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Abstract: Although intelligent machine learning techniques have been used for input-output
modeling of many different manufacturing processes, these techniques map directly from the input
process parameters to the outputs and do not take into consideration any partial knowledge available
about the mechanisms and physics of the process. In this paper, a new approach is presented
for taking advantage of the partial knowledge available about the mechanisms of the process and
embedding it into the neural network structure. To validate the proposed approach, it is used to
create a forward prediction model for the process of electrochemical micro-machining (µ-ECM).
The prediction accuracy of the proposed approach is compared to the prediction accuracy of pure
neural structure models with different structures and the results show that the Neural Network (NN)
models with embedded knowledge have better prediction accuracy over pure NN models.
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1. Introduction

Product quality is one of the most important factors in today’s competitive manufacturing industry.
Achieving the desired quality of the manufactured good while maintaining a relatively low cost has
become a common goal for various manufacturers around the world. In the areas of non-traditional
manufacturing processes, such as electrochemical machining (ECM), electro discharge machining
(EDM) and laser beam machining (LBM), achieving the desired quality of the final product poses
a major challenge as the relationship between the process input parameters and key performance
indicators (KPIs) is not fully understood. Though the mechanism of these processes is not fully
grasped, these non-traditional manufacturing techniques are advantageous compared to traditional
manufacturing processes. For instance, the traditional machining process introduces residual stresses
into the workpiece, yielding undesirable material properties [1]. Using ECM to manufacture the
product can generate a surface free of residual stress due to the absence of force, extra heat generated,
and phase transformation. Nowadays, manufacturing industries use a trial-and-error–based approach
to select the optimal input process parameters to achieve the desirable product specifications. However,
the trial-and-error–based approach is very time-consuming, inefficient and can tremendously increase
the manufacturing costs. To overcome these challenges, many researchers have used intelligent
techniques to model the relationship between the input process parameters and the KPIs, as intelligent
techniques are capable of analyzing, self-learning, apprehending complexities, and they are able to
store and analyze large amounts of data to obtain an increased quality of the product while shortening
the time-to-market.
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Senthilkumaar et al. [2] created a forward prediction model between the input process parameters
and KPIs of turning and facing of the Inconel 718 by utilizing a combination of mathematical
models and neural networks (NN). Chen et al. [3] used a back-propagation NN (BPNN) to create
a forward prediction model between the input process parameters and KPIs of plastic injection
molding. Maji and Pratihar [4] created forward and backward input-output models between the
process parameters and KPIs of EDM by combining an adaptive neuro-fuzzy inference system (ANFIS)
and the genetic algorithm (GA), i.e., the GA was used to optimize the membership functions of the
ANFIS. Fard et al. [5] used the ANFIS for mapping between the input parameters and KPIs of dry wire
electrical discharge machining (WEDM). Teimouri and Baseri [6] used a combination of the artificial bee
colony (ABC) algorithm and fuzzy logic (FL) to create a forward prediction map from the input process
parameters to the KPIs of friction stir welding (FSW). Rajora et al. [7] used a generalized regression
neural network (GRNN) to map from the input process parameters to the KPIs of µ-ECM. Lu et al. [8]
used a NN for predicting the surface roughness in the micro-milling of the Inconel 718. Panda et al. [9]
used an Artifical Neural Network in combination with the Finite Element Analysis model to predict the
material removal rate and average surface roughness in a die-sinking electrochemical spark machining
process. Zou et al. [10] developed an intelligent prediction model based on a NN to predict the outputs
for the process of µ-ECM.

Though a sufficient amount of research is available on the application of intelligent techniques for
input-output modeling in the current literature, a direct mapping from the input process parameters
to the KPIs is performed regardless of any partial knowledge available about the mechanism of the
process. The aim of this paper is to investigate whether embedding the partial knowledge in the
intelligent prediction models can further increase their prediction accuracy. In this paper, a NN
prediction model embedded with the partial knowledge about the relationship between the input
process parameters and intermediate outputs is created and its performance is compared to a pure NN
model. The partial knowledge is utilized by specifying part of the NN structure as compared to a pure
NN structure where the relationship is completely unknown. The proposed methodology is tested
on a case study of µ-ECM. In light of the fact that ECM is a very complicated process and it might
decrease the prediction accuracy when some factors are embedded in the NN in some cases, this paper
has different physical models with different factors embedded into the NN, and the best performance
was obtained using the model and factors presented. The rest of the paper is organized as follows:
Section 2 briefly describes the experimental setup of µ-ECM; Section 3 discusses the modeling between
the input process parameters and the intermediate outputs as well as the NN modeling; Section 4
presents the results based on the proposed approach; and Section 5 presents conclusions from the
presented work as well as possible future directions.

