
machines

Article

MPC Control and LQ Optimal Control of A Two-Link
Robot Arm: A Comparative Study†

El-Hadi Guechi 1,*, Samir Bouzoualegh 1, Youcef Zennir 1 and Sašo Blažič 2
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Abstract: This study examined the control of a planar two-link robot arm. The control approach
design was based on the dynamic model of the robot. The mathematical model of the system was
nonlinear, and thus a feedback linearization control was first proposed to obtain a linear system for
which a model predictive control (MPC) was developed. The MPC control parameters were obtained
analytically by minimizing a cost function. In addition, a simulation study was done comparing
the proposed MPC control approach, the linear quadratic (LQ) control based on the same feedback
linearization, and a control approach proposed in the literature for the same problem. The results
showed the efficiency of the proposed method.

Keywords: two-link robot arm; dynamic model; nonlinear control; MPC control; linear quadratic
optimal control

1. Introduction

In recent years, the control of manipulator robots has been the subject of much research, due to
the robots’ increasingly frequent use in dangerous or inaccessible environments, where human beings
can hardly intervene [1,2]. These robot models are highly nonlinear which makes the control strategy
very difficult. Several approaches to controlling manipulator robots are proposed in the literature.
In [3], a robust control for a manipulator robot with two degrees of freedom was developed to take
into account the uncertainties in the electrohydraulic servo systems. In [4], a robust control approach
that allowed for friction in the model was developed to control a manipulator robot with two degrees
of freedom. In [5], a coordinated fuzzy control approach was developed for a manipulator robot with
actuator hysteresis and motion constraints. In addition, to reduce the harmful effects from unknown
nonlinearities, an adaptive control scheme was introduced. In [6], a feed-forward neural network was
developed to find a solution to the inverse kinematics problem of a planar manipulator robot with three
degrees of freedom needed for generating desired trajectories in Cartesian space. In [7], a hybrid control
approach for a three-link robot arm was developed. The proposed strategy of control was composed
of two controllers: an independent joint controller, designed in the configuration space, and a sliding
mode controller that enforced desired dynamics for the tracking error projections onto the Frenet-Serret
frame. In [8], a robust control approach with constraints for an industrial robot manipulator was
developed. First, the trajectory was generated, then a control based on the optimization concept was
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determined to follow the generated trajectory. In [9], the control of a manipulator robot using unit dual
quaternions based on a kinematic model was developed. In [10], a tracking control approach using a
manipulator robot with six degrees of freedom (6-DOF) was proposed. In [11], a time-optimal trajectory
for robot systems was proposed using a convex optimization approach. In [12], a minimum-time
control approach of the Acrobot was developed. The control strategy consisted of using a direct search
algorithm for finding an optimal trajectory for the robot. In [13], an adaptive control was developed for
the robot arm with LQ performance. The dynamics of the robot were highly nonlinear and the robot
parameters were all assumed unavailable. In [14], a robust optimal adaptive sliding mode control
using a disturbance observer was developed and tested on the robot arm. The control gains were
adjusted on-line by the observer to compensate for the unknown time-varying disturbances.

In [15], three nonlinear predictive control approaches for controlling a planar two-link vertical
manipulator robot were developed: an adaptive nonlinear model predictive control (nMPC) approach,
a proportional–integral–derivative (PID)-based nMPC (PIDnMPC) approach, and a novel simplified
nMPC (SnMPC) approach. In [16], a nonlinear model predictive control of a manipulator robot
mounted on an unmanned satellite was proposed. This control consisted of two modules: a trajectory
planning module (based on a trajectory optimization algorithm) and a model predictive controller.
In [17], a comparative study between a generalized predictive control and a fuzzy supervisory control
of a flexible single-link robot arm was proposed. In [18], a model predictive control with constraints
of a flexible-link mechanism was developed. This control approach was tested on a four-link closed
loop planar mechanism lying on the horizontal plane driven by a torque-controlled electric actuator.
In [19], a nonlinear model predictive control of a free-flying space robot was developed and the
performance of the proposed control was compared with that of a sliding mode control. In [20],
a reactive constraint-based control approach was developed for controlling a mobile manipulator
so it could reach its goal and avoid unknown and unpredictable obstacles. The robot’s trajectory
was calculated on-line by using the model predictive method. In [21], a nonlinear predictive control
structure in real-time for the visual servoing of a manipulator robot was proposed. The proposed
control approach was designed to solve tasks assigned to robot manipulators with an eye-in-hand
configuration. In [22], a single-input neuronal generalized predictive control approach for controlling
a manipulator robot with six degrees of freedom was proposed. In [23], a model predictive control
with constraints of a flexible-link manipulator robot was proposed, in order to eliminate the problem
of vibration.

