutamine synthetase-glutamate synthase (GS-GOGAT) cycle into carbon
skeleton 2-oxoglutarate (2-OG) for the biosynthesis of amino acids and other N-containing compounds.
The 2-OG, a universal indicator of the intracellular carbon-to-nitrogen balance [5,6], appears to be
particularly suitable for this role in cyanobacteria, because the lack of 2-OG dehydrogenase results in the
accumulation of 2-OG during nitrogen starvation [7]. Recently, a role as an antioxidant agent involved
in reactive oxygen species (ROS) homeostasis has also been proposed for 2-OG in cyanobacteria [8].
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In bacteria and plants, 2-OG is sensed by the widely distributed signal transduction protein PII,
which is encoded by glnB and is a homotrimer with one binding site per subunit for 2-OG. PII regulates
the activity of proteins implicated in nitrogen metabolism by direct protein–protein interactions [3].
The first two PII receptors in cyanobacteria [9,10] were identified using the yeast two-hybrid system [11]
to search for proteins interacting with PII in Synechococcus elongatus PCC7942 (hereafter S. elongatus).
One of the identified proteins was the enzyme N-acetyl-glutamate-kinase (NAGK), which catalyzes
a key regulatory step in the biosynthesis of arginine that is stimulated by PII in cyanobacteria
and plant chloroplasts [10,12,13]. The other one was a small and previously unknown protein of
89 amino acids that was named PipX (PII interacting protein X). PipX was also found as prey in yeast
two-hybrid searches with NtcA, the global transcriptional regulator involved in nitrogen assimilation
in cyanobacteria [14,15]. Since PII and NtcA are 2-OG receptors, PipX appeared to be a novel component
of the nitrogen signal transduction pathway in this phylum. Subsequent work confirmed the role of
PipX as a regulatory link between PII and NtcA, and unraveled the functional and structural details of
the PipX–PII and PipX–NtcA interactions [16–21]. Although most of the significant advances relate to
S. elongatus, experimental and in silico evidence supports conservation of the same nitrogen-related
regulatory interactions of PipX in the cyanobacterial phylum [21–28].

Additional “guilty by association” approaches have extended the physical and functional networks of
PipX. Yeast three-hybrid searches with PipX–PII as bait resulted in the identification of the cyanobacterial
transcriptional regulator PlmA as an interacting protein [29], while co-expression and synteny approaches
functionally connected PipX with PipY, a conserved pyridoxal phosphate-binding protein involved
in amino/keto acid and pyridoxal phosphate (PLP) homeostasis [30–32].

2. The Complex Nitrogen Signaling Network of Cyanobacteria

2.1. PII and PipX as Dynamic Hubs of an Extended Protein Interaction Network

PII and PipX mediate protein–protein interactions with regulatory targets that include
transcriptional regulators, enzymes, and transporters involved in nitrogen and carbon assimilation,
forming an ever-growing and dynamic interaction network that largely depends on PII effectors.
Thus, the levels of 2-OG and the ATP/ADP ratio are the main intracellular signal molecules determining
protein–protein interactions [33]. In addition, this complex network is necessarily affected by the
relative abundance of the different components. In S. elongatus, estimations of the numbers of chains of
the relevant proteins can be obtained from massive proteomic studies [34]. In a comprehensive scheme,
Figure 1A illustrates the nitrogen interaction network and the position of PII and PipX as regulatory hubs,
integrating information on the relative abundance of the protein components and the levels of signal
molecules determining protein–protein interactions. For the sake of simplicity, only protein components
whose interactions with the hubs have been characterized to a certain extent (discussed in this section) are
included in the illustration. The relative abundance of PipY, considered a member of the corresponding
PipX–PII regulatory network (see below), is also illustrated for comparison.
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Figure 1. The PipX interaction network. (A) PII and PII PipX interactions, according to the 
concentration spectra of 2-OG and ATP/ADP ratios. Molecular players are illustrated as 
circles whose sizes, drawn to scale, refer to the number of protein molecules, according to 
[34], taking into account their quaternary structure: 20.078 PII trimers, 4.560 PipX 
monomers, and 1.520 PipX trimers (dark- and light-colored circles, respectively), as well as 
510 NtcA dimers, 200 PlmA dimers, 160 NrtC monomers, 359 NAGK hexamers, and 2409 
biotin carboxyl carrier protein (BCCP) monomers. The arrows go from hub to target 
proteins, with PipX being considered as a PII target. The position of the arrowheads 
(towards target proteins) indicates the conditions favoring the corresponding complexes, 
one of which is a ternary complex (PII–PipX–PlmA). A dashed arrow is used for PlmA 
interaction with PipX–PII, which has not been characterized at the molecular level but 
should be favored by relatively low 2-OG levels and low ATP/ADP ratios. PipY (1.275 
monomers), for which no protein–protein interactions are known, is shown outside the 
graphical representation. (B) The three-dimensional (3D) structures of PII (left) and PipX 
(right), with surfaces colored according to the area of interaction, with NAGK (yellow) and 
PipX (blue) for PII, and with PII (purple) and NtcA (yellow) for PipX. (Adapted from [35] 
(A) and [16] (B)). 

