
machines

Article

Self-Organization and Self-Coordination in
Welding Automation with Collaborating
Teams of Industrial Robots
Günther Starke *, Daniel Hahn, Diana G. Pedroza Yanez and Luz M. Ugalde Leal

APS GmbH—European Centre for Mechatronics, Vaalser Str. 460, 52074 Aachen, Germany;
hahn@aps-mechatronik.de (D.H.); digapeya@yahoo.es (D.G.P.Y.); luz.ugll@gmail.com (L.M.U.L.)
* Correspondence: starke@aps-mechatronik.de; Tel.: +49-241-8864-126

Academic Editor: Robert Parkin
Received: 31 August 2016; Accepted: 24 November 2016; Published: 30 November 2016

Abstract: In welding automation, growing interest can be recognized in applying teams of industrial
robots to perform manufacturing processes through collaboration. Although robot teamwork can
increase profitability and cost-effectiveness in production, the programming of the robots is still
a problem. It is extremely time consuming and requires special expertise in synchronizing the
activities of the robots to avoid any collision. Therefore, a research project has been initiated to solve
those problems. This paper will present strategies, concepts, and research results in applying robot
operating system (ROS) and ROS-based solutions to overcome existing technical deficits through the
integration of self-organization capabilities, autonomous path planning, and self-coordination of the
robots’ work. The new approach should contribute to improving the application of robot teamwork
and collaboration in the manufacturing sector at a higher level of flexibility and reduced need for
human intervention.

Keywords: industrial robots; collaboration; autonomy; self-organization; trajectory planning;
collision avoidance; ROS-based control; simulation

1. Introduction

The application of industrial robots in automated welding processes is well established with
increasing numbers of robot sales worldwide year by year [1]. To remain competitive in this growing
market and to meet customer demands, all robot manufacturers invest a lot of efforts to improve
the performance of their products. This will be achieved, in particular, through technical innovation,
an increase of functionality, and better reliability.

In this context, for a number of years novel automation concepts have entered the focus of
interest. They are based on production cells with multiple industrial robots and advanced control
concepts that allow robots to share a common work space and to execute manufacturing processes
through collaboration.

The reasons of applying teams of collaborating robots in manufacturing are manifold. Benefits are
especially obvious in the case of complex welding jobs that are difficult, inefficient, or uneconomic
to be completed by only one single robot. Therefore, if applicable, robot teamwork can contribute to
increase profitability, efficiency, and cost-effectiveness in production automation [2].

Currently, most of the “multi-robot” stations being installed or offered on the market are built
from robots of the same type or of a product family. This is because of the individual concepts
developed by the robot manufactures to assure controlled interaction and collaborative activities.
Very common are master-slave concepts to support the complex and time-consuming programming
procedures through specially-tailored proprietary software functions. Notable examples in this

Machines 2016, 4, 23; doi:10.3390/machines4040023 www.mdpi.com/journal/machines

http://www.mdpi.com/journal/machines
http://www.mdpi.com
http://www.mdpi.com/journal/machines

Machines 2016, 4, 23 2 of 23

context are for instance the MultiMove function of ABB, the Independent/Coordinated function
of Motoman Yaskawa, or the RoboTeam function launched by KUKA [3–5]. In parallel to the product
development of robot manufacturers, extensive scientific-driven research has also given birth to
numerous novel technologies in robotics through the last decades. This has led to considerable
functional improvement, increased applicability, and better performance of the robot systems. In this
context the multi-robot technology has also been subject of research and technological development.
Meanwhile, many valuable results, dependent on specific settings and applications, are available.
They provide a useful platform of technologies and software tools for further robotic development,
and especially for multi-robot applications [6,7]. In particular, open source products with free
access to already-existing technological achievements, for instance in the fields of motion planning,
collision avoidance, environmental perception, localization, searching, and mapping, are increasingly
applied by developers in deploying new system designs and advanced robotic technology [8,9].

However, it must be recognized that most of the results gained from research in this sector
have been dedicated to applications of mobile systems or teams of mobile robots being involved
in coordinated actions at different degrees of system autonomy. Well known in this context
are the results of research initiatives in the field of RoboCup Soccer and RoboCup Rescue,
where a continuously-growing community of scientists and researchers has created a wide platform
for research, technological development, competition, and exchange of multiple technical and
technological solutions [10–12].

Less considered, compared to the worldwide research initiatives in the field of mobile robots,
is the development of advanced technologies and autonomy for multi-robot applications in industrial
production environments. This is especially true in the field of arc welding automation. The reason for
this are the technical and technological complexities because, here, coordination and cooperation are
concerned not only with how to control the movement of the robots inside the team, but also how to
distribute the workload between the robots in a way which assures maximum economic efficiency and
team performance and how to cope with conditions and restrictions caused by the welding process
itself. Motoman Yaskawa pioneered multi-robot technology for arc welding applications in 1994 and
became a market leader in this sector. However, the applicability of their technology is restricted
and allows the design and setup of collaborating multi-robot stations only with Motoman products
(robots and controllers) and only for certain applications in welding automation [13]. Despite of this
progress, collaborative welding automation with multi robot technology remains complex and many
technical problems and issues are still unsolved.

One of these issues, for instance, is related to the question of how to proceed if collaboration within
a team of heterogeneous industrial robots with totally different control devices shall be implemented to
reach certain economical goals in production. In this case the technical realization mostly fails because
of the extensive efforts necessary for programming, lacking interoperability, and insufficient control
and interaction concepts.

Therefore, in view of this situation, the research project presented in this paper has been initiated
to investigate the problems of multi-robot applications in more detail and to propose basic technical
solutions which shall contribute to overcoming still-existing problems and to assure more flexibility in
applying multi-robot technology in production environments with arc welding automation by means
of advanced control concepts and integration of a certain degree of autonomy into existing systems.
To enter any research related to this topic, a couple of aspects and questions of particular relevance
have to be addressed first in order to provide a certain baseline for the project work:

• How does one generate a neutral job description that will specify the activities to be executed by
the robots?

• How does one apply the job description for action planning and self–organization of the robot
team work?

• How does one implement autonomy in terms of path planning and self-coordination?
• How does one assure collision-free motion of the robots inside a common work space?

Machines 2016, 4, 23 3 of 23

• How does one create and design an appropriate communication, interaction, and control
infrastructure?

2. XML-Based Job Description

Fundamental to any planning action and controlled interaction for multi-robot systems is
a detailed description of the production job to be executed by the robots. Typically, the specification of
robot activities is part of the operator’s work during explicit programming of each individual robot
and synchronizing their interaction to avoid any collisions.

To replace the so called “teach-in” programming which is, as already said, complex and often
very time consuming, scripted solutions, such as Petri Nets, icon-based programming, or other
scripts have been favored. Within the project an XML-based job description was proposed. It is both
human and machine readable, can be applied platform-independently, and is able to provide all
information and path data to assure proper planning and coordination of robot activities by computers.
For robotized welding this job description has to consider not only geometrical, but also technological,
data. Both need to be complemented by instructions to also control peripheral devices, if needed.
The geometrical data of the job description typically represent the spatial positions of the weld lines,
end-effector orientations during welding, and also points in the 3D workspace which need to be
used by the robots for safety reasons and home positioning. Additionally, technological data have to
specify process conditions, like welding speed, weld gun orientation, stick-out of the wire electrode,
or weaving of the torch. Finally, data have to be considered to define the power source and wire
feeder conditions, as well as welding position, like horizontal, vertical–up, overhead, vertical down,
or welding in gravity-affecting positions. The generation of the job description in the project was
performed by means of a specially-designed software tool. It has included an editor, graphical user
interfaces, and a set of functions to create XML files interactively by the user. The semantics being
applied are related to international standards in welding engineering (EN ISO 15611, 15614). Figure 1
shows a series of instructions and data taken from a typical XML-based job description that has been
created within the project.