In contrast to the above-mentioned works, this paper presents a combination of a feedback
linearization control and an MPC control approach of a two-link robot arm. The control approach
design was based on the dynamic model of the robot. Since the model of the robot was nonlinear,
a feedback linearization control was developed in the first step to obtain a linear system connecting
so-called synthetic control signals to the respective joint angles. Next, based on the obtained linear
model, a model predictive control approach was developed. The proposed solution was therefore a
type of nonlinear cascade controller that was very easy to tune. In order to show the efficiency of the
proposed approach, a comparative study was performed with the LQ optimal control approach and a
control approach proposed in the literature for the two-link robot arm.

This paper is organized as follows. First, in Section 2, a description of the planar two-link robot
arm is provided, along with its dynamic model. Then, in Section 3, the control approach for controlling
the robot from an initial configuration to the final configuration using an MPC approach is presented.
A linear quadratic optimal control approach is developed and the comparative study is addressed in
Section 4. Finally, simulation results are presented in Section 5.

2. Dynamic Model

A planar two-link robot arm can be presented as depicted in Figure 1, where θi, Li,
and Mi {i = 1, 2} are respectively the joint angle, the length, and the mass of the first link (i = 1)
and the second link (i = 2). The gravitational acceleration is denoted by g.
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Figure 1. Two-link robot arm.

The calculation of the dynamic model of this robot is based on the kinetic and potential energies.
The tip of the second link is computed using the direct geometric model (DGM) as:{

x = L1 sin(θ1) + L2 sin(θ1 + θ2)

y = L1 cos(θ1) + L2 cos(θ1 + θ2)
. (1)

Taking into account Equation (1), the total kinetic energy of the two-link robot arm is given by the
following Equation (2):

E = 1
2 (M1 + M2)L2

1

.
θ

2
1 +

1
2 M2L2

2

.
θ

2
1 + M2L2

2

.
θ1

.
θ2+

1
2 M2L2

2

.
θ

2
2 + M2L1L2

(
.
θ1

.
θ2 +

.
θ

2
1

)
cos(θ2)

, (2)

and the potential energy is given by the following Equation (3):

U = M1gL1 cos(θ1) + M2g(L1 cos(θ1) + L2 cos(θ1 + θ2)) . (3)

To find the robot motion equations, we use the formalism of Lagrange:

L = E−U. (4)

With Lagrangian L, we can solve the Euler-Lagrange equation which relies on the partial derivative
of kinetic and potential energies of mechanical systems to compute the equations of motion, defined
as follows:

τ =
d
dt

(
∂L

∂
.
θi

)
− ∂L

∂θi
, (5)

where L and τ =
[

τ1 τ2

]T
are respectively the Lagrangian of the motion and the torque vector.

Developing Equation (5), the dynamic model of a robotic arm with two degrees of freedom (DOF)
can be rewritten in the following form [24]:{

M(θ)
..
θ + C

(
θ,

.
θ
)
+ G(θ) = τ

Y = θ
, (6)

where:

• θ =
[

θ1 θ2

]T
is the vector of joint variables;

• τ =
[

τ1 τ2

]T
is the vector of applied torques (control input);
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• Y is the output vector;

• G(θ) =

[
−(M1 + M2)gL1 sin(θ1)−M2gL2 sin(θ1 + θ2)

−M2gL2 sin(θ1 + θ2)

]
is a vector of gravity torques;

• C
(

θ,
.
θ
)

=

 −M2L1L2

(
2

.
θ1

.
θ2 +

.
θ

2
1

)
sin(θ2)

