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Abstract: Feature construction is critical in data-driven remaining useful life (RUL) prediction of
machinery systems, and most previous studies have attempted to find a best single-filter method.
However, there is no best single filter that is appropriate for all machinery systems. In this work,
we devise a straightforward but efficient approach for RUL prediction by combining multiple filters
and then reducing the dimension through principal component analysis. We apply multilayer
perceptron and random forest methods to learn the underlying model. We compare our approach
with traditional single-filtering approaches using two benchmark datasets. The former approach is
significantly better than the latter in terms of a scoring function with a penalty for late prediction.
In particular, we note that selecting a best single filter over the training set is not efficient because
of overfitting. Taken together, we validate that our multiple filters-based approach can be a robust
solution for RUL prediction of various machinery systems.

Keywords: prognostics; remaining useful life; feature construction; multiple filters; data-driven
prediction; machine learning; overfitting; principal component analysis

1. Introduction

Prognostics has been applied to the field of machinery maintenance, allowing industries to better
plan logistics and save costs by conducting maintenance only when it is needed. This can be thought
of as predicting the time remaining before a likely system failure, which is referred to as the remaining
useful life (RUL). In the literature [1–5], existing prognostics approaches can generally be divided into
three categories: physics-based, data-driven, and hybrid-based approaches. Physics-based approaches
incorporate prior knowledge of physical and/or analytical models with measured data to predict the
future degradation behavior of a system and its RUL. Alternatively, data-driven approaches rely on
historically collected data and attempt to derive RUL prediction models from the data. Hybrid-based
approaches attempt to make use of the strengths of both approaches by combining knowledge related
to the physical process and information obtained from the observed data to improve the prediction
performance. However, physics-based and hybrid-based approaches are limited in practice because
accurate underlying physical models are not available in most real systems. Therefore, data-driven
approaches have become increasingly popular with recent advancements in modern sensor systems
and data storage/analysis techniques.

In data-driven techniques [3,6], a filtering algorithm that preprocesses the original signal
is required to filter out noise from the acquired data. As surveyed in previous reports [7,8],
the most commonly used filtering algorithms for machinery prognostics are the moving average,
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exponential smoothing, linear Fourier smoothing, and wavelet smoothing methods. Moving average
methods can be further classified into simple moving average (SMA), central moving average
(CMA), and exponential moving average (EMA) methods. For example, SMA was used to eliminate
high-frequency thermal noise from sensor data when predicting the RUL of blast furnaces [9], and was
applied to smooth sensor measurements to predict the RUL of aircraft engines [10,11] and bearings [12].
In addition, CMA was utilized to smooth the fluctuation of time series data when predicting the RUL
of bearings and a heat-resistant alloy [8], and EMA was combined with the Gaussian mixture model to
predict the RUL of slow-speed bearings [13]. Exponential smoothing (ES), which is similar to EMA
with additional constraints [7], was employed to reduce system noise and measurement noise for RUL
prediction of a three-vessel water tank system [14] and bearings [15]. Linear Fourier smoothing (LFS)
was used to suppress the high-frequency noise in sensor data to predict the RUL of aircraft systems [16]
and battery systems [17]. Similarly, wavelet smoothing (WS) was used to remove high-frequency noise
from sensor data for RUL prediction of bearings [18] and lithium-ion batteries [19]. We note that most
previous studies employed a single specific filtering algorithm by focusing on development of a new
filter or modification of an existing filter. This kind of approach is limited because the optimal filter
varies depending on the characteristics of the testing dataset. Therefore, it is a challenge to develop an
RUL prognostics system that is robust over various types of datasets.