PII perceives metabolic information by the competitive binding of ATP or ADP and by the 
synergistic binding of ATP and 2-OG [36]. The PII trimer has three binding sites for ATP/ADP (in 
some species AMP) and 2-OG. PII binds to NAGK, stimulating its activity and promoting nitrogen 
storage as arginine in cyanobacteria and plants [10,37–39]. When abundant, 2-OG binds to MgATP-
complexed PII, triggering conformational changes that prevent the interaction of PII with either 
NAGK or PipX [9,37]. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP 
directs the competitive interaction of PII with these targets in vitro. PipX increases the affinity of PII 
for ADP, and, conversely, the interaction between PII and PipX is highly sensitive to fluctuations in 
the ATP/ADP ratio [40]. Since the same surface of PII binds either NAGK or PipX (Figure 1B), these 
proteins do not form ternary complexes. Although competition between NAGK and PipX for PII 
binding can be observed in vitro [40,41], the great excess of PII over these two binding partners and 
the presence of additional actors makes competition a less likely scenario in vivo.  

PII also binds to the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase (ACCase), 
inhibiting its ability to control acetyl-CoA levels in organisms in which PII is present [42]. PII-dependent 
inhibition of nitrate transport, known to occur after the addition of ammonium to nitrate-containing 
cultures or the transfer of cultures to darkness, requires interaction of PII with the NrtD and NrtC subunits 
of the nitrate transporter (NRT) [28,43–45]. Other recently discovered PII receptors in Synechocystis sp. 
PCC 6803 are the ammonium (Amt1) and urea (UrtE subunit involved) transporters and two proteins of 
as yet unknown functions (Sll0944/DUF1830/_0891 and Ssr0692) [43]. 

Figure 1. The PipX interaction network. (A) PII and PII PipX interactions, according to the concentration
spectra of 2-OG and ATP/ADP ratios. Molecular players are illustrated as circles whose sizes, drawn to
scale, refer to the number of protein molecules, according to [34], taking into account their quaternary
structure: 20.078 PII trimers, 4.560 PipX monomers, and 1.520 PipX trimers (dark- and light-colored circles,
respectively), as well as 510 NtcA dimers, 200 PlmA dimers, 160 NrtC monomers, 359 NAGK hexamers,
and 2409 biotin carboxyl carrier protein (BCCP) monomers. The arrows go from hub to target proteins, with
PipX being considered as a PII target. The position of the arrowheads (towards target proteins) indicates
the conditions favoring the corresponding complexes, one of which is a ternary complex (PII–PipX–PlmA).
A dashed arrow is used for PlmA interaction with PipX–PII, which has not been characterized at the
molecular level but should be favored by relatively low 2-OG levels and low ATP/ADP ratios. PipY
(1.275 monomers), for which no protein–protein interactions are known, is shown outside the graphical
representation. (B) The three-dimensional (3D) structures of PII (left) and PipX (right), with surfaces
colored according to the area of interaction, with NAGK (yellow) and PipX (blue) for PII, and with PII
(purple) and NtcA (yellow) for PipX. (Adapted from [35] (A) and [16] (B)).