Machines 2016, 4, 23 3 of 23

 How does one assure collision-free motion of the robots inside a common work space?

 How does one create and design an appropriate communication, interaction, and control

infrastructure?

2. XML-Based Job Description

Fundamental to any planning action and controlled interaction for multi-robot systems is a

detailed description of the production job to be executed by the robots. Typically, the specification of

robot activities is part of the operator’s work during explicit programming of each individual robot

and synchronizing their interaction to avoid any collisions.

 <?xml version="1.0" encoding="UTF-8"?>
<!-- name of the workpiece, the xml file will be named "wp_example.wdf" -->

<workpiece name="wpexample">

 <geometry>

 <!-- mesh containing the geometry on the workpiece -->

 <mesh filename="file:/path/wp_name.stl"/>

 </geometry>

 <!-- parameters file -->

 <parameters filename="file:/path/param_example.dat"/>

 <jobs>

 <job name="job1">

 <!-- welding parameters -->

 <weldparam>par01</weldparam>

 <trajectory>

 <!-- defining the weld seam starting point -->

 <!-- only the x, y and z coordinates are included -->

 <!-- orientation will be calculate by the planner -->

 <startpoint>

 <x>0</x>

 <y>0</y>

 <z>1000</z>

 </startpoint>

 <!-- welding parameters -->

 <weldparam>par01</weldparam>

 <linear>

 <endpoint>

 <x>0</x>

 <y>200</y>

 <z>1000</z>

 </endpoint>

 </linear>

 <!-- circular seam segment through the auxpoint to the endpoint -->

 <circular>

 <!-- welding parameters for this seam -->
 <weldparam>par01</weldparam>

 <auxpoint>

 <x>100</x>

 <y>300</y>

 <z>1000</z>

Figure 1. XML-based job description.

To replace the so called “teach-in” programming which is, as already said, complex and often

very time consuming, scripted solutions, such as Petri Nets, icon-based programming, or other

scripts have been favored. Within the project an XML-based job description was proposed. It is both

human and machine readable, can be applied platform-independently, and is able to provide all

information and path data to assure proper planning and coordination of robot activities by

computers. For robotized welding this job description has to consider not only geometrical, but also

technological, data. Both need to be complemented by instructions to also control peripheral devices,

if needed. The geometrical data of the job description typically represent the spatial positions of the

weld lines, end-effector orientations during welding, and also points in the 3D workspace which

need to be used by the robots for safety reasons and home positioning. Additionally, technological

data have to specify process conditions, like welding speed, weld gun orientation, stick-out of the

wire electrode, or weaving of the torch. Finally, data have to be considered to define the power

source and wire feeder conditions, as well as welding position, like horizontal, vertical–up,

overhead, vertical down, or welding in gravity-affecting positions. The generation of the job

description in the project was performed by means of a specially-designed software tool. It has

Figure 1. XML-based job description.

Machines 2016, 4, 23 4 of 23

In this context, all XML descriptions being applied in the project only address the movement of
a tool, for instance a weld gun, to execute a manufacturing job. Instructions or information related
to any robot or kinematic structure of robots are not considered. Therefore, XML job descriptions
are very flexible in their use and can be adapted to any robot or welding machine if an appropriate
post-processor is available.

3. Planning and Self-Organization of Robot Team Work

As mentioned before, the goal of this research was to enable teams of robots to organize, plan,
and coordinate their work autonomously without any intervention of the human operator.

To meet this goal, it was decided not to start from the scratch by developing new planning tools,
but to use services of the robot operating system (ROS) as an open source framework and to apply ROS
functions like MoveIt! for motion planning, inverse kinematic calculations, collision checks, and to
control any interaction of the robots, even if they are of a heterogeneous nature [14].

The first planning activity to implement was a solution to decode the XML job description.
For this purpose, a ROS node has been created with use of the library “roscpp” and “TinyXML”.
With an integrated parser the node had to extract the position data of the weldlines, as well
as the corresponding process parameters, and to load them into an action list. After coordinate
transformations of position data from workpiece coordinates into world coordinates of the robot cell,
the generated action list served as a database for any further planning activity.

From the practical point of view, any robot activity in welding automation has to consider,
in principle, two standard application scenarios of importance for the planning concept envisaged:

1. Planning of robot actions being executed in a static working environment at a defined spatial
position and orientation of the workpiece; or

2. Planning of robot actions being executed in a continuously changing working environment.
This will happen, for instance, in the case of varying workpiece positions and frequent
reorientation of the part to be welded by means of an integrated multi-axis workpiece positioner.

3.1. Self-Organization of Robot Collaboration in Static Working Environments

Although any action planning for the robots involved in the team needs to be adapted to the type
of application scenario, there is another important aspect to consider. It is related to the economic goals.
In this context the distribution of activities inside the team of robots, which has to assure minimal job
execution times, is addressed. Thus, motion planning and self-organization also have to cope with
an optimization problem in balancing the work load inside the team.

In order to cope with this kind of optimization problem, “self-organization algorithms” have been
developed and implemented. They were designed to consider the different application scenarios and
to allow the determination and distribution of activities in real-time by following certain optimization
criteria. In this project they were related to the rule of “minimum path lengths”.

For a static working environment, the algorithms used a set of planning matrices of
(n + 2) × (n + 2) elements, one for each robot of the team, where (n) represents the total number
of lines to be welded. The extension by two additional matrix elements was necessary to consider
robot movements from their home positions at the beginning of any job execution, and the return to
the home position after having finalized the last welding job.

Inside the matrix itself, each element Pi,k with i = 1, . . . , n + 2 (column index) and k = 1, . . . , n + 2
(line index) contains a time factor in seconds. This factor either indicates the estimated traversal time
of the robot (based on Euclidian distances) when moving from its current position to a target position
inside the working space. Or, in the case of matrix elements located on the main diagonal, the factors
represent the time of welding the joint being addressed through the position and indices of the matrix
element. For instance P2,2 indicates the welding time for joint 1, P3,3 for joint 2, etc.

Machines 2016, 4, 23 5 of 23

According to the example presented in Figure 2 the calculation starts at element P1,1

(home position) and continues searching the nearest target position for the robot to go next.
This position is found by evaluation of all time factors in the matrix elements of column index
i = 1, respective of the elements P1,2 up to P1,n+2. The matrix element found with the lowest time factor
determines the line index k which has to be used to identify the position the robot to go next. By setting
index i equal k, the corresponding matrix element Pi,k = Pk,k on the main diagonal is addressed.
This represents the welding time (20 s) for the joint to be welded next. Similar calculations were
related to the matrices dedicated to the other robots of the team. Matrix elements being used already
in a calculation cycle have to be neglected in all further planning activities.

Machines 2016, 4, 23 5 of 23

the factors represent the time of welding the joint being addressed through the position and indices

of the matrix element. For instance P2,2 indicates the welding time for joint 1, P3,3 for joint 2, etc.

According to the example presented in Figure 2 the calculation starts at element P1,1 (home

position) and continues searching the nearest target position for the robot to go next. This position is

found by evaluation of all time factors in the matrix elements of column index i = 1, respective of the

elements P1,2 up to P1,n+2. The matrix element found with the lowest time factor determines the line

index k which has to be used to identify the position the robot to go next. By setting index i equal k,

the corresponding matrix element Pi,k = Pk,k on the main diagonal is addressed. This represents the

welding time (20 s) for the joint to be welded next. Similar calculations were related to the matrices

dedicated to the other robots of the team. Matrix elements being used already in a calculation cycle

have to be neglected in all further planning activities.