2. Experimental Setup

Figure 1 schematically depicts the µ-ECM experimental setup. The system consists of a
three-dimensional movement device, a small-scale power supply of 100 A, a hydraulic pump for
electrolyte delivery and a filtration system for slag removal. The feeding system is controlled by a
PC-Based Computer Numerical Controlled Controller, a RTX real-time windows kernel program, and a
motion card that drives the linear motor precisely. A pulse generator supplied a periodic current to the
experimental model. A digital oscilloscope ensured that the pulse generator produced a rectangular
waveform with accurate amplitude. If the tool feed rates were excessive, the tool would contact the
workpiece and cause a short circuit; thus, an oscilloscope was employed to detect any short circuits.
Whenever the oscilloscope detected a short circuit, a signal was sent rapidly to the PC and the tool was
extracted automatically until the measured voltage returned to the applied voltage. The micro-array
hole electrode module included the multiple nozzle tool electrodes, Polyvinyl Chloride (PVC) mask
and tool fixture. The electrolyte was pumped to a multiple-electrode cell and exited through the small
nozzle in the form of a free-standing jet directed towards the anode workpiece.
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Figure 1. Schematic diagram of electrochemical micromachining system (left) and micro-array hole 

electrode module (right). 

Other basic information and settings are shown as follows: the electrolyte velocity was 10 m/s at 

the outlet of the pump, the electrolyte temperature was 27 °C, the initial gap between the tool and the 

workpiece was 100 µm, the tool moving distance was 800 µm, the workpiece material was SUS 304, 

the electrolyte used was 10% wt. NaNO3, the nominal diameter of the hole was 900 µm, and the depth 

of the hole was 500 µm. The voltage, pulse-on-time, and feed rate were used as the controllable 

process parameters, while the inner diameter of the micro-hole Din and the outer diameter Dout were 

the measurable performances. Figure 2 shows the Charge Coupled Device (CCD) camera image of 

the array of holes drilled during the μ-ECM experiment.  
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Figure 2. Picture taken by CCD camera. (a) shows the entry side of the hole (Din) while (b) shows the 

exit side of the hole (Dout). 

3. Input-Output Modeling 

As stated earlier, current work in the literature focuses on mapping directly from the input 

process parameters to the KPIs. To attempt to increase the prediction accuracy, partial knowledge 

about the mechanisms of μ-ECM was embedded in the NN. This was accomplished by finding some 

intermediate outputs that are influenced by the inputs and are closely related to the outputs. The 

relationship between the inputs and intermediate outputs has been studied by researchers [11–13]. 

To embed this knowledge in the NN, the relationship between the inputs and the intermediate 

outputs was first linearized. This linearized relationship was represented in the NN as linear 

weighted connections between the inputs and the first hidden layer, where the outputs from the first 

hidden layer represent intermediate outputs. Additional hidden layers were then added to the NN, 

which connected the first hidden layer and the output layer where the connections were nonlinear. 

Once the NN structure with the embedded partial physical knowledge was established, the weights 

of the NN could be trained using any gradient-based or metaheuristic algorithm. The flowchart of 

the proposed idea is shown in Figure 3. 

Figure 1. Schematic diagram of electrochemical micromachining system (left) and micro-array hole
electrode module (right).