PII perceives metabolic information by the competitive binding of ATP or ADP and by the
synergistic binding of ATP and 2-OG [36]. The PII trimer has three binding sites for ATP/ADP (in some
species AMP) and 2-OG. PII binds to NAGK, stimulating its activity and promoting nitrogen storage
as arginine in cyanobacteria and plants [10,37–39]. When abundant, 2-OG binds to MgATP-complexed
PII, triggering conformational changes that prevent the interaction of PII with either NAGK or
PipX [9,37]. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the
competitive interaction of PII with these targets in vitro. PipX increases the affinity of PII for ADP, and,
conversely, the interaction between PII and PipX is highly sensitive to fluctuations in the ATP/ADP
ratio [40]. Since the same surface of PII binds either NAGK or PipX (Figure 1B), these proteins do
not form ternary complexes. Although competition between NAGK and PipX for PII binding can be
observed in vitro [40,41], the great excess of PII over these two binding partners and the presence of
additional actors makes competition a less likely scenario in vivo.

PII also binds to the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase (ACCase),
inhibiting its ability to control acetyl-CoA levels in organisms in which PII is present [42]. PII-dependent
inhibition of nitrate transport, known to occur after the addition of ammonium to nitrate-containing
cultures or the transfer of cultures to darkness, requires interaction of PII with the NrtD and NrtC subunits
of the nitrate transporter (NRT) [28,43–45]. Other recently discovered PII receptors in Synechocystis sp.
PCC 6803 are the ammonium (Amt1) and urea (UrtE subunit involved) transporters and two proteins of
as yet unknown functions (Sll0944/DUF1830/_0891 and Ssr0692) [43].

2-OG stimulates complex formation between the global transcriptional regulator NtcA, a CRP-like
protein, and PipX [9], as well as the binding of NtcA to target sites [46] and transcription activation
in vitro [47]. The PipX–NtcA complex consists of one active (2-OG bound) NtcA dimer and two PipX
molecules. Each NtcA subunit binds one PipX molecule in such a way that it stabilizes the active
NtcA conformation and probably helps to recruit RNA polymerase without providing extra DNA
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contacts [16,48]. Comparative studies of cyanobacterial NtcA and CRP proteins and their interactions with
DNA and effectors (2-OG and cAMP) provided additional details of NtcA–PipX functional interactions [22].

Importantly, PipX provides a mechanistic link between PII signaling and gene expression,
depending on NtcA, which controls a large regulon in response to nitrogen limitation [23,49]. PipX uses
the same surface from its N-terminal domain to bind to either 2-OG-bound NtcA (Figure 1B), stimulating
DNA binding and transcriptional activity, or to 2-OG-free PII, to form PipX–PII complexes [16,21].
Here the relative abundance of the excess PII over PipX provides a predictable scenario of competition
with NtcA for PipX in vivo, at least under physiological conditions in which the affinity of PipX for
NtcA is not optimal.

PII-PipX complexes interact with the transcriptional factor PlmA [29], suggesting a role of nitrogen
regulators in the transcriptional control of the yet unknown PlmA regulon. The main contacts of
PlmA with PII-PipX complexes appear restricted to surface-exposed elements of PipX, specifically
one residue in its Tudor Like Domain (TLD/KOW) and the C-terminal helices, which acquire an open
conformation when bound to PII [50]. Therefore, the PipX determinants for binding to PlmA appear
be very different from those involved in PipX–NtcA complexes.

A comprehensive summary of relevant complexes and interactions involving PipX and PII proteins
are illustrated in Figure 2. The reader is referred to [33] for additional structural information and details
on complex formation that are omitted in this review.

2.2. Role of PII and PipX in Cyanobacterial Survival

While genetic inactivation of pipX appears to have little impact in S. elongatus survival under
standard laboratory conditions [17,51], genetic inactivation of glnB is not viable in a wild-type
background. Unsuccessful attempts to completely segregate glnB null alleles thus indicate that the PII
protein is essential for survival, a finding in close agreement with the importance of glnB genes in many
other microorganisms, where inactivation leads to severe growth defects or lethality. Interestingly,
the metabolic basis of glnB deficiency in the studied microorganisms seems to be diverse (discussed
in [18]). In cyanobacteria, the essentiality of PII appears to be related with the importance of PipX–PII
complex formation, presumably to counteract PipX functions. In line with this, a small reduction
in PipX levels suppresses the need for PII for the survival of S. elongatus [18–20]. The importance of
PII for cell survival is even more pronounced in nitrogen-rich media [51], conditions in which the
inhibitory effect of 2-OG on PipX–PII interactions would not take place.