Figure 2. Self-organization matrix with time data in seconds (example).

After all robots of the team have finalized their first welding operations, the self-organization

algorithm continued with a new search operation. The starting point was now that matrix element

on the main diagonal which has been found to identify the joint selected for welding. From this

matrix position the algorithm again tried to find the next lowest time factor by checking all elements

of the column with index i = 2. As soon as the lowest time factor (2 s) has been identified, a new line

index k (k = 5) is found. This specifies the matrix element on the main diagonal (P5,5) with the time

factor (60 s) related to the next joint selected for welding. In this way all further calculation cycles

have to be performed, each with a column-wise search for the lowest time factor, to find the new line

index k for the next weld, followed by a line-wise identification of the matrix element Pi,k on the

main diagonal with i = k. This had to be performed for the matrices of all robots involved in the

team.

During this self-organization procedure the corresponding time factors for each robot have

been accumulated cycle by cycle, so that the actual duty time (time to go + time to weld) for each of

the robots was always available and could be monitored.

The duty time of the robots was of special importance when approaching the end of the

calculation and optimization procedures. Normally the number of residual joints to be welded

is either:

(i) less than the number of robots in the team; or

(ii) equal to the number of robots in the team.

In the case of (i), the self-organization algorithm had to distribute the final welding tasks not

only in line with the “shortest path length” criteria. It also had to care for a balanced workload of the

robots in the team, in order to assure minimal job execution times. Therefore, priority in welding

task distribution has preferably been given to those robots with the shortest accumulated duty times.

Any decision “next action agreed” or “next action disagreed” after each calculation cycle was taken

by the self-organization algorithms as follows:

 [Accumulated duty time of the robot so far + Residual time for the welds still to do] / [Number

of robots in the team] = Estimated duty time per robot on average

Figure 2. Self-organization matrix with time data in seconds (example).

After all robots of the team have finalized their first welding operations, the self-organization
algorithm continued with a new search operation. The starting point was now that matrix element on
the main diagonal which has been found to identify the joint selected for welding. From this matrix
position the algorithm again tried to find the next lowest time factor by checking all elements of the
column with index i = 2. As soon as the lowest time factor (2 s) has been identified, a new line index k
(k = 5) is found. This specifies the matrix element on the main diagonal (P5,5) with the time factor
(60 s) related to the next joint selected for welding. In this way all further calculation cycles have to be
performed, each with a column-wise search for the lowest time factor, to find the new line index k for
the next weld, followed by a line-wise identification of the matrix element Pi,k on the main diagonal
with i = k. This had to be performed for the matrices of all robots involved in the team.

During this self-organization procedure the corresponding time factors for each robot have been
accumulated cycle by cycle, so that the actual duty time (time to go + time to weld) for each of the
robots was always available and could be monitored.

The duty time of the robots was of special importance when approaching the end of the calculation
and optimization procedures. Normally the number of residual joints to be welded is either:

(i) less than the number of robots in the team; or
(ii) equal to the number of robots in the team.
In the case of (i), the self-organization algorithm had to distribute the final welding tasks not

only in line with the “shortest path length” criteria. It also had to care for a balanced workload of
the robots in the team, in order to assure minimal job execution times. Therefore, priority in welding
task distribution has preferably been given to those robots with the shortest accumulated duty times.
Any decision “next action agreed” or “next action disagreed” after each calculation cycle was taken by
the self-organization algorithms as follows:

• [Accumulated duty time of the robot so far + Residual time for the welds still to do]/[Number of
robots in the team] = Estimated duty time per robot on average

• IF [Estimated duty time per robot in average] > [Actual accumulated duty time of robot] THEN
:Decision: Next action agreed

Machines 2016, 4, 23 6 of 23

• IF [Next action agreed] THEN [Calculation of the individual Duty Rate DRi of the robots]
• DRi = [Estimated duty time per robot in average]/[Actual accumulated duty time of robot];

with i = (1,..., m); m = total number of robots in the team
• Final distribution of welding tasks to robots with shortest duty time:

FOR I = 1 to Number of residual welds to do next
: X = Max {DR1, DR2,..., DRm}
: X identifies robot to take over one of the residual welds.
Delete DutyRate DRx = X from { }
NEXT.

3.2. Self-Organization in Dynamically-Changing Working Environments

As mentioned above, a second typical application scenario in welding automation represents
installations with robots and integrated workpiece positioners to enable a reorientation of the
workpieces in accordance to quality demands. Especially, turn and tilt tables are often applied to
enable welding in horizontal or so called “gravity” positions (Figure 3). For high quality welds this
position is of essential importance because of the symmetrical heat input into the base material and the
optimal weld pool behavior.

Machines 2016, 4, 23 6 of 23

 IF [Estimated duty time per robot in average] > [Actual accumulated duty time of robot] THEN

 Decision: Next action agreed

 IF [Next action agreed] THEN [Calculation of the individual Duty Rate DRi of the robots]

 DRi = [Estimated duty time per robot in average] / [Actual accumulated duty time of robot];

with i = (1,..., m); m = total number of robots in the team

 Final distribution of welding tasks to robots with shortest duty time:

FOR I = 1 to Number of residual welds to do next

 X = Max {DR1, DR2,..., DRm }

 X identifies robot to take over one of the residual welds.

Delete DutyRate DRx = X from { }

NEXT.

3.2. Self-Organization in Dynamically-Changing Working Environments

As mentioned above, a second typical application scenario in welding automation represents

installations with robots and integrated workpiece positioners to enable a reorientation of the

workpieces in accordance to quality demands. Especially, turn and tilt tables are often applied to

enable welding in horizontal or so called “gravity” positions (Figure 3). For high quality welds this

position is of essential importance because of the symmetrical heat input into the base material and

the optimal weld pool behavior.

Figure 3. Turn and tilt table for welding in a gravity position.

To run the self-organization process with respect to dynamically-changing working

environments, the ROS–based control system had to start again in extracting the weldline positions

and tool orientations from the XML job description. After transformation into the world coordinate

system used by ROS and MoveIt!, an action list has, again, been prepared by MoveIt! as the database

for self-organization procedures.

The organization of the work load and distribution of activities to the robots involved in the

team had to cope again with the “shortest path length rule” to assure minimal job execution times.

However, this time, not only the robot movement was of relevance, but also the orientation of the

workpiece on the turn and tilt table, and the position of the weldlines inside the configuration space.

To consider these constraints efficiently, all welds to be executed have been split into two

classes first. One class typically contained all linear welds and the other one all circular welds. This

separation was necessary because of different path planning concepts for the robots when executing

linear or circular welds in combination with the external axes of the turn and tilt table. Figure 4 gives

an overview of the structure of the implemented self-organization algorithms. After loading all

weldline positions and process-related parameters from <ROS Param Server> during an

<Initialization> phase, a <Check job> sequence followed to separate the types of welding tasks into

the two classes of LIN and CIRC welds.

Figure 3. Turn and tilt table for welding in a gravity position.

To run the self-organization process with respect to dynamically-changing working environments,
the ROS–based control system had to start again in extracting the weldline positions and tool
orientations from the XML job description. After transformation into the world coordinate system
used by ROS and MoveIt!, an action list has, again, been prepared by MoveIt! as the database for
self-organization procedures.

The organization of the work load and distribution of activities to the robots involved in the team
had to cope again with the “shortest path length rule” to assure minimal job execution times. However,
this time, not only the robot movement was of relevance, but also the orientation of the workpiece on
the turn and tilt table, and the position of the weldlines inside the configuration space.