Other basic information and settings are shown as follows: the electrolyte velocity was 10 m/s
at the outlet of the pump, the electrolyte temperature was 27 ◦C, the initial gap between the tool and
the workpiece was 100 µm, the tool moving distance was 800 µm, the workpiece material was SUS
304, the electrolyte used was 10% wt. NaNO3, the nominal diameter of the hole was 900 µm, and the
depth of the hole was 500 µm. The voltage, pulse-on-time, and feed rate were used as the controllable
process parameters, while the inner diameter of the micro-hole Din and the outer diameter Dout were
the measurable performances. Figure 2 shows the Charge Coupled Device (CCD) camera image of the
array of holes drilled during the µ-ECM experiment.
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Figure 2. Picture taken by CCD camera. (a) shows the entry side of the hole (Din) while (b) shows the
exit side of the hole (Dout).

3. Input-Output Modeling

As stated earlier, current work in the literature focuses on mapping directly from the input process
parameters to the KPIs. To attempt to increase the prediction accuracy, partial knowledge about the
mechanisms of µ-ECM was embedded in the NN. This was accomplished by finding some intermediate
outputs that are influenced by the inputs and are closely related to the outputs. The relationship
between the inputs and intermediate outputs has been studied by researchers [11–13]. To embed this
knowledge in the NN, the relationship between the inputs and the intermediate outputs was first
linearized. This linearized relationship was represented in the NN as linear weighted connections
between the inputs and the first hidden layer, where the outputs from the first hidden layer represent
intermediate outputs. Additional hidden layers were then added to the NN, which connected the first
hidden layer and the output layer where the connections were nonlinear. Once the NN structure with
the embedded partial physical knowledge was established, the weights of the NN could be trained
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using any gradient-based or metaheuristic algorithm. The flowchart of the proposed idea is shown in
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Figure 3. Flowchart of the proposed idea.

The following assumptions were made to simplify the relationship between the inputs and
the intermediate outputs: the electrochemical gap between the tool (cathode) and the workpiece
(anode) was assumed to be constant for one set of input parameters (voltage, feed and pulse-on-time).
The transient response was ignored, and the whole process was assumed to be in steady state.
The electrolyte conductivity was assumed to be constant because the refill tank was significantly
large in comparison with the electrolyte involved in the machining process. Therefore, the active
ion in the electrolyte could be assumed to be constant. Since the tool was not coated with insulation
material, we assumed the electrical field was uniform around the tool. Eddy flow was neglected in the
inter-electrolyte gap and the horizontal velocity was assumed to be constant. In addition, friction and
heat transfer were not considered in establishing the physical model due to the high electrolyte flow
rate and the low surface roughness.

In this paper, four intermediate outputs were determined to be the most influential on the outputs,
i.e., the current density, the inter-electrode gap, the void fraction, and the material removal rate.
According to McGeough [12], the current density in µ-ECM can be calculated using Equation (1)

J =
I
A

=
KeV

h
(1)

where I denotes the current, A is the area where the current is applied to, κe represents the electrolyte
conductivity which is assumed to be constant, V is the voltage applied, and h is the inter-electro gap
width which is set to constant in the assumption. Therefore, the intermediate output J has a linear
relationship with the input parameter which can be described using Equation (2)

J = C1 × V (2)

where C1 is a coefficient related to the electrolyte conductivity κe and the inter-electrode gap h.
In addition, the equilibrium gap was derived in [12] using Equation (3). Kozak reported that the
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pulse time p will influence the equilibrium gap and material removal rate in [11]. The relationship can
be described using an exponential function with respect to the pulse time as shown in Equation (3)

he =
MVecp

f
(3)

where M is a machining parameter related to the atomic numbers and valencies of the elements
constituting the workpiece, the electrolyte conductivity, Faraday’s constant and the density of the
workpiece; V is the voltage applied; f is the feed rate of the electrode; c is a constant; and p is the
pulse-on-time. Since the workpiece was composed of different materials, the overall atomic number
and valence needed to be determined. Two methods are widely used in the derivation. One is the
‘percentage by weight’ method and the other is the ‘superposition of charge’ method [12]. In this paper,
the superposition of charge method was used to obtain the atomic number and valence of stainless
steel 304. Because the ECM process involves a pulsed voltage input, some corrections needed to be
made to compensate for the transient state caused by the short pulses. Equation (3) can be linearized
using a first-degree Taylor approximation and can be given by:

he = C2 + C3 × V + C4 × f + C5 × p (4)

where C2, C3, C4, C5 are the linearization coefficients and p is the pulse time.
Thorpe derived the relationship of the void fraction based on the separation of the electrolyte flow

within the electrochemical gap, the fundamental kinematic equation and the transport equations [13].
He also proposed that the ECM process can be characterized by four dimensionless parameters.
Based on Thorpe’s derivation and the assumption made previously, the void fraction can be described
using Equation (5)

