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Abstract: Aiming at solving the problem of dual resource constrained flexible job shop scheduling
problem (DRCFJSP) with differences in operating time between operators, an artificial intelligence
(AI)-based DRCFJSP optimization model is developed in this paper. This model introduces the
differences between the loading and unloading operation time of workers before and after the process.
Subsequently, the quantum genetic algorithm (QGA) is used as the carrier; the process is coded
through quantum coding; and the niche technology is used to initialize the population, adaptive
rotation angle, and quantum mutation strategy to improve the efficiency of the QGA and avoid
premature convergence. Lastly, through the Kacem standard calculation example and the reliability
analysis of the factory workshop processing process example, performance evaluation is conducted
to show that the improved QGA has good convergence and does not fall into premature ability, the
improved QGA can solve the problem of reasonable deployment of machines and personnel in the
workshop, and the proposed method is more effective for the DRCFJSP than some existing methods.
The findings can provide a good theoretical basis for actual production and application.

Keywords: dual resource constrained; flexible job shop scheduling; improved quantum genetic
algorithm; niching technique; adaptive rotation angle

1. Introduction

Job shop scheduling (JSP) is the basis of intelligent manufacturing management and
decision-making, and JSP optimization is the core of advanced manufacturing technology
and modern management technology [1,2]. JSP is involved with a set of machines to
process a set of work parts. Each work part is formed by a series of processes with
sequential constraints. Each process requires only one machine, which is always available
and can process one operation at one time without interruption [3]. Flexible job shop
scheduling problem (FJSP) is an extension of the traditional JSP, in which several processes
of workpieces are allowed to be processed by several machines at the same time. At present,
most FJSP models only consider the constraints of machinery and equipment. However, in
various complex man-machine systems, about 60–90% of failures are attributed to operator
errors [4]. The research on dual resource constrained flexible job shop scheduling problem
(DRCFJSP) has theoretical significance and practical value.

Generally, the analytical [5] and simulation methods [6] are mainly used to solve
DRCFJSP. However, due to the complexity of worker factors such as the technical level,
fatigue level, learning ability, and assignment rules, each manufacturing system presents
its special features, and a generic analytical method is not available to establish an accurate
model for a specific manufacturing system. Moreover, the simulation method often requires
a long time to develop, debug, and run. Fortunately, the meta-heuristic algorithm does not
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rely on the unique conditions of the problem and has acceptable computational efficiency,
so it is widely used in the DRCFJSP. The genetic algorithm, particle swarm algorithm, and
ant colony algorithm are typical representatives. Li et al. [7] used the branch population
genetic algorithm to solve the dual resource constraint problem. The elite evolution
operator, sector segmentation, and neighborhood search mechanism were adopted to
achieve the maximum completion time and optimal cost. Zhong et al. [8] proposed a branch
genetic algorithm based on a compressed time window scheduling strategy to reduce
the maximum completion time and total processing cost by 7.4% and 4.7%, respectively.
Gong et al. [9] designed a new type of hybrid genetic algorithm that uses three-layer
chromosome coding to complete the job sequence and reasonable allocation of worker
resources. Wu et al. [10] established a model with the goal of minimizing the maximum
completion time, and combined the hybrid genetic algorithm with variable neighborhood
search to improve the local search capabilities. Zhang et al. [11] proposed a hybrid particle
swarm algorithm based on the maximum fitness function and adopted a dynamic search
strategy to enhance the local search capability of the particle swarm. Gong et al. [12]
used the NSGA-II algorithm framework and the memetic algorithm of neighborhood
search to satisfy the balance of minimizing the maximum completion time, the maximum
workload of the machine, and the total workload of all machines. Geng et al. [13] used
the same method to satisfy the balance of minimizing the maximum completion time,
minimizing the total delay time, and minimizing the workload of workers. Zheng et al. [14]
proposed a knowledge-based fruit fly optimization algorithm (KGFOA), which used a new
coding scheme to solve the DRCFJSP problem with the goal of minimum production time.
Yang et al. [15] used the limited search space-based algorithm to solve the DRCFJSP with
multi-layer product structure. Li et al. [16] considered scheduling goals such as production
cycle, machine workload, and product cost, and proposed a decomposition-based multi-
objective evolutionary algorithm (MOEA/D) to solve them. Andrade-Pineda et al. [17]
studied the due date changes, delay in arrival, changes in job processing time and rush jobs,
etc., and developed a constructive iterative greedy program that can effectively deal with
large-scale dual-objective DRCFJSP. Yazdani et al. [18] proposed a hybrid meta-heuristic
algorithm to solve DRCFJSP. The algorithm used the variable neighborhood search and
simulated annealing algorithm to search in the solution space, and used the randomly
generated test questions for computational research to evaluate the performance of the
proposed algorithm. Yazdani et al. [19] proposed two meta-heuristic algorithms, namely,
simulated annealing algorithm (SA) and vibration reduction optimization algorithm (VDO),
to solve the DRCFJSP problem. Defersha et al. [20] regarded skilled setting operators as
constrained resources and developed a multi-test/optimal mobile simulated annealing
method for the dual resource-constrained flexible job shop scheduling problem (DRC-
FJSP). Chatzikonstantinou et al. [21] used a hybrid algorithm between the global search
meta-heuristic algorithm and the adaptive greedy operation allocation and scheduling
algorithm to solve the problem. Some scholars also used the hybrid artificial bee colony
algorithm [22], improved water wave optimization algorithm [23], and bat algorithm [24]
to solve DRCFJSP.