In this regard, we propose a simple but efficient approach to predict the RUL in a more robust
way by employing various filtering methods. Specifically, a set of various features are created from six
well-known filter methods. These are then reduced into a smaller number of features by a principal
component analysis together with the original variables. These reduced features are used as input
variables in machine learning methods; herein the multilayer perceptron and the random forests
methods are employed. To verify the usefulness of our approach, we compare it with traditional
single-filtering approaches using two benchmark datasets of RUL prediction (i.e., the IEEE 2012
PHM challenge and NASA C-MAPSS datasets). We firstly show that it is difficult to select a proper
single-filtering approach due to negative correlations between the training and test errors. Alternatively,
our approach showed the best or near-best prediction performances for all of the tested datasets.

The remainder of this paper is structured as follows. Section 2 introduces some background
information about traditional single-filtering approaches and the performance evaluation metrics,
and then explains our approach. Section 3 presents the experimental results and discussion.
We conclude with remarks and suggestions for future work in Section 4.

2. Backgrounds

Traditional Single-Filtering Approaches

Most previous approaches for RUL prediction have applied a single-filtering method to remove
noise from the original observed signals to improve performance. In case that there are a lot of observed
signals, the principal component analysis (PCA) is often applied to reduce the dimension of the feature
space. We call this traditional approach a single-filtering approach with PCA (SF-PCA).

We surveyed six well-known filtering methods for RUL prediction as follows (Let ft is the value
of feature f at time t):

• Simple Moving Average (SMA)

SMA is the unweighted average of values over the previous time points (Equation (1)).

SMA( ft) =
ft + ft−1 + · · ·+ ft−n+1

n
, (1)

where n is the number of previous time points.
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• Central Moving Average (CMA)

SMA causes a shift in the trend because it considers only previous data. To overcome its tendency
for lateness, CMA can be computed by averaging values over equal periods of past and future time
points, as follows Equation (2):

CMA( ft) =
ft−bn/2c + · · ·+ ft−1 + ft + ft+1 + · · ·+ ft+bn/2c

n
, (2)

where n is an odd number specifying the number of time points being averaged.

• Exponential Moving Average (EMA)

EMA, also known as an exponentially weighted moving average (EWMA), is a type of infinite
impulse response filter with exponentially decreasing weighting factors. Here, we employ a variant
EMA that uses non-constant weighting factors. The EMA of a time series of feature f is calculated
recursively, as follows Equation (3):

EMA( ft) =

{
ft if t = 1
(1−α)· ft+α(1−αt−1)·EMA( ft−1)

1−αt if t > 1
, (3)

where α = e−1/N is a constant given the total number of observations N.

• Exponential Smoothing (ES)

Similar to EMA, ES is another weighted recursive combination of signals where a constant
weighting factor is employed, as follows Equation (4):

ES( ft) =

{
ft if t = 1
(1− α)· ft + α·ES( ft−1) if t > 1

. (4)

• Linear Fourier Smoothing (LFS)

LFS is based on the well-known Fourier transform that decomposes a signal into its frequency
components. By suppressing the high-frequency components, one can achieve a denoising effect
(Equation (5)).

LFS( f ) = F−1
(

χ[−λ,λ]F ( f )
)

, (5)

where F (·) and F−1(·) denote the forward and inverse Fourier transforms, respectively, and χA is
the characteristic function of set A. The parameter λ is the cut-off frequency. We used the standard
Fast Fourier Transform algorithm to compute the one-dimensional discrete Fourier transform of a
real-valued time series array of feature f .

• Wavelet Smoothing (WS)

Wavelets can be used to decompose a signal into a series of frequency coefficients. A WS
method applies soft thresholding to the coefficients and then reconstructs the signal with the threshold
coefficients (Equation (6)).

WS( f ) =W−1(D(W( f ), γ )), (6)

whereW(·) andW−1(·) denote the forward and inverse wavelet transform operators, respectively,
andD(·, γ) denotes the denoising operator with the soft threshold γ. Given the threshold γ for data U:

D(U, γ) ≡ sgn(U)×max(0, |U| − γ),
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where sgn(U) denotes the sign of data U (positive or negative). The threshold γ is determined as a
universal threshold:

γ = σ̂×
√

2× log N,

where N is the number of data values in the time series of feature f and σ̂ is the standardized median
absolute deviation of the finest-level detail coefficients.