α =

λaρa L f
ρgC∗heV0

(1 + ρ0λg+ρg−ρgλg
ρgC∗ )( ρa L f

ρ0heV0
)

(5)

where λa, λg are the electrochemical equivalents for the anode material and the gas; ρa, ρg, ρ0 are
density of the anode material, gas and electrolyte, respectively; C∗ is a constant; L is the distance from
the outer diameter of the electrode to the bottom corner of the machined hole; f is the feed rate; and V0

is the inlet electrolyte velocity. Equation (5) can also be linearized into Equation (6) using a first-degree
Taylor approximation as:

α = C6 + C7 × f + C8 × V (6)

The last intermediate output is the material removal rate which can be described by Equation (7)
with consideration of the pulsed voltage derived from [11],

MRR =
b × thickness × f × eb∗×p

travel_d
(7)

where b and b∗ are the correction factors and travel, d is the travel distance from of the tool from
beginning of the machining process to the end. The linearized form of Equation (7) is shown next as
Equation (8)

MRR = C9 + C10 × f + C11 × p (8)

The four desired intermediate outputs described by Equations (2), (4), (6) and (8) were calculated
using the experimental data obtained from [7]. The relationships developed in Equations (2), (4), (6),
and (8) were embedded in the NN as linear connections between the inputs and the hidden neurons of
the first hidden layers. Since there is no understanding of the relationship between the intermediate
outputs and the final outputs, another hidden layer was used. The connection between the first
hidden layer and the second hidden layer as well as the second hidden layer to the output player was
nonlinear. The proposed idea is shown in Figure 3. The training procedure for the embedded physics
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model is shown in Figure 4. The constants C1 through C11 were treated as the weights of the linearized
NN, as shown in Figure 4.
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of ECM.

To determine whether the NN with the embedded partial knowledge would have higher
prediction accuracy than a pure NN model, the weights of the proposed NN structure were first
trained using the genetic algorithm (GA) [14]. The available experimental data (see Appendix A
divided into training (70%), validation (15%), and testing (15%) sets. The training data sets were used
to training the weight values, while the validation data sets were used to ensure that the weight values
did not over-fit to the training data set. Once the NN had been trained, its prediction accuracy was
measured by using it to predict the outputs of the testing data set. During the training procedure, the
aim of the GA was to minimize the mean squared error (MSE), given by Equation (9), of the training
data set. At each iteration of the training procedure, the MSE of the validation data set was also
calculated and the set of weights that provided the smallest MSE for the validation data set were used
as the final weight values.

Mean squared error =
1
n

n

∑
i=1

(ya,i − yp,i)
2 (9)

where ya,i is the actual output of the ith data set and yp,i is the predicted output of the pth data set.

4. Results

Since no theoretical guideline for choosing the number of neurons in the second hidden layer
exists, a trial-and-error–based method was used to determine the number of neurons in the second
hidden layer. In the trial-and-error–based method, the number of neurons in the second hidden
layer was varied and a NN was trained to predict the outputs for the testing data set. For each NN
structure, 10 simulations were run with the same training, validation, and testing data sets and the
Mean Absolute Percentage Error (MAPE) of the testing data set was used to determine the best NN
structure for the hybrid model. Figure 5 shows the MAPE obtained for the test set using different
numbers of neurons in the second hidden layer.
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hidden layer.

It can be observed from Figure 5 that the hybrid structure that had two neurons in the second
hidden layer had the best prediction accuracy for the testing data set.

During the training procedure, the following settings for the GA were used: a population size of
200, an iteration limit of 100, and a crossover rate of 0.5. The results obtained using the proposed NN
structure were also compared to pure NNs where the outputs were directly mapped to from the inputs.
In pure NN models, the number of hidden neurons in the first hidden layer was altered to find the best
pure NN structure. The prediction accuracies of the NN with embedded partial knowledge and the
pure NN were compared by looking at the mean absolute percentage error (MAPE) of the testing data
set. To accurately compare the different types of NN models, five different simulations were performed
and, in each simulation, the training, validation, and testing data sets were changed. Tables 1–4
compare the MAPEs obtained for the test set using the NN model with embedded knowledge and the
pure NN model.