To sum up, most of the research on DRCFJSP did not consider the difference of the
technical level of the personnel. Differences in the skill level of workers directly lead to
differences in the operating time. So, it is vital to consider the differences in the operating
time of workers to establish a more accurate production model. At the same time, in the
metaheuristic algorithms such as a bat algorithms or Cuckoo Search, the optimization
performance partially depends on the initial population. It is possible to calculate the
statistic indexes such as the mean, maximum, minimum, and standard deviation to rate the
different modifications. With the combination of the quantum mechanics and intelligent
algorithms, the quantum genetic algorithm (QGA) [25] is proposed in literature. At present,
QGA is used in path planning [26], mechanical structure design [27], and network cover-
age [28]. It has achieved good results, but there is still a lack of corresponding research on
the DRCFJSP.
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To solve the problem of manual operation time difference, according to the charac-
teristics of DRCJSP that need to occupy workers and machines at the same time during
processing, this paper proposes a combination of personnel information and machine
information as a decoding mechanism based on the use of QGA. An example is used
to evaluate the feasibility and effectiveness of the proposed algorithm. The analysis re-
sults demonstrate that this article establishes a more refined model for adding personnel
operating time differences in the DRCJSP solution.

2. Research on DRCFJSP
2.1. DRCFJSP Problem Description

In the DRCFJSP problem, it is assumed that a processing system has n workpieces
Ji(i = 1, 2, . . . , n) to be processed. Each workpiece Ji contains ni processes, and each process
is denoted as Oij. Then, each process can be processed by choosing one of the available
Mij = {1, 2, . . . , m} equipment. There are w multi-skilled workers in total, and each worker
masters the operation technology of multiple devices. Wm(r = 1, 2, . . . , w) denote the set
of workers that can control equipment m [6–9]. In addition to the impact of processing
equipment, workshop production capacity is also affected by human resources. The
purpose of scheduling is to rationally arrange the processing sequence of workpieces on
each equipment under the dual constraints of equipment and manpower. The schematic
diagram of dual-resource intelligent workshop scheduling problem is shown in Figure 1.
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Figure 1. Schematic diagram of DRCFJSP.

The scheduling must meet the following constraints:

(1) Each workpiece is not allowed to be interrupted while being processed on the equipment;
(2) Each piece of equipment can only process one of the processes of a workpiece at the

same time;
(3) Each process must be completed in accordance with the processing sequence, that is,

the next process of the process route can be processed after one process is completed;
(4) No priority restrictions between artifacts;
(5) The transportation time in the production process is not considered;
(6) Workers are responsible for the loading and unloading operations of process process-

ing, and the processing time is determined by the standard working hours of the
machine tool;

(7) A worker can only operate one piece of equipment at a time.

2.2. Mathematical Model

According to the problem description in Section 2.1 of this article, the following
mathematical model is established with the goal of minimizing the maximum completion
time. The parameter description is shown in Table 1.
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Table 1. Parameter description table.