To consider these constraints efficiently, all welds to be executed have been split into two classes
first. One class typically contained all linear welds and the other one all circular welds. This separation
was necessary because of different path planning concepts for the robots when executing linear
or circular welds in combination with the external axes of the turn and tilt table. Figure 4 gives
an overview of the structure of the implemented self-organization algorithms. After loading all weldline
positions and process-related parameters from <ROS Param Server> during an <Initialization> phase,
a <Check job> sequence followed to separate the types of welding tasks into the two classes of LIN
and CIRC welds.

Machines 2016, 4, 23 7 of 23Machines 2016, 4, 23 7 of 23

Figure 4. Self-organization algorithm implemented for collaborative robot welding with external

axes of a turn and tilt table.

The algorithm starts with the LIN class and checks the location and orientation of the linear

weldlines of the workpiece fixed on the turntable. In order to allow welding in a “gravity position”,

the table orientation had to be always in a tilt position of 45°, as shown in Figure 3. If one of the

linear weldlines from the LIN class was detected and welding in a horizontal (gravity) position was

allowed, MoveIt! took over responsibility through the transfer of the corresponding WeldStart

position and continued to plan the robot motion in <Move Robots>. The selected robot to execute the

weld in this context was always that one with the shortest Euclidian distance to the weldline at the

time of the decision.

In our test application, typically two robots of different types have been considered for

collaboration. Therefore, the self-organization algorithms in Figure 4 include two path-planning

activities controlled by MoveIt!, one for an ABB (Västeras, Sweden) robot, and one for a KUKA

(Augsburg, Germany) robot (LBR).

In case a weldline in the horizontal position from the LIN class could not be found, the table

was commanded to continue rotating in small angular steps until a weldline with an appropriate

orientation was available. After all welds of the LIN class were finalized, welding of joints from the

CIRC class followed.

Again, the self-organization algorithm started to access the CIRC class to check if the current

orientation of one of the circular weldlines fit to an orientation in the horizontal (gravity) position.

The gravity position was found in frame K1 of the turntable if the length of the WeldStart

position vector in K1 is a maximum. In this case, a circular weldline in the gravity position has been

found, and a robot of the team needs to be determined for welding task execution. The selection

criterion was, again, the shortest Euclidian distance to the WeldStart position. As soon as the

“nearest” robot was found, MoveIt! took over responsibility and started inverse kinematic

calculations to enable the robot to move into the WeldStart position through input of the

corresponding joint angles to the motion controller.

While the turntable remained in a fixed position, control points Pc on the circular path have

been calculated. The reference was a local coordinate system Kc with the WeldStart position as the

origin. The Xc-axis was defined as direction vector between WeldStart and WeldEnd. ZC was

directed in parallel to Z3 of the table coordinate system K3 according to Figure 5.

Figure 4. Self-organization algorithm implemented for collaborative robot welding with external axes
of a turn and tilt table.

The algorithm starts with the LIN class and checks the location and orientation of the linear
weldlines of the workpiece fixed on the turntable. In order to allow welding in a “gravity position”,
the table orientation had to be always in a tilt position of 45◦, as shown in Figure 3. If one of the linear
weldlines from the LIN class was detected and welding in a horizontal (gravity) position was allowed,
MoveIt! took over responsibility through the transfer of the corresponding WeldStart position and
continued to plan the robot motion in <Move Robots>. The selected robot to execute the weld in
this context was always that one with the shortest Euclidian distance to the weldline at the time of
the decision.

In our test application, typically two robots of different types have been considered for
collaboration. Therefore, the self-organization algorithms in Figure 4 include two path-planning
activities controlled by MoveIt!, one for an ABB (Västeras, Sweden) robot, and one for a KUKA
(Augsburg, Germany) robot (LBR).

In case a weldline in the horizontal position from the LIN class could not be found, the table
was commanded to continue rotating in small angular steps until a weldline with an appropriate
orientation was available. After all welds of the LIN class were finalized, welding of joints from the
CIRC class followed.

Again, the self-organization algorithm started to access the CIRC class to check if the current
orientation of one of the circular weldlines fit to an orientation in the horizontal (gravity) position.

The gravity position was found in frame K1 of the turntable if the length of the WeldStart position
vector in K1 is a maximum. In this case, a circular weldline in the gravity position has been found,
and a robot of the team needs to be determined for welding task execution. The selection criterion
was, again, the shortest Euclidian distance to the WeldStart position. As soon as the “nearest” robot
was found, MoveIt! took over responsibility and started inverse kinematic calculations to enable
the robot to move into the WeldStart position through input of the corresponding joint angles to the
motion controller.

While the turntable remained in a fixed position, control points Pc on the circular path have been
calculated. The reference was a local coordinate system Kc with the WeldStart position as the origin.
The Xc-axis was defined as direction vector between WeldStart and WeldEnd. ZC was directed in
parallel to Z3 of the table coordinate system K3 according to Figure 5.

Machines 2016, 4, 23 8 of 23
Machines 2016, 4, 23 8 of 23

Figure 5. Geometrical conditions in planning of robot and turntable motion for circular welds in a

gravity position.

By means of this definition, control points PC(t) could be calculated along the circular weldline

for any time t by:

(c)PCx(t) = [(R × sin β(t)) / sin α(t)] cos (α(t) + φM) (1)

(c)PCy(t) = [(R × sin β(t)) / sin α(t)] sin (α(t) + φM) (2)

where:

R = radius of the circular weldline;

φM = angle between XC und vector from PSTART to center point M of the circular path;

β(t) = angle between vector M_Pc and vector M_PStart; and

α(t) = angle between vector PSTART_Pc and vector M_ Pc.

A coordinate transformation was necessary to transform the coordinates of Pc(t) into the

coordinate system K3 of the turntable:

(3)P(t) = cT3 × (c)Pc(t) (3)

Prior to the welding process in a gravity position with simultaneous movement of a robot and

the turntable, an angle δ needed to be specified as the angle between the radius vector to (3)PSTART and

Y-Axis of K3:

sin δ = (3)PSTARTx / r1 (4)

cos δ = (3)PSTARTy / r1 (5)

r12 = (3)PSTARTx2 + (3)PSTARTy2 (6)

With knowledge of δ and of the angle of table rotation Δδ per time interval Δt, any change of the

control positions (3)P(t) on the circular weldline could be calculated while the turntable rotates at an

angular speed ω:

(3)PX(t) = R × sin (δ + n × Δδ) (7)

(3)PY(t) = R × cos (δ + n × Δδ) (8)

with:

ω = Δδ / Δt.
(9)

Figure 5. Geometrical conditions in planning of robot and turntable motion for circular welds in
a gravity position.

By means of this definition, control points PC(t) could be calculated along the circular weldline
for any time t by:

(c)PCx(t) = [(R × sin β(t))/sin α(t)] cos (α(t) + φM) (1)

(c)PCy(t) = [(R × sin β(t))/sin α(t)] sin (α(t) + φM) (2)

where:
R = radius of the circular weldline;
φM = angle between XC und vector from PSTART to center point M of the circular path;
β(t) = angle between vector M_Pc and vector M_PStart; and
α(t) = angle between vector PSTART_Pc and vector M_Pc.
A coordinate transformation was necessary to transform the coordinates of Pc(t) into the

coordinate system K3 of the turntable:

(3)P(t) = cT3 × (c)Pc(t) (3)

Prior to the welding process in a gravity position with simultaneous movement of a robot and the
turntable, an angle δ needed to be specified as the angle between the radius vector to (3)PSTART and
Y-Axis of K3:

sin δ = (3)PSTARTx/r1 (4)

cos δ = (3)PSTARTy/r1 (5)

r1
2 = (3)PSTARTx

2 + (3)PSTARTy
2 (6)

With knowledge of δ and of the angle of table rotation ∆δ per time interval ∆t, any change of the
control positions (3)P(t) on the circular weldline could be calculated while the turntable rotates at an
angular speedω:

(3)PX(t) = R × sin (δ + n × ∆δ) (7)

(3)PY(t) = R × cos (δ + n × ∆δ) (8)

Machines 2016, 4, 23 9 of 23

with:
ω = ∆δ/∆t. (9)

R2 = (3)Px
2 + (3)Py

2 (10)

n = 0, 1, 2, . . . , m. (11)

After transformation from K3 into the world-coordinate system K0 by:

(0)P(t) = 3H0 × (3)P(t) (12)

The welding of the circular path in a gravity position could be executed with a rotating table.
The rotational speed of the table has been determined by the weld path length and the welding speed
specified in the XML-based job description.