It is worth noting that cyanobacterial genomes always contain at least as many copies of glnB as of
pipX, with duplications of pipX correlating with duplications of glnB [52], in line with the idea that a
relatively high ratio of PII over PipX is required to counteract unwanted interactions with low-affinity
PipX partners. In Synechococcus WH5701, a cyanobacterium with two PipX and two PII-like proteins,
differences in affinities between PII and PipX paralogs and their binding partners—PipX-I, PipX-II,
GlnB-A, GlnB-B, NAGK, or NtcA—presumably increases their regulatory potential. Therefore, by
integrating multiple signaling pathways, PII and PipX are likely to play currently unknown roles
in adaptation-to-environment situations faced by cyanobacteria.

The basis of the phenomenon that we have called “PipX toxicity” in the absence of PII has been
explored by mutational analyses, which initially took advantage of point mutations, either identified
as spontaneous suppressors in glnB strains or generated in the course of our investigations on
PipX determinants for interactions with PII or NtcA. The question of whether PipX toxicity is due
to over-activation of the NtcA regulon when there is not enough PII to prevent PipX binding to
NtcA has been explored by subjecting pipX mutant derivatives to co-activation assays (reporting
from NtcA activated promoters glnB and glnN) and to transcriptomic analysis (in the case of two
gain-of-functions mutations in the contexts of NtcA coactivation and PipX toxicity) [19,20,49]. However,
a cause–effect relationship between PipX toxicity and the over-expression of NtcA gene targets could
not be established [20], and it is thus possible that both over-expression of NtcA gene targets
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and interactions of PipX with a third partner may contribute to PipX toxicity. In the later context,
genetic and transcriptomic analyses have also suggested additional regulatory targets of PipX [49].
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Figure 2. Summary of the PII–PipX–NtcA network of S. elongatus. The network illustrates its different
elements and complexes depending on nitrogen abundance (inversely related to 2-OG level), as well
as the structures of the macromolecules and complexes formed (when known). For PlmA (dimer
in darker and lighter blue hues for its dimerization and DNA-binding domains, respectively) and its
complex, the architectural coarse model proposed [29] is shown, with the C-terminal helices of PipX
(schematized in the extended conformation) illustrated as pink-colored and the two PII molecules
in dark red. The DNA complexed with NtcA and with NtcA-PipX is modeled from the structure of
DNA–CRP [16], since no DNA–NtcA structure has been reported. BCCP is the biotin carboxyl carrier
protein of bacterial acetyl CoA carboxylase (abbreviated AcCoA carboxylase); the other two components
of this enzyme, biotin carboxylase and carboxyl transferase, are abbreviated BC and CT, respectively.
No structural model of BCC has been shown, because the structure of this component has not been
determined in S. elongatus, and also because the structures of this protein from other bacteria lack a
disordered, 77-residue N-terminal portion that could be highly relevant for interaction with PII. The
broken yellow arrow highlights the possibility of further PipX interactions not mediated by NtcA or
PII–PlmA, resulting in changes in gene expression [49]. The solid, semi-transparent, yellowish arrow
emerging perpendicularly from the flat network symbolizes the possibility of functional interactions
of PipX not mediated by physical contacts between the macromolecules involved in the interaction,
giving as an example the functional interaction with PipY. Its position outside the network tries to
express this different type of interaction (relative to the physical contacts shown in the remainder of the
network), as well as to place it outside the field of 2-OG concentrations (taken from [33]).