Table 1. Comparison of the MAPE obtained for the test set using the pure NN model with a 3-1-2
structure and the NN model with embedded knowledge.

Simulation #
MAPE Obtained Using NN

Model with Embedded
Knowledge (%)

MAPE Obtained Using
Pure NN Model with

3-1-2 Structure (%)
% Improvement

1 8.32 8.72 4.59
2 10.01 10.93 8.42
3 10.54 11.15 5.46
4 8.83 9.04 2.36
5 8.69 9.24 5.93

Table 2. Comparison of the MAPE obtained for the test set using the pure NN model with a 3-2-2
structure and the NN model with embedded knowledge.

Simulation #
MAPE Obtained Using NN

Model with Embedded
Knowledge (%)

MAPE Obtained Using
Pure NN Model with

3-2-2 Structure (%)
% Improvement

1 8.32 8.87 6.17
2 10.01 11.12 9.99
3 10.54 11.84 10.97
4 8.83 9.07 2.71
5 8.69 9.76 10.92
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Table 3. Comparison of the MAPE obtained for the test set using the pure NN model with a 3-3-2
structure and the NN model with embedded knowledge.

Simulation #
MAPE Obtained Using NN

Model with Embedded
Knowledge (%)

MAPE Obtained Using
Pure NN Model with

3-3-2 Structure (%)
% Improvement

1 8.32 8.62 3.42
2 10.01 10.55 5.11
3 10.54 12.20 13.55
4 8.83 9.85 10.36
5 8.69 10.36 16.08

Table 4. Comparison of the MAPE obtained for the test set using the pure NN model with a 3-4-2
structure and the NN model with embedded knowledge.

Simulation #
MAPE Obtained Using NN

Model with Embedded
Knowledge (%)

MAPE Obtained Using
Pure NN Model with

3-3-2 Structure (%)
% Improvement

1 8.32 8.79 5.35
2 10.01 10.64 5.90
3 10.54 11.55 8.74
4 8.83 9.18 3.84
5 8.69 9.98 12.89

As can be seen from Table 1, compared to the pure NN model with a 3-1-2 structure, i.e.,
three input neurons, one hidden neuron, and one output neuron, the NN model with embedded
knowledge had a better prediction accuracy ranging from 2.36% to 8.42%. Compared to the pure
NN model with a 3-2-2 structure, the NN model with embedded knowledge had a better prediction
accuracy ranging from 2.71% to 10.97%. The NN model with embedded knowledge was 3.42%–16.08%
better than the pure NN model with a 3-3-2 structure, and compared to the pure NN model with a
3-4-2 NN structure, the NN model with embedded knowledge was better by 3.84%–12.89%.

5. Conclusions

In this paper, a new approach was introduced to increase the prediction accuracy of NNs.
Rather than directly mapping from the inputs of the process to the outputs, as is the case in current
NN prediction models, partial knowledge about the mechanisms of the process was embedded in
the NN in the form of the NN structure. To validate the proposed approach, the hybrid model was
used on a case study of µ-ECM. Four different intermediate outputs, whose relationships to the inputs
were known and were considered to have an impact on the final outputs, were obtained based on
studies from other literature. The relationships between the inputs and the intermediate outputs
were linearized and these relationships were then embedded in the NN by using linear weighted
connections between the input layer and the first hidden layer. Due to the limited understanding of
the connection between the intermediate layer and output layers, the relationship between the two
layers was represented using non-linear weighted connections. A trial and error based method was
used to determine the optimized neuron numbers in the non-linear hidden layer. Then, the NN model
with embedded partial physical knowledge was trained using the µ-ECM experiment data with 70%
of data for training, 15% of the data for validation and 15% of the data for testing. After sufficient
training and absence of overfitting, the input process parameters were fed into the embedded model to
predict the Din and Dout, and the MAPE for the test set was obtained to compare its performance with
the traditional two-hidden-layer NN with different structures. When compared to pure NN models,
the MAPEs for the test sets obtained using the NN models with embedded knowledge were better by
3.42%–16.08%. The physics-embedded NN model showed higher prediction accuracy over that of the
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pure NN model. It was also shown that the level of accuracy improvement is affected by the structure
of the NN model.
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Appendix A

Table A1. Data used for training and testing the neural network [7].