In case neither a linear weld nor a circular weld could be found in the gravity position on the
turntable, the station control had to command the table to rotate by a certain angle (for instance: ±30◦)
until new weldlines from the list could be found in the gravity position for welding.

As soon as the weldgun has reached the WeldEnd position, rotation of the turntable stopped
and the welding task was completed. The self-organization and planning algorithms continued with
Check Job (Figure 4) until all joints were welded.

4. Autonomous Collision—Free Motion Planning

As recognized from the previous section, the algorithms proposed for self-organization and
coordination of the work inside the robot team do not consider any trajectory planning to enable
a proper and collision-free execution of the welding jobs being assigned to each of the robots. Therefore,
especially for traversal movements from one weldline to the next, it was necessary to extend the
self-organization and coordination functionality with appropriate resources for motion planning.
As the most efficient tool for this motion planning task in ROS, we selected the integrated “Open Motion
Planning Library (OMPL)” of MoveIt! to provide collision-free paths [15]. From the library of
motion planning algorithms provided by OMPL, “sampling–based methods” have been favored
for the planning problem. Instead of a detailed construction of the configuration space, “sampling
based methods” explore the C space by a sampling scheme. This means either: picking points in
the C space randomly and storing the status of the robot at these points as knot of a search-tree,
then creating a roadmap (learning phase) to find any shortest path between a given start and target
position (query phase), or, alternatively, using a sequence of random sample-based motions on
dynamically-feasible path elements to construct a search-tree and to find a collision-free path towards
a target position.

The motion planning methods being used in our project addressed two of the most efficient
methods. One of them was “RRT connect” (rapidly-exploring random trees) that allows a fast
bidirectional search of a collision-free path (accelerated by factor 3–5 compared to the standard
uni-directional RRT) [16].

RRT is an algorithm that incrementally grows a tree from samples drawn randomly in a 3D
search space. As soon as a sample qr is drawn, a connection is attempted between qr and the nearest,
already-existing state qc of the tree. If this connection is feasible and represents a path free of collision,
qr results in a new state of the tree. Normally, the length of the new connection between qr and qc

is limited by a growth factor ∆q. In case the connection between qr and qc is larger than this limit,
a new state will be defined at the maximum distance allowed. Thus, the growth factor determines
the rate of growing. Growing of the tree continues until a new qr has reached the target position and
a collision-free path is found.

It is obvious that incremental sample–based path planning will take considerable time. To make
calculations faster, “RRT connect” has been selected. Here, two trees, one from the start position and
one from the target position are growing towards each other. States of the two trees can be connected

Machines 2016, 4, 23 10 of 23

through a path segment which fulfills the “shortest distance theorem”. In this way a collision-free path
between start and target positions for any robot motion can be found much more quickly than with
the standard RRT approach. However, both of the methods mostly converge to solutions that are far
from optimal.

The second path planning procedure being applied in the project was “BKPIECE” (bidirectional
kinodynamic motion planning by interior-exterior cell exploration). This has been selected to also
consider dynamic constraints of robots [17], especially when the URDF group node concept was
used. The advantage of BKPIECE is that the dynamic behavior of the robots involved in the team are
described by physical models and simulation instead of solving equations of motion. Furthermore,
BKPIECE does not require state sampling and metrics to evaluate the distance between states,
like in RRT. It applies path planning on the basis of trees created by forward propagation of motion.
Random motion in the state space is performed. The start of motion is always related to state nodes
already known in the search tree. Each search motion is limited by a fixed time interval (simulation
step size) and intermediate states along each motion are generated at a fixed resolution (propagation
step size). Based on these time frames, the dynamics of the robot in terms of speed, acceleration,
impact of forces, friction, etc. during motion is investigated through physical simulation. If the
dynamic parameters are within allowed limits and no collision with obstacles or self-collision is
detected, then a new path segment of the search tree with a new node is established. To enable a fast
search, exploration of the state space will be directed with high priority to areas which are covered
less by nodes of the search tree. The calculation of the coverage is achieved by BKPIECE through
discretization of the state space into grids with a fixed cell size. Envisaged are cells that contain
only one new state node of the tree. To meet this goal the cell size needs to be adapted by further
discretization levels until the convention of one node per cell is reached.

During planning with discretization of the state space, there are two types of cells to consider:
“exterior cells” with less than 2n neighbor cells (n = dimension of the state space) containing
projections of search motion, and “interior cells” with 2n neighbored cells covered by projections
of nodes from search motions. For robot manipulators the spatial movement typically results in
a three-dimensional projection.

During the first phase of path planning with BKPIECE, a significant number of “exterior cells”
will be created, while after a certain planning time many “exterior cells” change their status into
“interior cells”. To assure fast planning, as mentioned, BKPIECE will give priority to search operations
in areas with “exterior cells” in order to cover the entire state space as quickly as possible. This strategy
will increase the probability in finding a collision–free path from the start to the target destination.

Similar to “RRT connect”, BKPIECE offers further advantages because of search tree creation
from two directions, from the starting point, as well as from the target position. This will guarantee
faster motion planning and collision checks. Therefore, BKPIECE seems to be favorable especially for
multi–robot applications

As planning procedures, in principle, consist of randomly-generated path elements or segments of
motion which allow a dynamically feasible movement of the robots, it might take a certain computation
time of a few seconds until a collision-free path is found. Similar to “RRT connect”, again it is underlined
that, also with BKPIECE, the path being found is not an optimum. Sometimes it is too long or includes
redundant movement. Therefore, a path optimization is required which aims either to minimize the
path length or the travel time. In this context, in the project a “linear shortcut optimization” was
applied in achieving acceptable planning results. It is achieved by trying to successively link path
nodes via straight lines in the configuration space, test the new path element to avoid any collision,
and replace the old path by the new one. After a few iteration cycles a simplified trajectory can be
found (Figure 6).

Machines 2016, 4, 23 11 of 23
Machines 2016, 4, 23 11 of 23

Figure 6. Raw trajectory after linear “shortcut optimization”.

At the end of the planning process the paths produced by OMPL are translated by MoveIt! into

dynamically feasible trajectories. Each point along the trajectories being found contains 3D position

data in world coordinates and end-effector orientations in quaternion form. Therefore, to complete

each planning cycle, inverse kinematics calculations have to be performed in the end to obtain the

joint positions of the robots and match the desired poses. Depending on the number of attempts in

finding a dynamically-feasible and collision-free path, and related to the number of joints and

individual joint subdivisions of the robots involved in the team, computation requires some time.

Therefore, it is obvious that the planning cycle times will have an impact on the performance of the

team of robots in executing welding jobs through collaboration. A detailed study of this impact is the

subject of Section 7.