Interestingly, PII and PipX display distinct localization patterns during diurnal cycles, co-localizing
into foci located at the periphery and cell poles during dark periods (Figure 3), a process dependent on
energy levels [35]. These dynamic regulatory interactions would play circadian-independent roles
in the attenuation of transcriptional activity and other functions during dark periods, while facilitating
the return to the essential, and energy costly, light-dependent or light-induced activities.
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In cyanobacteria, multiple metabolic and developmental processes are induced by nitrogen 
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Figure 3. PipXGFP and PIIYFP fusion proteins localize into foci in darkness. (A) S. elongatus cells were
imaged from cultures grown with nitrate in the light or dark (8 h). The autofluorescence (red), PipXGFP
(green), and PIIYFP (yellow) signals are shown as indicated. (B) Heatmap of PipXGFP distribution
relative to the cell autofluorescence border (in red). Colors represent the density of foci at each cellular
position. (C) Percentage of the cell population that showed PipXGFP foci in diurnal conditions (light
and dark conditions corresponding to yellow and gray regions, respectively). Cells were entrained
in light–dark cycles and sampled every 2 hours in either the light (ZT 0–12) or dark (ZT 12–24). ZT
(Zeitgeber time) refers to the time relative to “lights on” (adapted from [35]).

2.3. PipX Role in Gene Expression and Interactions with the Unique Transcriptional Regulators NtcA
and PlmA

In cyanobacteria, multiple metabolic and developmental processes are induced by nitrogen
starvation. NtcA, the global regulator for nitrogen control, activates genes involved in nitrogen
assimilation, heterocyst differentiation, and acclimation to nitrogen starvation [14,15,53–56].
The interaction between PipX and NtcA is known to be relevant under nitrogen limitation for
the activation of NtcA-dependent genes in S. elongatus and Anabaena sp. Strain PCC 7120 [9,17,24,26],
and presumably in Prochlorococcus [27].

From a combination of genetic, transcriptomic, and multivariate analyses, we previously obtained
groups of genes differentially regulated by PipX that have improved the definition of the consensus
NtcA binding motif for S. elongatus and provided further insights into the function of NtcA–PipX
complexes. Importantly, additional groups of genes that are differentially regulated by PipX suggested
the involvement of PipX in NtcA-independent regulatory pathways, indicating that PipX is involved in a
much wider interaction network affecting nitrogen assimilation, translation, and photosynthesis [49].

PlmA, the other transcriptional regulator interacting with PipX (as part of PipX–PII complexes)
belongs to the GntR super-family of transcriptional regulators [57]. It is involved in photosystem
stoichiometry in Synechocystis sp. PCC 6803 [58], plasmid maintenance in Anabaena sp. strain PCC



Life 2020, 10, 79 7 of 16

7120 [59], and in regulation of the highly conserved cyanobacterial sRNA YFR2 in marine
picocyanobacteria [60]. Recently, it has been shown that in Synechocystis sp. PCC 6803, PlmA
is reduced by the thioredoxin TrxM [61], suggesting that its function may depend on the redox status.

NtcA and PlmA belong to large families of transcriptional regulators (CRP and GntR). Both are
universally present in cyanobacteria, and their presence is also restricted to this group (Figure 4),
as is the case with PipX. Therefore, the three proteins are hallmarks of cyanobacteria [29,57,59]. In
contrast to the already abundant structural and functional details about NtcA, very little is still
known about PlmA, but its unique and exclusive distribution within cyanobacteria suggest that PlmA
functions are important to cope with regulatory signals and metabolites that are relevant in the context
of photosynthesis.
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Inspection of cyanobacterial genomes [30,32] revealed a tight connection between pipX and its 
downstream gene, named pipY, encoding a member of the widely distributed family of pyridoxal 
phosphate (PLP) binding proteins (PLPBP; COG0325), which control vitamin B6 and amino acid cell 
homeostasis. In S. elongatus, where the two genes form an operon, PipX increases expression of either 
pipY or a reporter gene occupying the pipY locus [31], thus suggesting the importance of the PipX–
PipY balance. On the other hand, and given the relatively low number of genes that form part of 
polycistronic units (55% for S. elongatus), it is significant that, in almost 80% of the cyanobacterial 
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Figure 4. The NtcA (A) and PlmA (B) subfamilies. Bidirectional blast queries with S. elongatus
PlmA and NtcA sequences as queries resulted in 33.903 and 102.738 sequences homologous to NtcA
and PlmA, respectively, from the Refseq genomic bacterial database. Horizontal and vertical axes represent,
respectively, the amino acid overlap and identity of each hit. Green dots, accounting for 285 (in A) and 264
(in B) hits, were retrieved from cyanobacterial genomes. Those dots corresponding to cyanobacterial NtcA
and PlmA orthologs (238 and 234 hits, respectively) are encircled (adapted from [29]).