Parameter Description

maxCi The maximum completion time
rij The start time of process Oij
Tij The processing time of Oij
Cij The end time of Oij

Tijmw The loading and unloading time of worker w on equipment m

Xijkr = {0, 1} When the value is 1, it means that the j process of the i workpiece is processed
by the r worker on the k equipment.

The objective function min f is:

min f = min(maxCi); i ∈ {1, 2, . . . , n}, (1)

S.T.
ri(j+1) − (rij + Tij + Tijmw) ≥ 0, (2)

m

∑
k=1

w

∑
r=1

Xijkr = 1; i ∈ {1, 2, . . . n}, j ∈ {1, 2, . . . , ni}, (3)

Cih − Cpq ≥ rih + Tih + Tihmw, (4)

Equation (1) indicates that the objective function is to minimize the maximum comple-
tion time;

Equation (2) means that each process can only proceed to the next process after the
previous process is completed;

Equation (3) means that at the same time, a process can only be processed by one piece
of equipment, and one of the w workers can process it;

Equation (4) means that assuming that both processes Oih and Opq are processed by
worker w, process Oih can only start process Opq after complete processing, that is, at the
same time, the same worker can only be responsible for the processing of one process.

2.3. Improved Quantum Genetic Algorithm to Solve DRCFJSP

QGA is an intelligent optimization algorithm that combines quantum computing and
genetic algorithm. It was proposed by Han et al. [25]. It introduced quantum concepts
such as the quantum states, quantum gates, quantum state characteristics, and probability
amplitudes into the genetic algorithm. QGA is also a probabilistic search algorithm, which
uses qubits to represent genes. The gene of the genetic algorithm expresses certain infor-
mation, and in the quantum genetic algorithm, due to the superposition of the quantum
information, the gene expressed by the qubit contains more useful information.

This paper improves on the basis of quantum genetic algorithm, adopts niche technol-
ogy for population initialization, adaptive rotation angle to dynamically adjust, and adds
quantum mutation strategy, which can effectively improve algorithm efficiency and avoid
premature convergence of the algorithm.

2.3.1. Quantum Coding

This paper adopts the process coding method, in which the length of the real number
code depends on the total number of processes. For example, in the problem that n
workpieces are processed by m equipment, the length of the real number code is the sum
of the number of operations of all the workpieces [29].

L = ([log2(m) + 1])
n

∑
i=1

ni (5)
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In formula (5), [log2(m) + 1] represents the length of the binary code corresponding

to a decimal code and
n
∑

i=1
ni represents the length of the decimal code.

Take 3 workpieces, 3 pieces of equipment, and 3 processes for each workpiece as
an example.

Quantum coding:

Q(t) =

[
α1 α2 . . . α27

β1 β2 . . . β27

]
=

 1√
2

1√
2

. . . 1√
2

1√
2

1√
2

. . . 1√
2

,

Binary coding:
P(t) = 010011001001010011011001010,

Decimal coding:
231123312,

Among the codes shown above, the decimal code is the code in the order of the
process. Each number i represents a process, and the number of occurrences of the
same number i is j, which represents the j process of the workpiece i. The processing
sequence and processing equipment of the workpiece in this example can be expressed as
P21, P31, P11, P12, P22, P32, P33, P13, P23.

2.3.2. Niche Initialization Population

The niche technology is to divide each generation of individuals into several cat-
egories, select a number of individuals with greater fitness from each category as the
outstanding representatives of a category to form a group, and then cross between the
population and between different populations. Mutation produces a new generation of
individual groups. At the same time, the pre-selection mechanism and the crowding-out
mechanism or the sharing mechanism are used to complete the task. The introduction of
niche technology can better maintain the diversity of solutions, and at the same time has a
high global optimization capability and convergence speed, which is especially suitable
for the optimization of complex multimodal functions [30]. The initial specific operations
of qubits are as follows, where i represents the serial number of the subpopulation and N
represents the total number of subpopulations.[

αk
βk

]
=

[ √
i/N√

(1− i)/N

]
(6)

2.3.3. Adaptive Rotation Angle Adjustment

The quantum revolving door is the core of the quantum genetic algorithm. Its main
function is to shift the probability amplitude of each locus in the chromosome to the optimal
solution so that there is a greater chance of obtaining the optimal solution. The adjustment
operation of the quantum revolving door is:[

α
′
i

β
′
i

]
=

[
cos θ − sin θ
sin θ cos θ

][
αi
βi

]
=

[
cos θ·αi − sin θ·βi
sin θ·αi cos θ·βi

] (7)

Among them,
[

α
′
i

β
′
i

]
represents quantum chromosome coding; θ represents the rota-

tion angle; its sign (positive or negative) determines the direction of algorithm convergence;
and its magnitude determines the speed and efficiency of the algorithm’s convergence.