−M2L1L2
.
θ1

.
θ2 sin(θ2)

 represents the vector of Coriolis and

centrifugal forces;

• M(θ) =

[
D1 D2

D3 D4

]
is the inertia matrix with the following elements:

D1 = (M1 + M2)L2
1 + M2L2

2 + 2M2L1L2 cos(θ2)

D2 = M2L2
2 + M2L1L2 cos(θ2)

D3 = D2

D4 = M2L2
2

3. Controller Design

In this section, the development of a predictive control of a robotic arm with two DOF is presented.
In that regard, we consider the nonlinear dynamic model given by Equation (6) that is also multivariable
(with two control inputs and two controlled outputs). Although it is possible to design the nonlinear
controllers for such systems directly, we here propose a two-step design where a feedback linearization
control is developed first to make the system linear. Once the linear model was obtained, a model
predictive control is designed in the next step. The final implementation of the controller can be seen
as nonlinear multivariable cascade controller.

3.1. Feedback Linearization Control

The main idea of this technique is to transform the nonlinear dynamics of the system to a
completely or partially linear one, so that linear control approaches can be applied to stabilize it [25,26].
In this study, the control approach with feedback linearization was developed for a dynamic model of
the two-link robot arm given by Equation (6). In order to do so, the authors differentiated the output Y
until the control input τ appeared. In this case, the control input τ appeared in the second derivative
of the output Y. This implied that the relative degree of the system was two. The second derivative of
Y can be derived from Equation (6) and is given as:

..
Y =

..
θ = M(θ)−1

(
−C
(

θ,
.
θ
)
− G(θ) + τ

)
= v, (7)

where v =
[

v1 v2

]T
is a synthetic control vector to this linear double-integrator system. Next, they

had to find the relation between the synthetic control and the actual control torque. This feedback
linearization control law is obtained from Equation (7) and is given by:

τ = M(θ)v + C
(

θ,
.
θ
)
+ G(θ) (8)

Applying the control law given by Equation (8) to the nonlinear system given by Equation (6),
the dynamic model of the manipulator robot with two DOF, becomes a linear double-integrator system.
The relative degree was equal to two. This meant that by using the control law Equation (8), a complete
linearization of the nonlinear system Equation (6) was achieved and a linear system for each joint
variable was obtained. These two linear systems can be described in the transfer-function form:

θ1(s)
v1(s)

=
1
s2 and

θ2(s)
v2(s)

=
1
s2 , (9)
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where s denotes the independent variable of the Laplace transform.
Based on the feedback linearization given in this subsection, a model predictive control for the

two-link robot arm was developed, which is the goal of the next subsection.

3.2. Model Predictive Control

In the case of a robot arm with two DOF and after application of the feedback linearization
Equation (8) to the nonlinear system (6), the authors obtained the following two decoupled linear
systems: { ..

θ1 = v1..
θ2 = v2

. (10)

The system (10) can be easily stabilized by using a proportional–derivative (PD) controller given
by the following Equation (11): v1 = k1(θ1d − θ1) + k2

( .
θ1d −

.
θ1

)
v2 = k1(θ2d − θ2) + k2

( .
θ2d −

.
θ2

) (11)

where
[

θ1d θ2d

]T
is a vector of the desired joint variables. Note that the PD controller’s gain

is infinite at high frequencies, which makes it physically not realizable. To limit the gain at high
frequencies, the PD controller is usually implemented as a phase lead compensator or some other
filtering technique is applied.

The closed loop system exhibits the behavior of a second order system. The gains k1 and k2 can be
chosen as:

k1 = w2
0 and k2 = 2ζw0, (12)

where w0 is a natural frequency and ζ is a damping factor.
Using the gains given by Equation (12), we obtain a large field of the second order system poles.

The objective of the proposed MPC control is to select a part of this domain that optimized the cost
function. This last proposal will be defined and detailed later.

Now, we will develop an MPC controller (see [27–29]) for the first link of the robot arm. The MPC
controller for the second link of the robot arm will be developed in the same way as the first.

Assuming v1(t) = v1 is constant in the time interval [t, t + h], where h is the horizon time of the
prediction, and using Equation (10), the following prediction model is obtained [30]:{ .