No. Voltage
(V)

Pulse On
Time (µs)

Feed Rate
(µm/s) Din (µm) Dout (µm) Taper Overcut

(µm)

1 16 25 8 893 860 0.066 3.5
2 18 25 8 929 913 0.032 14.5
3 20 25 8 923 910 0.026 11.5
4 16 25 6 904 892 0.024 2
5 18 25 6 934 931 0.006 17
6 20 25 6 999 977 0.044 49.5
7 16 25 4 983 979 0.008 41.5
8 18 25 4 1050 1045 0.01 75
9 20 25 4 1125 1123 0.004 112.5
10 8 50 8 657.5 627.5 0.06 121.25
11 10 50 8 809.5 807.25 0.0045 45.25
12 12 50 8 866.25 858 0.0165 16.875
13 8 50 6 760 741 0.038 70
14 10 50 6 828.5 829.5 0.002 35.75
15 12 50 6 908.75 905.5 0.0065 4.375
16 8 50 4 781.75 780.25 0.003 59.125
17 10 50 4 887.25 881.75 0.011 6.375
18 12 50 4 957.75 970 0.0245 28.875
19 8 60 8 771.33 759.33 0.024 64.335
20 10 60 8 806.75 799.5 0.0145 46.625
21 12 60 8 862.75 847 0.0315 18.625
22 8 60 6 756.5 739.75 0.0335 71.75
23 10 60 6 776.75 777.5 0.0015 61.625
24 12 60 6 840.25 841.25 0.002 29.875
25 8 60 4 769 771.5 0.005 65.5
26 10 60 4 854.75 865.25 0.021 22.625
27 12 60 4 928.25 945.5 0.0345 14.125
28 8 70 8 718 721.5 0.007 91
29 10 70 8 779 796.75 0.0355 60.5
30 12 70 8 841.5 849.75 0.0165 29.25
31 8 70 6 736.5 744.5 0.016 81.75
32 10 70 6 802 829.75 0.0555 49
33 12 70 6 858.75 865 0.0125 20.625
34 8 70 4 783.25 783.25 0 58.375
35 10 70 4 878.75 872 0.0135 10.625
36 12 70 4 946.25 955.25 0.018 23.125
37 8 50 8 874 704 0.34 13
38 9 50 8 914 789 0.25 7
39 10 50 8 999 827 0.344 49.5
40 8 50 6 922 765 0.314 11
41 9 50 6 955 807 0.296 27.5
42 10 50 6 1039 837 0.404 69.5
43 8 50 4 932 797 0.27 16
44 9 50 4 1044 790 0.508 72
45 10 50 4 1130 858 0.544 115
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Table A1. Cont.

No. Voltage
(V)

Pulse On
Time (µs)

Feed Rate
(µm/s) Din (µm) Dout (µm) Taper Overcut

(µm)

46 8 60 8 903 708 0.39 1.5
47 9 60 8 967 766 0.402 33.5
48 10 60 8 1084 817 0.534 92
49 8 60 6 917 760 0.314 8.5
50 9 60 6 1043 856 0.374 71.5
51 10 60 6 1115 871 0.488 107.5
52 8 60 4 1071 754 0.634 85.5
53 9 60 4 1087 972 0.23 93.5
54 10 60 4 1263 1044 0.438 181.5
55 8 70 8 875 789 0.172 12.5
56 9 70 8 1071 842 0.458 85.5
57 10 70 8 1158 862 0.592 129
58 8 70 6 987 846 0.282 43.5
59 9 70 6 1212 886 0.652 156
60 10 70 6 1243 1056 0.374 171.5
61 8 70 4 1134 877 0.514 117
62 9 70 4 1260 935 0.65 180
63 10 70 4 1348 1016 0.664 224
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