In the quantum genetic algorithm, to determine the direction of the rotation angle of
the quantum revolving gate, this paper adopts the general adjustment strategy proposed
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in the literature [31], as shown in Table 2. Among them, rotation angle θ = S(αi, βi)·∆θ.
S(αi, βi) represents the direction of rotation, and it can ensure that the algorithm rotates
in a better direction. ∆θ represents the rotation angle, and it can control the convergence
rate. Xi a is the i position of the current chromosome, and bi is the i position of the optimal
chromosome. f (Xi) is the fitness of the current individual, and f (bi) is the fitness of the
optimal individual.

Table 2. Quantum rotation angle update strategy.

Xi bi f (Xi) > f (bi) ∆θ
S(αi, βi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 False 0 - - - -
0 0 True 0 - - - -
0 1 False δ +1 −1 0 ±1
0 1 True δ −1 +1 ±1 0
1 0 False δ −1 +1 ±1 0
1 0 True δ +1 −1 0 ±1
1 1 False 0 - - - -
1 1 True 0 - - - -

The dynamic rotation angle is used in this paper, and the formula for a value is:

δ = θmin +
fmax − fx

fmax
(θmax + θmin) (8)

Among them, δ ∈ [0.001π, 0.005π]. This dynamic rotation angle can make the algo-
rithm find the optimal solution faster without falling into premature maturity.

2.3.4. Quantum Mutation

Mutation is to make the results jump out of premature and improve local search power.
In the quantum genetic algorithm, the mutation operation is realized through the quantum
NOT gate.

The qubit mutated through the quantum NOT gate U is:

U
[

αi
βi

]
=

[
0 1
1 0

][
αi
βi

]
=

[
βi
αi

]
2.4. Algorithm Steps

Figure 2 shows the specific flow chart of the algorithm. The algorithm flow is:

Step 1: Initialize the parameters, determine the population size pop, the maximum alge-
bra MGen, the number of quantum chromosomes lenchrom and the quantum mutation
probability Pm, and the niche technology initializes the population;
Step 2: Measure the population, get the binary code, and get the observation state P(t)
according to the initial state Q(t) of the population;
Step 3: Calculate and save, convert the observation state P(t) into a decimal code, obtain a
process-based code, obtain a set of solution vectors through decoding technology, evaluate
it through the fitness function, and set the population optimal to the global optimal value;
Step 4: Judge whether the termination condition is satisfied, the termination algorithm is
satisfied, and Step5 is executed if it is not satisfied;
Step 5: Update. Calculate the rotation angle of the quantum revolving gate according to
the dynamic quantum rotation angle method and perform quantum mutation operation to
update the population Q(t);
Step 6: Observe and decode the new population, determine whether the optimal value of
the new population is greater than the global optimal value, and set the optimal value of
the population to the global optimal value if it is satisfied, then return to Step 4.



Machines 2021, 9, 108 7 of 15

Machines 2021, 9, 108 7 of 15 
 

 

  

  

      
       
      

0 1

1 0
i i i

i i i

U  

2.4. Algorithm Steps 

Figure 2 shows the specific flow chart of the algorithm. The algorithm flow is: 

Step 1: Initialize the parameters, determine the population size pop , the maximum alge-

bra MGen , the number of quantum chromosomes lenchrom  and the quantum mutation 

probability 
m

P , and the niche technology initializes the population; 

Step 2: Measure the population, get the binary code, and get the observation state ( )P t  

according to the initial state ( )Q t  of the population; 

Step 3: Calculate and save, convert the observation state ( )P t  into a decimal code, obtain 

a process-based code, obtain a set of solution vectors through decoding technology, eval-

uate it through the fitness function, and set the population optimal to the global optimal 

value; 

Step 4: Judge whether the termination condition is satisfied, the termination algorithm is 

satisfied, and Step5 is executed if it is not satisfied; 

Step 5: Update. Calculate the rotation angle of the quantum revolving gate according to 

the dynamic quantum rotation angle method and perform quantum mutation operation 

to update the population ( )Q t ; 

Step 6: Observe and decode the new population, determine whether the optimal value of 

the new population is greater than the global optimal value, and set the optimal value of 

the population to the global optimal value if it is satisfied, then return to Step 4. 