3. Our Proposed Approach

3.1. The Framework

In this work, we propose a robust approach to combine multiple filtering methods and a dimension
reduction for the RUL prediction problem (Figure 1). Filtering methods are mainly concerned with
reducing relatively high-frequency noise. However, selecting the most suitable filter is a challenge
because the best filter varies depending on the characteristics of the signal and/or application.
Moreover, keeping the original signal unfiltered can be useful in some prediction problems where it is
difficult to realize the presence or absence of noise. To overcome this limitation, we first generate a set
of noise-filtered features by using six representative filter methods as we surveyed in the Background
section. In addition, the original signals were included to the candidate features so that they can be
partially used for learning. This construction process can create a large number of features that can be
considered as the input variables in learning. Since such a high-dimensional input space can cause the
overfitting problem, we applied PCA to reduce the dimension of the input space. PCA reduces a system
of p-features into k-principal components by using a linear transformation, while still maintaining
most of the variability in the feature set. PCA is performed by using singular value decomposition
of the data to project it to a lower dimensional space. Here, we choose the principal components,
which account for more than 99% of the data variability. Finally, a learning technique can learn the
underlying model between a set of features and the RUL variable. In this study, we employed two
well-known methods: the multilayer perceptron and random forest methods. This approach is referred
to as the multiple-filtering and PCA-based (MF-PCA) RUL prediction.

Figure 1. A flowchart of the proposed approach (MF-PCA).
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3.2. Performance Evaluation Metrics

In this study, we employ two metrics to evaluate the RUL prediction performance: the scoring
function and the mean squared error (MSE). An RUL prediction is called a failed-safe prediction
(FSP, or early prediction) and a failed-dangerous prediction (FDP, or late prediction) when the actual
RUL is larger and smaller than the estimated RUL, respectively. The scoring function favors the FSP
prediction more than the FDP prediction whereas the MSE gives an equal weight to both types of
predictions. Considering that the recovery cost is extremely large in the FDP case, the former measure
seems to be more reasonable. However, the score can be forced to be increased by underestimating
the RUL. In this regard, it is necessary to assess the prediction performance using both two metrics
together [12,15,20–23]. In the following, the definitions of the metrics are described.

3.2.1. Scoring Function

The scoring function used in this paper is identical to the one used in the IEEE PHM 2012 Data
Challenge [24]. Let R̂ULi and ActRULi be the estimated RUL and actual RUL of the ith sample,
respectively (where i ∈ [1, N] and N is the number of samples). The percent error on the ith sample is
then defined by Equation (7):

Eri = 100× ActRULi − R̂ULi
ActRULi

. (7)

Then, the score of each RUL prediction is defined by setting asymmetric penalties to late and
early predictions, with late predictions penalized more (i.e., cases where Eri < 0):

Si =

{
exp−ln(0.5)×(Eri/5) if Eri ≤ 0
exp+ln(0.5)×(Eri/20) if Eri > 0

. (8)

The final score is then defined as the average over all samples (Equation (9)):

Score =
1
N

N

∑
i=1

Si . (9)

3.2.2. Mean Squared Error (MSE)

In addition to the scoring function, we use the MSE is used as a performance measure in this
study because it is a general metric for function regression problems. We note that it gives an equal
weight to both early and late predictions (Equation (10)).

MSE =
1
N

N

∑
i=1

(
ActRULi − R̂ULi

)2
. (10)

4. Results and Discussion

To validate our MF-PCA approach, we compared it with some traditional SF-PCA approaches.
We tested these with two well-known benchmark datasets used for remaining useful life prediction:
the IEEE PHM 2012 Prognostic Challenge and NASA C-MAPSS datasets.