5. ROS-based IT Infrastructure for Motion Planning and Control.

Based on ROS and MoveIt! services [18], as well as on the self-organization functionality

described before, an IT-infrastructure has been designed and implemented to enable autonomous

planning as well as platform-independent control of the robot work in order to assure proper

collaboration in executing predefined welding jobs. Figure 7 illustrates the proposed system

architecture, recognizing MoveIt! as the key module of this infrastructure. Furthermore, modules for

self-organization and coordination of the robot work, for the interpretation of predefined job

descriptions, as well as for interfacing the ROS environment with external devices have been

designed and added to enable communication, interaction, and control with real robots, peripheral

devices, or even with a robot simulation tool like GAZEBO for monitoring and visualizing the

team activities.

To save time and avoid costs for additional hardware and software to adapt communication

and interaction mechanisms to real physical devices and safety requirements, priority within the

project has been given to simulation studies with GAZEBO. It provides a powerful simulation

environment for ROS applications [19].

Figure 6. Raw trajectory after linear “shortcut optimization”.

At the end of the planning process the paths produced by OMPL are translated by MoveIt! into
dynamically feasible trajectories. Each point along the trajectories being found contains 3D position
data in world coordinates and end-effector orientations in quaternion form. Therefore, to complete
each planning cycle, inverse kinematics calculations have to be performed in the end to obtain the joint
positions of the robots and match the desired poses. Depending on the number of attempts in finding
a dynamically-feasible and collision-free path, and related to the number of joints and individual joint
subdivisions of the robots involved in the team, computation requires some time. Therefore, it is
obvious that the planning cycle times will have an impact on the performance of the team of robots
in executing welding jobs through collaboration. A detailed study of this impact is the subject of
Section 7.

5. ROS-based IT Infrastructure for Motion Planning and Control

Based on ROS and MoveIt! services [18], as well as on the self-organization functionality described
before, an IT-infrastructure has been designed and implemented to enable autonomous planning as
well as platform-independent control of the robot work in order to assure proper collaboration in
executing predefined welding jobs. Figure 7 illustrates the proposed system architecture, recognizing
MoveIt! as the key module of this infrastructure. Furthermore, modules for self-organization and
coordination of the robot work, for the interpretation of predefined job descriptions, as well as for
interfacing the ROS environment with external devices have been designed and added to enable
communication, interaction, and control with real robots, peripheral devices, or even with a robot
simulation tool like GAZEBO for monitoring and visualizing the team activities.

To save time and avoid costs for additional hardware and software to adapt communication and
interaction mechanisms to real physical devices and safety requirements, priority within the project
has been given to simulation studies with GAZEBO. It provides a powerful simulation environment
for ROS applications [19].

Machines 2016, 4, 23 12 of 23
Machines 2016, 4, 23 12 of 23

Figure 7. IT infrastructure for autonomous planning, self-organization, and control of collaborating

robots in executing welding jobs though teamwork.

6. Interaction between MoveIt! and GAZEBO

To enable any interoperability between the ROS-based planning and control platform of

Figure 7 and GAZEBO, ROS as well as the simulation tool require information and model data of the

robots, the turn and tilt table, and of the working environment. Therefore, a 3D model description in

ROS was applied which was based on URDF (unified robot description format) files. URDF is an

XML-based model description. Specifications related to kinematical structure, geometrical

dimensions of mechanical elements, colors, mass moments of inertia, or other physical properties,

such as friction, or even bounding volumes for collision checks are part of URDF.

For the project work, two heterogeneous welding robots of different size and kinematic

structure (ABB Irb 6640 and KUKA LBR IV), as well as a two-axis turn and tilt-table have been

selected and modeled by device-oriented URDF files to cope with any application in MoveIt!, as well

as in GAZEBO.

Visualization and Control of Simulation

However, to assure visualization of the two robots, as well as of the turn and tilt table

simultaneously, it was necessary to combine the individual URDFs of each device through grouping

into just one file. This is because MoveIt! and the ROS Master Server, at its current state of

development, can only work with one URDF file at a time.

The grouping of the individual URDF files of robots and the turn and tilt table could be

achieved by use of the “XML macro concept” supported by ROS. The macro files are indicated

through attribute <xacro>. Therefore, <world.urdf.xacro> had been used as a group node to support

3D visualization of all three kinematic devices, with only one URDF file. Additionally, with regard

to the welding job selected to be executed by the team of robots, the corresponding workpiece model

has to also be loaded into the URDF file and should be attached to the turn and tilt table to complete

the model description for MoveIt!

In order to also apply <world.urdf.xacro> in GAZEBO, some additional GAZEBO-specific tags,

for example in terms of material colors, collision specific data, inertial blocks, and transmission

parameters (link actuators to the joints) had to be added.

Figure 7. IT infrastructure for autonomous planning, self-organization, and control of collaborating
robots in executing welding jobs though teamwork.

6. Interaction between MoveIt! and GAZEBO

To enable any interoperability between the ROS-based planning and control platform of Figure 7
and GAZEBO, ROS as well as the simulation tool require information and model data of the robots,
the turn and tilt table, and of the working environment. Therefore, a 3D model description in ROS was
applied which was based on URDF (unified robot description format) files. URDF is an XML-based
model description. Specifications related to kinematical structure, geometrical dimensions of
mechanical elements, colors, mass moments of inertia, or other physical properties, such as friction,
or even bounding volumes for collision checks are part of URDF.

For the project work, two heterogeneous welding robots of different size and kinematic structure
(ABB Irb 6640 and KUKA LBR IV), as well as a two-axis turn and tilt-table have been selected and
modeled by device-oriented URDF files to cope with any application in MoveIt!, as well as in GAZEBO.

Visualization and Control of Simulation

However, to assure visualization of the two robots, as well as of the turn and tilt table
simultaneously, it was necessary to combine the individual URDFs of each device through grouping
into just one file. This is because MoveIt! and the ROS Master Server, at its current state of development,
can only work with one URDF file at a time.

The grouping of the individual URDF files of robots and the turn and tilt table could be achieved
by use of the “XML macro concept” supported by ROS. The macro files are indicated through attribute
<xacro>. Therefore, <world.urdf.xacro> had been used as a group node to support 3D visualization
of all three kinematic devices, with only one URDF file. Additionally, with regard to the welding
job selected to be executed by the team of robots, the corresponding workpiece model has to also be
loaded into the URDF file and should be attached to the turn and tilt table to complete the model
description for MoveIt!

In order to also apply <world.urdf.xacro> in GAZEBO, some additional GAZEBO-specific tags,
for example in terms of material colors, collision specific data, inertial blocks, and transmission
parameters (link actuators to the joints) had to be added.

After this extension, MoveIt! was now able to provide also the full configuration package to
visualize any activity and interaction of the two robots and the turn and tilt table model. This has been
achieved by the MoveIt! plug-in “RViz” (ROS Visualizer) and by the GAZEBO simulator.

Machines 2016, 4, 23 13 of 23

Nevertheless, full ROS integration with GAZEBO will be obtained if a controlled simulation of
the robot teamwork is available. Therefore, mechanisms need to be specified on how to control any
activity of the robots and table models in GAZEBO through ROS messages, services, and dynamic
reconfiguration. For this purpose, a control interface node has been implemented. A key element
of this interface was the “ROS control” plug-in which provides generic close-loop control, typically
on the basis of a PID controller (Figure 8). Inputs are the joint state data from the encoders of the
robot’s actuators, and the waypoints generated by the trajectory planners of MoveIt!. As output,
“joint position data” have been selected. They are used as feedback to the PID controller to control any
motion of each individual kinematic device of the simulation scenario.

Machines 2016, 4, 23 13 of 23

After this extension, MoveIt! was now able to provide also the full configuration package to

visualize any activity and interaction of the two robots and the turn and tilt table model. This has

been achieved by the MoveIt! plug-in “RViz” (ROS Visualizer) and by the GAZEBO simulator.