θ1(t + h) = v1h +
.
θ1(t)

θ1(t + h) = 1
2 v1h2 +

.
θ1(t)h + θ1(t)

(13)

Next, given the reference angle of the first link θ1d (constant), the proposed one-horizon time
quadratic cost function for stabilizing the system is defined by:

J = e2
1(t + h) + ρ

.
e2

1
(t + h), (14)

where e1(t + h) = θ1d − θ1(t + h) is the predicted angle error, and
.
e1(t + h) = 0−

.
θ1(t + h) is the

predicted velocity error. The horizon time h and the weight ρ are both positive real constants (control
parameters) to be determined later. The criterion J is completed by introducing the prediction model
(13) into (14). The idea of the proposed control law is to find the constant v1 that minimizes the criterion
J. This is done by choosing v1 that makes the partial derivative ∂J

∂v1
equal to 0. The obtained solution

v1 = k1(θ1d − θ1(t))− k2
.
θ1(t), (15)
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with the control gains given by

k1 =
2

h2 + 4ρ
and k2 =

2h2 + 4ρ

h3 + 4ρh
, (16)

is not constant in the time interval [t, t + h] as assumed initially, but the proposed control law was
nonetheless based on this solution. In addition, a more general control law is obtained if the reference
value for the angle is allowed to change. Furthermore, the feed-forward and the feed-back gains that
are not necessarily constant are assumed. Therefore, the following control law is proposed:

v1(t) = k1(θ1d(t)− θ1(t))− k2
.
θ1(t). (17)

The block diagram of the closed-loop system can be presented as depicted in Figure 2, where θ1d
and θ2d are respectively the reference joint angle of the first and the second link of the robot. As the
feedback linearization completely decouples the control of the first and the second joint (see Equation
(15)), different parameters can in general be used for both control loops. However, the authors chose to
use the same controller for the second joint as the one proposed for the first joint:

v2(t) = k1(θ2d(t)− θ2(t))− k2
.
θ2(t). (18)
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Concerning the system response, the control goal was that the joint angles follow their
references with dynamics of the second order system given by the following transfer function
w2

0/
(
s2 + 2ζw0s + w2

0
)
, where ζ is a damping factor and w0 is a natural frequency.

Using the MPC controller given by Equation (15) to stabilize the system (10), the transfer function
of the whole closed-loop is given by:

θ1(s)
θ1d(s)

=
k1

s2 + k2s + k1
. (19)

Taking into account Equations (16) and (19) and the dynamics of the second order system, the
following is obtained:

2ζw0 =
2h2 + 4ρ

h3 + 4ρh
. (20)

w2
0 =

2
h2 + 4ρ

. (21)
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From Equation (21), the weight factor is:

ρ =
2− (w0h)2

4w2
0

. (22)

Substituting Equation (22) into Equation (20), he following second order equation is obtained:

w2
0h2 − 4ζw0h + 2 = 0, (23)

where h is the variable to look for. Bu writing

w0h = λ, (24)

Equation (23) becomes:
λ2 − 4ζλ + 2 = 0. (25)

The solutions,

λ1,2 = 2ζ ±
√

4ζ2 − 2, (26)

are real if and only if 4ζ2 − 2 ≥ 0⇔ ζ ≥
√

2/2 .
To obtain a positive weight factor ρ, from Equation (22), λ2

1,2 < 2 is required:

2(4ζ2 − 2)± 4ζ
√

4ζ2 − 2 < 0. (27)

It was known that 4ζ2 − 2 ≥ 0 (for real solutions) and, therefore, a larger solution would never
satisfy this inequality. Therefore, only the smaller solution was kept. It was very easy to verify
that outcome:

2(4ζ2 − 2)− ζ
√

4ζ2 − 2 < 0. (28)

After choosing a design parameter ζ = 0.9 and selecting an appropriate natural frequency w0,
the authors determine the parameter h from Equations (24) and (26). With the horizon time defined,
they used Equation (22) to determine the weight factor ρ. The closed-loop performance of the system
was computed for each selected value of the natural frequency w0. and the results are summarized in
Table 1 where:

• the natural frequency w0 is the chosen design parameter;
• the horizon time h and the weight factor ρ are obtained using the above described procedure;

Minτi {i = 1, 2} and Maxτi {i = 1, 2} are the minimum and the maximum of the respective
applied torques; the settling time tθi

r±5% {i = 1, 2} corresponds to the times needed for the joint
angles to settle within the band (±5%) of the final value;

• Dθi {i = 1, 2} are the overshoots of the joint angles (in %) when a step change is applied to its
reference;

• and i ∈ {1, 2} is the index of the joint.