 

Figure 2. Flow chart of improved quantum genetic algorithm. 

Population Initialization

Use Niche Technology to 
Divide Populations

Convert the Measured Binary 
Code into Decimal Code

Decode and Calculate the Optimal 
Value of the Population, set to the 

Global Optimal Value

Update through adaptive rotation angle 
and dynamic quantum revolving gate

Perform quantum 
mutation operations

The optimal value of  new 
> The global optimal value

Measure Individuals in 
the Population

Whether the termination 
conditions are met

Measure every individual in 
the new population

Calculate the optimal value 
in the new population

Output optimization results

Y

N

Y

N

Figure 2. Flow chart of improved quantum genetic algorithm.

3. Results
3.1. Standard Calculation Examples

In order to verify the performance of the algorithm in this paper more comprehensively,
five Kacem standard calculation examples are solved [32]; the algorithm runs 30 times to
obtain the optimal solution, and it is compared with the particle swarm algorithm [33],
heuristic algorithm [34], meta-heuristic algorithm [35] for comparison, as shown in Table 3.

Table 3. Comparison table of Kacem standard examples.

Examples n ×m Standard
Solution

Particle
Swarm

Algorithm

Heuristic
Algorithm

Meta-Heuristic
Algorithm IQGA

Kacem01 4 × 5 11 11 11 11 11
Kacem02 8 × 8 14 17 15 14 14
Kacem03 10 × 7 11 - 13 13 12
Kacem04 10 × 10 7 8 7 7 7
Kacem05 15 × 10 11 - 12 14 12

3.2. Actual Calculation Example

In order to demonstrate the effectiveness of the improved algorithm, data verification
is carried out based on a certain enterprise example. The company is a production logistics
equipment company that selects six types of parts produced by belt conveyors, and different
processes of different workpieces can be processed on multiple machines. The improved
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quantum genetic algorithm (IQGA) uses MATLAB to program the solution, and the solution
results are compared and analyzed with the genetic algorithm (GA), global version of classic
particle swarm algorithm (PSO), and the quantum genetic qlgorithm (QGA).

Table 4 shows whether the j process of the i workpiece can be processed on the machine
and the processing time.

Table 4. Processing timetable of each process (min).

Equipment Number

M1 M2 M3 M4 M5 M6 M7 M8

J1

O11 4 3 — 6 — — — —
O12 — — 5 — — 5 — 7
O13 6 — 8 — — 6 — 7
O14 6 — 5 — — 8 7 —
O15 — 4 9 — — — 4 —

J2

O21 6 5 — 3 — — — —
O22 — 9 4 — 5 — 6 —
O23 — — — — 5 — 7 4
O24 3 — 3 — — 5 6 —

J3

O31 — 2 6 — 4 — 5 —
O32 5 — 8 — — 7 — 5
O33 8 — 6 — — 5 5 —
O34 — — — 4 8 — — 4

J4

O41 — 6 8 — 6 — 7 —
O42 — — 7 — — 2 — 9
O43 — — — — 4 — 4 4
O44 — 7 4 — — — 5 —

J5

O51 3 5 — 5 — — — —
O52 — 6 4 — 7 — 8 —
O53 3 — 7 — — 4 — 8
O54 — — — — 4 — 5 3
O55 — — — 3 8 — — 3

J6

O61 — 5 9 — 6 — 9 —
O62 — — 4 — — 3 — 8
O63 5 — 9 — — 6 — 6
O64 — 5 6 — — — 3 —

Table 5 shows whether worker w can use machine m and the loading and unloading
time of machine m.

Table 5. Time schedule for worker to operate machine loading and unloading (min).