Nevertheless, full ROS integration with GAZEBO will be obtained if a controlled simulation of

the robot teamwork is available. Therefore, mechanisms need to be specified on how to control any

activity of the robots and table models in GAZEBO through ROS messages, services, and dynamic

reconfiguration. For this purpose, a control interface node has been implemented. A key element of

this interface was the “ROS control” plug-in which provides generic close-loop control, typically on

the basis of a PID controller (Figure 8). Inputs are the joint state data from the encoders of the robot’s

actuators, and the waypoints generated by the trajectory planners of MoveIt!. As output, “joint

position data” have been selected. They are used as feedback to the PID controller to control any

motion of each individual kinematic device of the simulation scenario.

Figure 8. Structure of a ROS controller.

The ROS controllers are able to execute joint-space trajectories on a group of joints addressed by

each of the robots and by the positioner. In order to pass the trajectory goals to the controllers, a

so-called “joint trajectory action node” had to be implemented as an action server. The server reports

success if trajectory goals are fulfilled and allows the definition of certain path and goal tolerances,

like time delays permitted in reaching the target position, or path positioning errors that are

acceptable during motion.

To manage the data flow between the action server and ROS controller, an infrastructure to

start/stop and load/unload the controllers has been provided by means of a “controller manager”

module. It is able to control the data transfer towards GAZEBO and can also connect MoveIt! to real

physical robot systems, as indicated in Figures 8 and 9.

As one action server is required per ROS controller, three action server nodes had to be

implemented in the MoveIt! configuration to manage the data flow between the following entities:

 ABB joint trajectory action Arm controller_ABB;

 KUKA joint trajectory action Arm controller_LBR; and

 Table joint trajectory action Axis controller_Table.

In this way action was brought to the respective controllers of the ABB and KUKA robots and to

the turn and tilt table, which have been selected as the demonstration and test installation.

Figure 8. Structure of a ROS controller.

The ROS controllers are able to execute joint-space trajectories on a group of joints addressed
by each of the robots and by the positioner. In order to pass the trajectory goals to the controllers,
a so-called “joint trajectory action node” had to be implemented as an action server. The server reports
success if trajectory goals are fulfilled and allows the definition of certain path and goal tolerances,
like time delays permitted in reaching the target position, or path positioning errors that are acceptable
during motion.

To manage the data flow between the action server and ROS controller, an infrastructure to
start/stop and load/unload the controllers has been provided by means of a “controller manager”
module. It is able to control the data transfer towards GAZEBO and can also connect MoveIt! to real
physical robot systems, as indicated in Figures 8 and 9.

As one action server is required per ROS controller, three action server nodes had to be
implemented in the MoveIt! configuration to manage the data flow between the following entities:

• ABB joint trajectory action :Arm controller_ABB;
• KUKA joint trajectory action :Arm controller_LBR; and
• Table joint trajectory action :Axis controller_Table.

In this way action was brought to the respective controllers of the ABB and KUKA robots and to
the turn and tilt table, which have been selected as the demonstration and test installation.

Machines 2016, 4, 23 14 of 23
Machines 2016, 4, 23 14 of 23

V

ABB Trajectory

Controller

KUKA Trajectory

Controller

Table Trajectory

Controller

ROS
Trajectory Action

ROS
Trajectory Action

ROS
Trajectory Action

Controller Manager

ABB robot

KUKA robot

Turn/Tilt-Table

waypoint

waypoint

waypoint

Action Interface

Figure 9. GAZEBO-ROS/MoveIt! controller infrastructure.

7. Simulation of Robot Collaboration

In order to start the execution of a welding job and to simulate how the team of robots will

organize their work, gained from self-organization, self-coordination, and trajectory planning

activities with MoveIt!, the <roslaunch> tool has been used to start the ROS nodes and to setup those

parameters that are of relevance to realize a certain functionality. Content to be loaded is, for

instance, the description of the robot models and of the turn and tilt table model. The model

descriptions have been complemented by physical information related to the workpiece selected for

welding (piece 1 or piece 2).

At system start, by default, all options related to the determination of the workpiece are

disabled. Therefore, it is necessary to indicate the part which is to be welded. This can be achieved,

for instance, by:

< $ roslaunch world_move_group world_ organization. launch piece1:= true >

Other launch files have to be applied to load the XML description of the welding job and the

GAZEBO simulation module, including the workpiece model (for instance: <piece 2>) as shown in

Figure 10.

Figure 10. Workpiece 2, robots, and turn table simulated in GAZEBO.

Further launch files are also necessary to load the visualization in RViz, the trajectory

controllers, the action servers, and the robot_state_publisher. As soon as all nodes, controllers,

Figure 9. GAZEBO-ROS/MoveIt! controller infrastructure.

7. Simulation of Robot Collaboration

In order to start the execution of a welding job and to simulate how the team of robots will organize
their work, gained from self-organization, self-coordination, and trajectory planning activities with
MoveIt!, the <roslaunch> tool has been used to start the ROS nodes and to setup those parameters that
are of relevance to realize a certain functionality. Content to be loaded is, for instance, the description of
the robot models and of the turn and tilt table model. The model descriptions have been complemented
by physical information related to the workpiece selected for welding (piece 1 or piece 2).

At system start, by default, all options related to the determination of the workpiece are
disabled. Therefore, it is necessary to indicate the part which is to be welded. This can be achieved,
for instance, by:

< $ roslaunch world_move_group world_ organization. launch piece1:= true >

Other launch files have to be applied to load the XML description of the welding job and the
GAZEBO simulation module, including the workpiece model (for instance: <piece 2>) as shown in
Figure 10.

Machines 2016, 4, 23 14 of 23

V

ABB Trajectory

Controller

KUKA Trajectory

Controller

Table Trajectory

Controller

ROS
Trajectory Action

ROS
Trajectory Action

ROS
Trajectory Action

Controller Manager

ABB robot

KUKA robot

Turn/Tilt-Table

waypoint

waypoint

waypoint

Action Interface

Figure 9. GAZEBO-ROS/MoveIt! controller infrastructure.

7. Simulation of Robot Collaboration

In order to start the execution of a welding job and to simulate how the team of robots will

organize their work, gained from self-organization, self-coordination, and trajectory planning

activities with MoveIt!, the <roslaunch> tool has been used to start the ROS nodes and to setup those

parameters that are of relevance to realize a certain functionality. Content to be loaded is, for

instance, the description of the robot models and of the turn and tilt table model. The model

descriptions have been complemented by physical information related to the workpiece selected for

welding (piece 1 or piece 2).

At system start, by default, all options related to the determination of the workpiece are

disabled. Therefore, it is necessary to indicate the part which is to be welded. This can be achieved,

for instance, by:

< $ roslaunch world_move_group world_ organization. launch piece1:= true >

Other launch files have to be applied to load the XML description of the welding job and the

GAZEBO simulation module, including the workpiece model (for instance: <piece 2>) as shown in

Figure 10.

Figure 10. Workpiece 2, robots, and turn table simulated in GAZEBO.

Further launch files are also necessary to load the visualization in RViz, the trajectory

controllers, the action servers, and the robot_state_publisher. As soon as all nodes, controllers,

Figure 10. Workpiece 2, robots, and turn table simulated in GAZEBO.

Further launch files are also necessary to load the visualization in RViz, the trajectory controllers,
the action servers, and the robot_state_publisher. As soon as all nodes, controllers, interfaces,
and parameters are loaded, the links between ROS, MoveIt!, and GAZEBO are achieved and all
nodes are prepared to run the application.

Machines 2016, 4, 23 15 of 23

7.1. Results from Application Tests in a Static Working Environment

The applications scenarios selected to test the technical feasibility and to study the performance
of our approach were focused first on welding jobs in a static working environment.