4.1. Datasets

4.1.1. IEEE PHM 2012 Prognostic Challenge Dataset

The experimental dataset in the IEEE PHM 2012 Prognostic Challenge was provided by the
FEMTO-ST Institute [24] to compete for the best RUL estimator of ball bearings under experimental
loading conditions. It consists of six training sets obtained from run-to-failure experiments and eleven
test sets showing truncated experimental data; three different loading conditions were considered in
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the experiments. Two accelerometers were mounted on the bearing housing to measure vibrations in
the vertical and horizontal directions. Data sampling was conducted at 10 s intervals at a 25.6 kHz
sampling rate and 0.1 s duration; hence, each observation contained 2560 points. The total observations
of each case in the training and test sets are listed in Table 1.

Table 1. Total numbers of observations in the IEEE PHM 2012 Challenge dataset.

Category Index Condition 1 Condition 2 Condition 3

Training set 1 2802 910 514
2 870 796 1636

Test set

3 1801 1201 351
4 1138 611 N/A
5 2301 2001 N/A
6 2301 571 N/A
7 1501 171 N/A

We apply the Fast Fourier Transform (FFT) algorithm to every observation in order to achieve the
frequency domain representation of the original observation. We then examine 128 frequency bands[
0, fs

256 , 2 fs
256 , · · · 126 fs

256 , 127 fs
256 , fs

2

]
, where fs is the sampling frequency (25.6 kHz). For each frequency band,

the energy value, peak existence indicator (true or false), and maximum peak value are extracted.
Thus, 768 features are extracted for two vibration features (2× 128× 3); these are considered as the
input variables for learning.

4.1.2. NASA C-MAPSS Dataset

The NASA commercial modular aero-propulsion system simulation (C-MAPSS) dataset contains
simulated data produced using a model-based simulation program [25,26]. It is further divided into
four sub-datasets, as shown in Table 2. Each trajectory within the train and test trajectories is assumed
to be the life-cycle of an engine.

Table 2. NASA C-MAPSS dataset details.

Sub-Dataset
C-MAPSS

FD001 FD002 FD003 FD004

Train trajectories 100 260 100 248
Test trajectories 100 259 100 248

No. of operational modes 1 6 1 6

The data are arranged in an n-by-26 matrix, where n corresponds to the number of data points
in each dataset. Each row is a snapshot taken during a single operational cycle and each column
represents a different variable. There are six operational modes (in sub-datasets FD002 and FD004)
that have a substantial effect on engine performance [21,27,28]. Therefore, it is possible to include
the operational mode history as a feature. This is done by adding six columns of data representing
the number of cycles spent in their respective operational mode since the beginning of the series [21].
In addition, data normalization is also carried out based on operational modes, as was done in [21].

4.2. Performance Comparisons Between MF-PCA and SF-PCA

In this study, we employ two learning models: the multi-layer perceptron (MLP) and random
forest (RF) models. For filtering parameters, the number of time points used to compute the moving
average in SMA and CMA is set to five. In LFS, the top 75% high-frequency components of the Fourier
transform are removed. For more stable performance analysis, the train-and-test process for each
dataset was repeated over 100 trials. Average results and standard deviations are shown in Table 3.
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In the table, “None” indicates that the original variables were used as input variables without applying
any filtering method. With respect to the MSE in the training set, the ES or CMA filtering methods
were best. In addition, the best single-filtering method also showed the best MSE in the test set in the
case of the IEEE PHM dataset using the RF learning model. In the rest cases, however, the best method
in the training set did not show relatively good MSE in the test set. Interestingly, the ES filtering
method over the NASA C-MAPSS dataset showed the worst performance over the test set in both
learning models. This implies that there exists an overfitting problem and therefore it is not robust to
select a best filter based on the training set. To clarify this point, we further plot the relations between
the training and test MSE values (Figure 2). As shown in the figure, the two MSE values do not show
positive correlations. We observe negative correlations in Figure 2a,c,d, which imply that the better
in the training MSE the worse in the test MSE. Alternatively, our approach was not best in terms of
the training MSE but it showed the best test MSE over the NASA C-MAPSS dataset and a medium
test MSE over the IEEE PHM dataset. More interestingly, MF-PCA showed the best performance in
terms of the test score value in all cases. Considering that the assessment by the scoring function is
meaningful in machinery prognostics because late predictions are most dangerous, MF-PCA is the
most efficient approach in RUL prediction. In addition, it is notable that the test score of the RF method
was considerably low in cases where it was best with respect to the test MSE. Finally, we note that the
test score values of the IEEE 2012 PHM dataset are relatively small on average. This might be caused
by insufficient amount of training data as mentioned in some previous studies [15,29] where the same
dataset was investigated. Specifically, we note that the test score achieved in [15] was 0.0981, which is
smaller than that of MF-PCA.