3. Regulatory Connections between PipX and the Conserved PLP-Binding Protein PipY

3.1. The Tight Link between pipX and pipY Genes in Cyanobacteria

Inspection of cyanobacterial genomes [30,32] revealed a tight connection between pipX and its
downstream gene, named pipY, encoding a member of the widely distributed family of pyridoxal
phosphate (PLP) binding proteins (PLPBP; COG0325), which control vitamin B6 and amino acid
cell homeostasis. In S. elongatus, where the two genes form an operon, PipX increases expression of
either pipY or a reporter gene occupying the pipY locus [31], thus suggesting the importance of the
PipX–PipY balance. On the other hand, and given the relatively low number of genes that form part
of polycistronic units (55% for S. elongatus), it is significant that, in almost 80% of the cyanobacterial
genomes analyzed, pipX genes were found adjacent to pipY genes (always upstream and in the same
orientation), presumably as part of bicistronic pipXY operons. In addition, tight co-regulation and even
translational coupling can be inferred by the relatively short or non-existent intergenic distances found
between contiguous pipX and pipY coding sequences, strongly suggesting a functional interaction
between PipX and PipY in most, if not all, cyanobacteria. When not adjacent, as in Synechocystis strains,
pipX sequences constitute monocistronic operons. Figure 5 summarizes in silico evidence for the tight
link between pipX and pipY genes found in cyanobacteria genomes.
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Figure 5. pipX–pipY and other gene arrangements. The two possible situations concerning pipX and pipX
genes found in cyanobacterial genomes are represented: pipX (black) is followed by pipY (red), always
in the same orientation (as illustrated by the direction of the arrows), or by apparently non-related
and diverse genes (illustrated by a grey arrow). For each situation, the corresponding percentage found
in cyanobacterial genomes is shown in brackets. The intergenic distance between pipX and downstream
genes in cyanobacterial genomes is shown as the mean and standard deviation (A) and density curve (B).
(Adapted from [31]).

An open question is whether PipX and PipY proteins physically interact in cyanobacteria, which is so
far unsupported by yeast two-hybrid assays [30]. However, a putative interaction between PipX and PipY
may require another factor(s) present in S. elongatus but not in yeast nuclei, and thus PipX–PipY complex
formation should not be ruled out yet.

3.2. Common Structural and Functional Features between PipY and Other PLPBP Members

Structures of PipY homologs from phylogenetically distant organisms, such as yeast (Ybl036c)
and cyanobacteria (PipY), have already been experimentally solved or modelled (human PLPHP), and a
remarkable conservation is found when both protein sequence and three-dimensional (3D) structures
are compared [62–64]. PLPBP structures reveal a single domain monomer, folded as the TIM barrel of
type III-fold PLP enzymes, with the PLP cofactor solvent exposed. These structures all have an α-helical
extension of the C-terminal β-strand binding the phosphate of PLP, which could act as a trigger for PLP
exchange (Figure 6) [62,64].Life 2020, 10, x FOR PEER REVIEW 9 of 17 
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Figure 6. Pyridoxal phosphate binding protein (PLPBP) residue conservation and distinctive structural
features. Conservation scores were calculated using CONSURF [65] with COG0325 alignment and a
phylogenetic tree from the EGGNOG database as query. The color code illustrates lowest to highest
conservation in a green to purple gradient, with yellow for non-informative residues, plotted over the
Synpcc7942_2060 (PDB 5NM8) structure. The N-terminal and C-terminal ends are indicated with a red
and blue sphere, respectively. The PLP molecule is colored in red.
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Although our initial interest in PipY stems from its predicted involvement in the cyanobacterial
nitrogen regulatory network, the idea that PLPBP members may perform the same basic functions
in the context of amino acid and PLP homeostasis in all types of cells has gained strength during
the course of our studies. It was concluded that PipY performs the same basic functions inferred for
YggS (the E. coli homolog), and PLPHP and is therefore a bona fide member of the PLPBP family.
In particular, S. elongatus pipY mutants [30], like E. coli yggS mutants, showed sensitivity to pyridoxine
(PN) and an imbalance of the amino/keto acid pools. pipY mutants also showed sensitivity to antibiotics
targeting essential PLP holoenzymes. Importantly, distantly-related PLPBP members were able to
rescue species (or even strain)-specific defects, such as Val overproduction and the PN sensitivity
phenotypes of E. coli yggS mutants. These two E. coli yggS mutant phenotypes were respectively rescued
by heterologous expression of orthologs from bacilli (YlmE), yeast (Ybl036c), and humans [66]; and of
orthologs from plants (Zea mays, Arabidopsis thaliana), yeast, and humans [67]. In humans, mutations
affecting protein levels or PLP-binding at the PLPHP causes vitamin B6-dependent epilepsy [64,67,68].