Table 1. System performance for different values of natural frequency.

w0
(rad/s) h (s) ρ

Min τ1
(Nm)

Max τ1
(Nm)

Min τ2
(Nm)

Max τ2
(Nm)

tθ1
r±5%
(s)

tθ2
r±5%
(s)

Dθ1 (%) Dθ2 (%)

1 0.6864 0.3822 −20.21 26.28 −0.78 1.43 4.86 4.86 0.5 0.5
2 0.3432 0.0955 −22.20 45.14 −3.13 5.64 2.42 2.42 0.5 0.5

3.5 0.1961 0.0312 −33.33 96.97 −9.57 17.54 1.4 1.4 0.5 0.5
4 0.1716 0.0239 −39.46 120.49 −12.56 22.92 1.22 1.22 0.5 0.5
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After analyzing Table 1, it was observed that the horizon time h had an influence on the variation
range of the control signals (robot torques): short horizon time implied a large variation range of the
robot torques.

To obtain an acceptable control signal range (max(|τi|) ≤ 100 Nm for i = {1, 2}) [24], the authors
chose the horizon time h = 0.1961 (s) and the weight factor ρ = 0.0312.

4. Linear Quadratic Optimal Control

As in Section 3.2, the linear system given by Equation (10) was considered to determine a linear
quadratic (LQ) optimal control [31–34] for the two-link robot arm.

The error ei between the actual angle θi and the desired angle θid is defined as:

ei = θid − θi i = 1, 2. (29)

The desired angle θid {i = 1, 2} is constant. Differentiating the Equation (29) twice, the following
equation is obtained:

..
ei =

..
θi = −vi i = 1, 2 (30)

If a a single decoupled linear system is considered:

..
e1 = −v1 = v∗1 . (31)

The state space representation of the system (31) is given by:{ .
z = Az + Bv∗1
ϑ = Cz

, (32)

where:

• z =
[

z1 z2

]T
=
[

e1
.
e1

]T
∈ Rn is a state vector;

• ϑ ∈ Rm is the output vector;
• v1 is the synthetic control of the first joint of the robot;

• A =

[
0 1
0 0

]
, B =

[
0
1

]
and C =

[
1 0

]
.

If the objective cost function is considered:

J =
+∞∫
0

(
zTQz + v∗1

TRv∗1
)

dt, (33)

where:

• Q =

[
1 0
0 0

]
is a symmetric positive semi-definite matrix,

• and R is a positive constant.

The objective cost function is minimized using the following linear quadratic optimal control:

v∗1 = −R−1BTP z(t), (34)

where: P =

[
P1 P2

P2 P3

]
is the solution to the following so-called Riccati Equation:

PA + ATP− PBR−1BTP + Q = 0. (35)
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The solution of the Riccati Equation (35) is:

P =

[ √
2 4
√

R
√

R√
R

√
2R
√

R

]
. (36)

Therefore, the linear quadratic optimal control v1 = −v∗1 is given by the following control law:

v1 = R−1(P2z1(t) + P3z2(t)) = k1 e1(t) + k2
.
e1(t) (37)

where k1 = R−1
√

R and k2 = R−1
√

2R
√

R. Note that the control law for the second joint is obtained
following the same steps.

The block diagram of the closed-loop system resembled the one depicted in Figure 2—they only
differed in the leftmost box that implemented the MPC control Equation (17) in one case and the LQ
optimal control given by Equation (37) in the other.

Using the control law given by Equation (37), the system performance was computed for different
values of R and they are summarized in Table 2.

Table 2. System performance for different values of R.