Table 3. Performance comparisons of MF-PCA and SF-PCA approaches. (a) IEEE 2012 PHM and
(b) NASA C-MAPSS datasets. Averages and standard deviations are computed over 100 trials.

(a) IEEE 2012 PHM Dataset

Filtering MLP RF

Train MSE Test MSE Test Score Train MSE Test MSE Test Score

None 724 ± 103 744,198 ± 310,888 0.057 ± 0.033 2266 ± 137 103,123 ± 26,233 0.089 ± 0.044

Traditional
SF-PCA

SMA 127 ± 97 1,158,819 ± 403,550 0.076 ± 0.032 651 ± 83 138,249 ± 6789 0.152 ± 0.047
CMA 41 ± 16 1,439,890 ± 492,107 0.090 ± 0.041 421 ± 61 147,384 ± 10,721 0.116 ± 0.044
EMA 711 ± 115 737,573 ± 295,667 0.049 ± 0.026 2261 ± 122 100,311 ± 24,294 0.083 ± 0.049

ES 970 ± 2192 110,497 ± 19,777 0.095 ± 0.034 7 ± 2 63,471 ± 1919 0.118 ± 0.010
LFS 595 ± 106 140,679 ± 110,303 0.100 ± 0.054 1906 ± 123 131,457 ± 13,699 0.128 ± 0.058
WS 501 ± 430 4,225,192 ± 1,785,637 0.090 ± 0.032 1153 ± 106 179,486 ± 18,961 0.169 ± 0.037

MF-PCA 2593 ± 3720 143,238 ± 37,597 0.113 ± 0.032 375 ± 41 107,308 ± 938 0.182 ± 0.017

(b) NASA C-MAPSS Dataset

Filtering MLP RF

Train MSE Test MSE Test Score Train MSE Test MSE Test Score

None 2114 ± 757 1549 ± 320 0.258 ± 0.026 383 ± 158 1603 ± 315 0.250 ± 0.040

Traditional
SF-PCA

SMA 2326 ± 707 1543 ± 240 0.248 ± 0.028 305 ± 102 1823 ± 209 0.237 ± 0.026
CMA 2101 ± 684 2524 ± 1454 0.219 ± 0.077 206 ± 85 2897 ± 1530 0.203 ± 0.066
EMA 1812 ± 896 3707 ± 2347 0.222 ± 0.017 345 ± 178 1926 ± 381 0.242 ± 0.038

ES 436 ± 397 9485 ± 3210 0.095 ± 0.027 21 ± 20 3776 ± 1441 0.181 ± 0.033
LFS 2383 ± 748 1512 ± 332 0.260 ± 0.018 399 ± 154 1941 ± 431 0.224 ± 0.024
WS 1591 ± 465 3018 ± 1304 0.227 ± 0.035 120 ± 37 2011 ± 341 0.236 ± 0.020

MF-PCA 1064 ± 799 1211 ± 243 0.291 ± 0.031 210 ± 166 1496 ± 264 0.265 ± 0.042

Bold values denote the smallest MSE or the highest score in each column. All these values are significantly smaller
or larger than the other values in each column (P-values < 0.05).
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of MLP and RF, respectively, over the IEEE 2012 PHM dataset; (c,d) Results of MLP and RF, respectively,
over the NASA C-MAPSS dataset.