Worker M1 M2 M3 M4 M5 M6 M7 M8

W1 2 3 — — — — — —
W2 — 2 3 — 5 — — —
W3 — — — 3 — 4 5 —
W4 3 — — — 3 — — 6
W5 — — 2 — — — 4 4
W6 — — — 2 — 3 — —

The parameters hyperparameters are shown in Table 6. The parameters of the GA
are set as follows: the population size is 100, the number of iterations is 100, the crossover
rate is 0.8, and the mutation rate is 0.05. The parameters of the PSO are set as follows:
the population size is 100, the number of iterations is 100, the inertia weight w = 0.73,
and the learning factor c1 = 2, c2 = 2.1. The parameters of the QGA and IQGA are set
as: the population size is 100, the number of iterations is 100, and the mutation rate is
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0.05. The above algorithm uses the combination of PBX and LOX crossover operators
as the crossover operation, and uses the mutual exchange of two segments of genes as
the mutation operation [36]. In order to compare IQGA with other algorithms, each
algorithm was run 10 times independently, and the results of the three algorithms after
running 10 times are shown in Table 7. Among them, Best represents the minimum value
of the maximum completion time of the algorithm running ten times, Worst represents the
maximum value of the maximum completion time of the algorithm running ten times, and
Average represents the average value of the maximum completion time of the algorithm
running ten times.

Table 6. Algorithm hyperparameters table.

Algorithm Population Size Number of Iterations Other Parameters

GA 100 100 Crossover rate 0.8, mutation rate 0.05

PSO 100 100 Inertia weight w = 0.73, learning
factor c1 = 2, c2 = 2.1

QGA 100 100 Mutation rate 0.05
IQGA 100 100 Mutation rate 0.05

Table 7. Algorithm test results (min).

Number of Runs
Algorithm

GA PSO QGA IQGA

maxCi

1 58 59 57 55
2 59 56 56 56
3 59 57 56 56
4 59 57 56 55
5 58 56 57 55
6 57 56 57 56
7 58 56 56 55
8 57 56 56 55
9 59 56 56 55
10 59 57 56 55

Best 57 56 56 55
Worst 59 59 57 56

Average 58.3 56.6 56.3 55.3

It can be seen from Table 5 that due to the randomness of the algorithms initial
population and the crossover and mutation process, the values of each algorithm for ten
runs are different. On the whole, GA and PSO are easy to fall into the local optimum. When
the minimum maximum completion times reach 57 min and 56 min, respectively, they
cannot continue to converge, and the maximum completion times are 59 min and 59 min,
respectively; QGA uses quantum coding to achieve premature convergence can be avoided
to a certain extent, making its maximum completion minimum of 56 min; IQGA adds
niche technology, dynamic rotation angle, and quantum variation on the basis of QGA, and
reaches the optimal value of 55 min in 7 out of 10 runs. Its maximum completion maximum
is 56 min. From the average of the calculation results of the four types of algorithms, the
average maximum completion times of GA, PSO, QGA, and IQGA are 58.3 min, 56.6 min,
56.3 min, and 55.3 min, respectively, which can also prove the superiority of the algorithm
in this paper. It should be noted that although the average maximum completion time of
PSO and QGA are close, the variance of the results of the PSO algorithm is large, and it has
a significantly worse robustness than QGA.

Figure 3 shows the iterative process of four algorithms, among which the black dots
are the iterative optimal solutions of the four algorithms. Within 60 iterations, GA, QGA,
PSO, and IQGA can all find the optimal solution. The optimization speed of PSO and GA
is significantly slower than that of QGA and IQGA, and GA has not found the optimal
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solution, indicating that the QGA and IQGA have their advantages in dealing with the
problem of workshop resource scheduling. At the same time, QGA falls into premature,
and IQGA algorithm can find the optimal solution more accurately.
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Figure 3. Algorithm iteration process diagram.

After solving the calculation example, Figure 4 is the Gantt chart of the scheduling
plan obtained by the converged IQGA. Each solid line frame and the dashed line frame
after it are combined to represent a process, and the length of the colored rectangle O(i,j)
represents the time required to complete the j process of the i workpiece. The time required
for the first process, the length of the dashed box behind, indicates the time for workers
Rk to load and unload materials in this process. For example, O(5,1) and R1 in the lower
left corner indicate that the first process of the fifth workpiece is processed by worker 1 on
machine 1, where the solid line frame is the machine processing time, and the dashed line
frame is the workers loading and unloading time. The Gantt chart is the arrangement of
workers and machines with the shortest and maximum completion time of 55 min.
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To facilitate comparison, Figures 5–7 are Gantt charts solved by GA, PSO, and
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Figure 6. Gantt chart solved by PSO.