Synthetic lethality between PLPBP and PLP holoenzymes, previously reported for E. coli yggS
and either glyA [69,70] or serA [71], has also been found between pipY and cysK, the two most abundant
PLP-binding proteins in S. elongatus [30]. Synthetic lethality probably reflects the common involvement
of the corresponding protein pairs in amino acid and PLP homeostasis, but may also indicate that any
relatively abundant PLP-binding protein could fulfill a role as a PLP reservoir, thus helping to cope
with PLP toxicity. In this context, it is worth emphasizing that the cofactor in PLPBP is solvent-exposed,
and thus is best suited for a role as a PLP delivering modules for essential apo-enzymes in cells.

While the mechanistic details affecting PLPBP-mediated PLP homeostasis and those concerning the
regulatory connections between PipY and PipX remain to be elucidated, the apparent recruitment of PipY
into the 2-OG-dependent nitrogen interaction network, and its connection with PipX in cyanobacteria (see
below), provides a unique opportunity to investigate the functions of a bona fide PLPBP member in the
context of a relatively characterized signaling network in a bacterial model system.

3.3. The Intriguing Connection between PipY and the Cyanobacterial Nitrogen Network

Two experimental lines of evidence place PipX and PipY within the same regulatory pathway:
the two proteins contribute to S. elongatus resistance to PLP-targeting antibiotics D-cycloserine
and β-chloro-D-alanine, and affect expression of a common set of transcripts.

In particular, transcriptomic analysis with single and double pipX and pipY null mutants
has revealed the implication of both PipX and PipY in the control of NtcA activated transcripts,
where PipY plays a positive role [30]. In the context of NtcA-independent transcripts, PipX and PipY
could have similar or opposite effects, suggesting a rather complex regulation [30].

In addition, transcriptomic analysis with pipX null and gain-of-function mutant derivatives
was consistent with PipX having a role as a repressor of many photosynthesis- and translation-related
genes independent of NtcA [49]. The model emerging from those analyses was that of PipX implicated
in the fine-tuning of different regulons, of which only the NtcA one was anticipated.

To explain the positive role of PipY on the levels of NtcA-activated transcripts, it is tempting to
propose that PipY increases the levels of 2-OG in S. elongatus cells—that is, PipY activity would alter
nitrogen signaling in cyanobacteria by affecting the levels of 2-OG, a possibility worth considering
given the importance of PLPBP proteins in maintaining the balance of the amino/keto acid pools.
Similarly, the expression of NtcA-independent transcripts co-regulated by PipX–PipY may also respond
to amino/keto acids, or to PLP-related compounds, via a yet-unidentified factor. Here it is tempting to
speculate that the transcriptional regulator PlmA may be involved. Figure 7 illustrates our current
working model, integrating PipY and PlmA into the PipX regulatory network.
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Figure 7. Model of PipX function in transcriptional regulation. PipX, as the NtcA co-regulator, is
involved in the (2-OG dependent) activation of multiple operons for nitrogen assimilation, as well
as in the repression of translation-related genes and inhibitors of key nitrogen assimilation genes
(glutamine synthetase). PipX also works independently of NtcA in the regulation of key processes,
including translation, photosynthesis, and carbohydrate metabolism, presumably in a complex with at
least one other transcriptional regulator, likely PlmA, whose interaction with PipX depends on PII,
and would be regulated by 2-OG and ATP/ADP. PipY may affect all PipX regulatory interactions by
altering the levels of amino/keto acids and vitamin B6. Positive and negative regulation are depicted
by green arrows and red lines, respectively. Black solid arrows illustrate the formation of complexes
driven by the indicated regulatory signals. Dotted arrows indicate putative regulatory interactions by
PipY or by hypothetical complex(es) (depicted in a lighter color arrow) that may involve PlmA.