To visualize the prediction result of our approach, we plotted the actual and predicted RULs by
MF-PCA (Figure 3). The points below (or above) the diagonal line mean early (resp. late) predictions.
As shown in the figure, MF-PCA was likely to predict earlier RULs than the actual RULs. Specifically,
the numbers of early predictions in the MLP and RF models were 10 and 6, respectively, among a total
of 11 test cases in the IEEE PHM dataset (Figure 3a,b). In the case of the NASA C-MAPSS dataset,
those numbers in the MLP and RF models were 468 and 513, respectively, among a total of 707 test
cases (Figure 3c,d). This tendency led to a relatively high score values. Taken together, MF-PCA is a
good approach for accurate and robust RUL prediction.
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4.3. The Number of Components Selected by PCA

In the data-driven prognostics, a large number of features can overfit the training data and
eventually reduce the general performance of the learning model. In this regard, we used the PCA to
properly reduce the dimension of the input space and to enhance speed of the training phase. It is
intended to retain the most important characteristics of the whole input space by using the principal
components. In this study, the principal components that explain 99% of the data variance were selected.
Table 4 shows the numbers of principal components selected in MF-PCA and SF-PCA approaches.
As shown in the table, the number of features is largely reduced by the PCA; specifically, at least 87%
and 66% features were reduced in the IEEE PHM and NASA C-MAPSS datasets, respectively, by the
MF-PCA process.
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Table 4. The numbers of principal components selected by PCA process in MF-PCA and SF-PCA
approaches. The principal components that explain 99% of the data variance were selected. (a) IEEE
2012 PHM and (b) NASA C-MAPSS datasets. NuOF and NuPC stand for “the number of original
features” and “the number of principal components selected”, respectively.

(a) IEEE 2012 PHM Dataset

Filtering NuOF
NuPC

Condition 1 Condition 2 Condition 3

None

768

435 436 338

Traditional
SF-PCA

SMA 397 388 340
CMA 317 315 296
EMA 435 436 338
ES 125 134 123

LFS 449 445 349
WS 320 352 289

MF-PCA 5376 709 700 609

(b) NASA C-MAPSS Dataset

Filtering FD001 FD002 FD003 FD004

NuOF NuPC NuOF NuPC NuOF NuPC NuOF NuPC

None

21

14

30

22

21

12

30

21

Traditional
SF-PCA

SMA 11 8 9 8
CMA 10 9 8 8
EMA 17 19 14 19
ES 15 7 13 6

LFS 15 9 13 8
WS 5 14 7 14

MF-PCA 147 50 210 41 147 39 210 38

5. Conclusions

In this study, we proposed MF-PCA, which predicts the RUL in a more robust way by combining
various filtering methods. We compared MF-PCA with none-filtered and six single-filtering approaches
in two different learning models (MLP and RF), and over two benchmark datasets (the IEEE PHM
2012 and NASA C-MAPSS datasets). Results show that MF-PCA has a more robust and accurate
performance than single-filtering approaches because it resolves the overfitting problem (Table 3).
This is because MF-PCA not only keeps the original variables but also generates a large number of
various features from different filtering methods. Because it is difficult to select a proper single-filtering
approach due to the negative or unclear correlations between the training and test errors (Figure 2),
MF-PCA is useful because it can be applied to other machinery systems without a priori knowledge.
Finally, we note the limitations of the MF-PCA approach. As a pure date-driven approach, it is
not applicable in early stage of real machine operation. In addition, the prediction performance is
highly affected by the quality and the amount of training data. Moreover, PCA is a basically linear
transformation so other nonlinear reduction process can be more efficient for more noisy data. Future
studies will further focus on validating the usefulness of our approach by employing other learning
models, such as support vector machines and k-nearest neighbors. Parameters of the filtering methods
are also needed to be automatically determined by an optimization process, like a genetic algorithm.
It is worth to investigate the optimal ratio between the training and the test datasets.
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