Through the comparison of Gantt chart results, it is possible to more clearly compare
the calculation results of different algorithms and the difference between the arrangement
strategies of the employees and the staff. Among them, the maximum completion time
after QGA and PSO solution is 56 min, the maximum completion time after GA solution
is 57 min, the Gantt chart after IQGA solution is more closely arranged for machines and
employees, and the maximum completion time for IQGA solution is shorter.
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4. Discussion

The maximum completion time is an important indicator to evaluate the DRCFJSP
problem. In this study, firstly, a DRCFJSP model with different operating time for personnel
was established, and then IQGA was used to solve the problem and compared with the
algorithms in the literature [33–35] through standard calculation examples; it was found
that with the complexity of the matrix, the error between the IQGA result and the standard
solution is due to the randomness of the quantum mutation operation, but compared
with the other three types of algorithms, the results have higher accuracy. Therefore,
the reliability analysis of the standard calculation example proves the superiority of the
algorithm in this paper.

In the subsequent example analysis, it can be seen from Table 5 that IQGA can find the
optimal solution more stable. In the table, both the degree of optimization of the optimal
solution and the frequency of finding the optimal solution ten times are significantly better
than those in the table. For the other two algorithms, it can be seen from Figure 3 that the
initial population strategy of the niche makes the initial population of IQGA superior to
GA, PSO, and QGA; the adaptive rotation angle and quantum mutation strategy allow
IQGA to converge to the optimal value of 55 min faster and better, which proves IQGA can
effectively solve the DRCFJSP. Finally, by solving the Gantt chart of the four algorithms of
GA, PSO, QGA, and IQGA, it can be clearly seen that the Gantt chart solved by the IQGA
algorithm is arranged more closely and the total production time is shorter.

5. Conclusions

In the workshop production process, employees occupy an increasingly important
position. In this paper, considering the difference in staff operating time, with the goal of
minimizing the maximum completion time, a more accurate DRCFJSP model is established.
At the same time, a process-based quantum code is designed for the DRCFJSP problem, and
then the niche initialization population, dynamic rotation angle, and quantum mutation
strategy are used to improve the quantum genetic algorithm to improve the efficiency of
the algorithm and avoid premature convergence of the algorithm. Finally, a calculation
example is used to analyze.

The Kacem standard calculation example shows that the algorithm used in this article
is numerically closer to the standard solution than the algorithm in the literature [33–35].
The four algorithms in Kacem01 can all find the optimal solution; in Kacem02, IQGA
optimizes 17.6% and 6.7% of the time compared to the algorithms in literature [33,34],
respectively; in Kacem03, IQGA optimizes 7.7% and 7.7% in comparison with the algo-
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rithms in literature [34,35]; in Kacem04, IQGA optimizes 12.5% of the time compared to
the algorithm in [33]; and in Kacem05, IQGA optimizes 14.3% of the time compared to the
algorithm in [35]. The Kacem standard calculation example shows that the IQGA has good
accuracy. In the reliability analysis of the factory workshop processing process example,
IQGA, GA, PSO, and QGA are run ten times, respectively, and the minimum maximum
completion times obtained are: 55 min, 57 min, 56 min, and 56 min. From the average of the
calculation results of the four types of algorithms, the average maximum completion times
of GA, PSO, QGA, and IQGA are 57.8 min, 56.6 min, 56.3 min, and 55.3 min, respectively,
which can also prove the superiority of the algorithm in this paper. It should be noted that
although the average maximum completion times of PSO and QGA are close, the variance
of the results of the PSO algorithm is large, and it has a significantly worse robustness
than QGA. The above analysis shows that the improved quantum genetic algorithm in this
paper has good convergence and will not fall into premature. The findings of this research
help to reduce the maximum completion time of the workshop production model taking
into account differences in personnel, thereby improving the processing efficiency of the
entire processing system.

However, the above research still has some shortcomings. In this paper, the goal of
the DRCFJSP model is only the maximum completion time, and it does not consider the
real-time update of factory production, that is, it does not consider the dynamic demand.
Therefore, the model proposed in this article has certain limitations.

Based on the above problems, the DRCFJSP problem under dynamic data will be
studied in the future, and multiple variables will be integrated into the solution model
to improve the applicability of the positioning method. At the same time, in terms of
algorithm performance, the algorithm performance can be improved by optimizing the
algorithm call function and running time.
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