R Min τ1
(Nm)

Max τ1
(Nm)

Min τ2
(Nm)

Max τ2
(Nm)

tθ1
r±5%
(s)

tθ2
r±5%
(s)

Dθ1 (%) Dθ2 (%)

1 −21.15 26.28 −1.21 1.76 6.19 6.19 13.56 13.56
1/100 −39.46 82.83 −12.21 17.80 1.96 1.96 13.56 13.56
1/150 −44.88 96.95 −14.75 21.48 1.78 1.78 13.56 13.56
1/200 −49.19 108.85 −17.09 25.03 1.64 1.64 13.56 13.56

Comparing Tables 1 and 2, the authors noticed that, using the proposed model predictive control
approach, a better system performance was obtained than by using the LQ optimal control approach.
Using an MPC control approach, a fast convergence of the joint variables to the desired angles was
obtained and the convergence was without overshooting. In addition, they noticed that by using
the MPC control and the LQ optimal control, a better system performance was obtained than by
using the PID control approach presented by David and Robles [24]. Furthermore, the mathematical
development of the proposed LQ optimal control approach was only valid in the case where the
desired angle was a constant or was ramp-like. The proposed MPC control approach, however, was
valid for any desired angle.

5. Simulation Results

In order to illustrate the efficiency of the proposed MPC controller, a simulation study and the
comparison with the LQ optimal control approach were performed. For each approach, the authors
selected the corresponding parameters so that the maximum torque was strictly less than and as close
as possible to 100 Nm. This last condition was met in the case of the LQ optimal control approach
for R = 1/150 with a max(|τ1|) ' 97 Nm. The same condition was met in the case of the MPC control
approach for (h = 0.1961 (s) and ρ = 0.0312) with a max(|τ1|) ' 97 Nm.

For simulation purposes, the authors assumed that the mass and the length of the first and the
second links of the robot arm were Mi=(1,2) = 1(kg) and Li=(1,2) = 1(m), respectively. The initial
and the desired orientations of the first and the second links of the robot arm were θ1(0) = −π/2,
θ2(0) = π/2, θ1d = π/2 and θ2d = −π/2, respectively. According to the selected parameters of the
two proposed approaches of control, the gains of the MPC controller were k1 = 12.25; k2 = 6.30,
and the gains of the LQ optimal controller were k1 = 12.24; k2 = 4.94.

Figure 3a represents the trajectory of the end effector of the robot arm with the final position
of both joints depicted. Figure 3b presents a zoom image of the end-effector of the robot in its final
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position. The trajectory (full line) computed using the MPC control is observed arriving directly to the
goal, unlike the trajectory (dotted-line) computed using the LQ control.
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Figure 4a,b represent the comparison between the convergence of the joint angles θ2 and θ1,
respectively, to their reference values, using the MPC control and the LQ control. It is observed that
the MPC control approach results in a fast and asymptotic convergence of both joint variables and
without overshooting.
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Figure 5a,b show the comparison between the robot torques τ2 and τ1, respectively, that have
been obtained, using the MPC control and the LQ optimal control. It is observed that by using the
MPC control approach, the energy consumption is lower than by using the LQ optimal control.
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Figure 6a,b depict the robot synthetic controls v2 and v1 given by Equation (15). As can be seen,
the synthetic controls reach zero when the end-effector of the robot reaches its objective.
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The convergence of the joint-angle errors e2 and e1 of the two-link robot arm towards zero using
the two proposed approaches of control are depicted in Figure 7a,b, respectively.
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6. Conclusion 

This article proposes a novel MPC control approach for a two-link robot arm with two degrees 
of freedom. The technique consisted of linearizing a nonlinear dynamic model of the robot by using 
a feedback linearization control. Next, based on the obtained linear model, an MPC controller was 
developed that was tuned by choosing the parameters h and ρ . In order to demonstrate the 
effectiveness of the proposed approach, the authors performed a comparative study with the LQ 
control approach. From the results obtained and presented in this article, it can be stated that the 
proposed MPC control approach gives a better system performance than the LQ optimal control 
approach. In addition, both proposed approaches (MPC control and LQ control) give a better system 
performance than the PID control technique proposed by David and Robles [24]. In the future, the 
authors plan to test the proposed MPC control on a real robot, to verify this method’s robustness.  
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