4. Unknown Functions of PipX and the Synteny Approach

4.1. PipX and NusG Family Proteins Share a Domain Involved in Operon Polarity

While investigating regulatory connections between pipX and pipY genes, we became aware of
a rather intriguing function of PipX: polarity suppression or the enhancement of pipY expression,
specifically in cis [31]. Most intriguing was the finding that the TLD/KOW structural domain of PipX is
shared by NusG proteins, since NusG paralogs typified by RfaH are non-essential, operon-specific
bacterial factors involved in the upregulation of horizontally-acquired genes, normally located
downstream within the same operon [72–74]. Not underestimating the fact that the NusG paralogs act
in trans, PipX plays the same role over the downstream gene pipY, opening the question of whether PipX
can also use the TLD/KOW domain to interact with the translation machinery (Figure 8A), as NusG
proteins do. On the one hand, key NusG residues contacting ribosomal protein S10 are conserved
between PipX and RfaH [31], suggesting the possibility of a similar interaction between PipX and S10.
On the other hand, the C-terminal domain of PipX contains a basic arginine-rich patch (Figure 8B) that
provides interaction determinants in non-canonical RNA binding proteins [75], as it is compatible with
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a putative role of PipX in RNA binding. It is therefore tempting to speculate that PipX may also be
involved in the regulation of gene expression at the level of translation.
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Figure 8. Structural features of PipX, discussed in the context of a possible role in translation regulation.
(A) Whole length protein structures of NusG from E. coli (PDB 5TBZ:J) and PipX from S. elongatus (PDB
2XG8:D). TLD/KOW domains are shown in red, the N-terminal domain of NusG (NGN) in blue, and the
C-terminal domain of PipX in grey. (B) WebLogo of the C-terminal domain of PipX. The first alpha helix
containing an arginine-rich patch is underlined in grey (adapted from [31]).

4.2. The PipX Synteny Network

As previously mentioned, the discovery of PipX was due to the implementation of the “guilty by
association” principle implicit in protein–protein interaction screenings. The same principle, applied
in the context of gene linkage, led us to connect PipY with the cyanobacterial nitrogen regulation network.
Given that in this phylum, most signaling proteins are encoded in monocistronic units, we have recently
taken this “guilty by association” principle a step further, to look for genes that, independent of their
operon structures, are closely associated with PipX or PipY in cyanobacterial genomes, and may thus be
functionally connected. For this we turned to Cyanobacterial Linked Genome [32], a database generated
on the basis of conservation of gene neighborhoods across cyanobacterial species, accessed through an
interactive platform. The default outcome places PipX and PipY as part of a relatively robust six-node
network (Figure 9), raising questions on the possible functional connections amongst them. Because one of
the network nodes is EngA (YphC/Der/YfgK), a GTPase involved in ribosome assembly [76,77] that could
play a role in the coordination of photosynthesis activity with ribosome function [78,79], current work is
now focused in investigating its functional connections with PipX.
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5. Conclusions

Cyanobacteria have developed sophisticated mechanisms to adapt their metabolic processes
to important environmental challenges, like those imposed by the succession of days and nights.
However, the regulatory mechanisms and molecular details behind the versatility and environmental
adaptations of cyanobacteria are largely unknown, and the study of unique proteins like PipX, which is
restricted to this phylum, provides an opportunity to unravel some of them. Particularly challenging is
the identification of the biological processes and environmental contexts in which a rather promiscuous
protein like PipX participates, a task that has been fueled by “guilty by association” approaches,
in particular protein–protein interactions and genetic linkage. In this context, bioinformatic tools
like the recently developed Cyanobacterial Linked Genome should also help to provide working
hypotheses in the context of other proteins that may be unique to cyanobacteria.
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