To start at a lower level of complexity, it was decided to compose the team of robots by two similar
six-axis ABB manipulators. They should collaborate in executing defined welding jobs.

The geometry of the workpiece should combine linear as well as circular welds. Therefore,
the table plate of the positioner model has been loaded with <piece 2> first, as shown in Figure 10.
The 14 joints to be welded within this application test have been positioned at a fixed orientation.
The welding position was defined to be always horizontal.

According to Figure 10, the positions of the two robots have been chosen close to the positioner,
opposite to each. In this way the robots were forced to operate within overlapping work spaces when
executing the welding job through collaboration.

As mentioned in a previous section, MoveIt! always used to start with the generation of an action
list by evaluation of the XML job description. Then it continued fully autonomously in planning and
organizing the work of the two robots selected for the test by calling the self-organization node first.
The outcome were lists of activities being subscribed to each of the robots. Prior to this subscription,
an optimization process was passed to meet economic goals by distributing only those series of welding
tasks towards each of the robots, which assured a minimum of execution time.

The resulting sequences of activities subscribed to the two robots provided the input for MoveIt!
in planning collision-free trajectories and to generate waypoints for the movement of the virtual robots
in the simulation environment of GAZEBO. The planning procedures were performed in accordance
to the technologies described in the previous sections.

All calculations and planning activities of MoveIt! have been performed in real-time to enable
a fluent transfer of trajectory data towards the ROS controllers for controlling the movement of
the robots.

In order to justify the performance of computational and planning efforts during self-organization
and trajectory calculations in view of the demands for real-time control, and to understand the planning
mechanism, time constraints, and restrictions MoveIt! had to cope with, a series of experimental tests
have been performed.

Therefore, the paper continues with an overview of important results, as well as with experiences
and first conclusions gained from various application tests. Focus has been given firstly to application
tests in a static working environment. Results are presented in Figures 11 and 12.

Machines 2016, 4, 23 16 of 23

obviously 144 operations can be analyzed without any planning result. They have been aborted due

to time overflow.

The overall planning time for robot 1 was measured to as 32.745 s, while the planning for

robot 2 took MoveIt! 51.029 s. Reasons may be a non-balanced workload as result from the

self-organization processes and perhaps more complex inverse kinematic transformations related to

robot 2.

Nevertheless, the planning execution times measured for the two robots indicate that the total

workload was shared and distributed to each of the two devices in accordance to the ratio of

planning times. Therefore, as a result from the first application tests it could be demonstrated that

the robot teamwork will reduce the total execution times of welding jobs considerably.

Programming was done within 1.4 min. This is very fast compared to the standard “Teach-in”

programming. In case of the two ABB robots (same type) which have been selected for the tests,

a reduction of job execution time by nearly 50% can be observed due to collaboration. This is what

we expected.

Figure 11. Times of trajectory planning with “RRT connect” to weld workpiece 2 in a horizontal

position with two robots (vertical: planning time in seconds ̧ horizontal: number of motion plan

executions).

However, what about the planning efforts provided by MoveIt!? To be able to verify these

efforts in organizing and planning the work of two robots in more detail, the same welding job was

planned again but, this time, welding has been executed by only one robot. The resulting number of

planning calls and the times for call execution are visualized in Figure 12.

In Figure 12 there are in total 217 planning cycles of different individual durations. Out of these

217 cycles, 130 cycles are considered for trajectory calculations along the predefined weldlines with

interpolated waypoints. Four planning cycles were necessary to calculate the trajectories of the

traversal movement from one weldline to the next, and for the return to the home position.

According to this calculation, 83 planning cycles have been aborted because of collision problems

and/or time overflow.

Compared to the time for planning the activities of two robots, now a resulting planning time of

only 7.365 s in total could be measured. Most of the planning cycles need a time of around 0.02 s.

This is 1/10 of the planning time MoveIt! has spent for path planning with teams of two robots.

Therefore, in view of these results, it might be favorable to focus on parallelism, if

self-organization and autonomous path planning with MoveIt! for multi-robot applications is

requested.

Figure 11. Times of trajectory planning with “RRT connect” to weld workpiece 2 in a horizontal position
with two robots (vertical: planning time in seconds¸ horizontal: number of motion plan executions).

Machines 2016, 4, 23 16 of 23
Machines 2016, 4, 23 17 of 23

Figure 12. Times of trajectory planning with “RRT connect” for only one robot to weld workpiece 2

in a horizontal position (vertical: planning time in seconds ̧ horizontal: number of motion plan

executions).

To verify this assumption in more detail, tests have been continued, but now with more

complex application scenarios.

7.2. Results from Application Tests in Dynamically Changing Working Environments

To verify the performance of self-organization, self-coordination, and autonomous

collaboration at higher levels of complexity, a series of tests have been carried out together within a

new test scenario. This is shown in Figure 13. Instead of two robots of the same type, now two

completely heterogeneous welding robots (ABB, six-axis and KUKA, seven-axis) and a controllable

tilt and turn table (two-axis) have been applied to test and prove the technical feasibility of our

approach. <piece 1> was selected first because of its simple geometry and its linear fillet-type

weldlines.

As it was foreseen that welding should always be performed in a gravity position during

application tests with dynamically changing conditions, the turn and tilt table had to be oriented

from a loading position (Figure 13b) towards an angular table position of 45° (Figure 13a).

Furthermore, an incremental reorientation of the workpiece during job execution was required to

assure weldlines were always positioned in a gravity position prior to welding.

(a) (b)

Figure 13. Welding of <piece 1> in a permanent gravity position with ABB and KUKA robots.

(a) welding position; (b) loading position.

Figure 12. Times of trajectory planning with “RRT connect” for only one robot to weld workpiece 2 in
a horizontal position (vertical: planning time in seconds¸ horizontal: number of motion plan executions).

The diagram in Figure 11 shows the different planning calls and times of planning activities
performed by MoveIt! to execute welding of 15 joints represented by <piece 2>. The data are based on
individual plans for each robot with the “RRT connect” planner.

To enable faster planning, the linear weldlines have been additionally split into 130 individual
path segments of 0.015 m length, respectively, and into arc segments of 10◦, in the case of the
circular weldlines.

The time diagram indicates 184 planning calls for robot 1 and 108 calls for robot 2. In total we
can see 292 path planning activities performed by MoveIt! within a time frame of 83.774 s = 1.4 min.
The red line in the diagram represents a programmable time limit. All planning calculations beyond
the 3 s limit were not considered by MoveIt!. They will not contribute to the planning process and
start a new call automatically.

Out of the total 292 planning calls, 18 operations have to be considered for calculating
collision-free trajectories to move the robots on traversal paths with point-to-point movement (PTP)
mode, for instance, from one weldline to the next. Considering that 130 calculations were used to
specify the movement of the two robots along the weldlines through interpolated control points,
obviously 144 operations can be analyzed without any planning result. They have been aborted due to
time overflow.

The overall planning time for robot 1 was measured to as 32.745 s, while the planning
for robot 2 took MoveIt! 51.029 s. Reasons may be a non-balanced workload as result from the
self-organization processes and perhaps more complex inverse kinematic transformations related to
robot 2.

Nevertheless, the planning execution times measured for the two robots indicate that the total
workload was shared and distributed to each of the two devices in accordance to the ratio of planning
times. Therefore, as a result from the first application tests it could be demonstrated that the robot
teamwork will reduce the total execution times of welding jobs considerably. Programming was done
within 1.4 min. This is very fast compared to the standard “Teach-in” programming. In case of the
two ABB robots (same type) which have been selected for the tests, a reduction of job execution time
by nearly 50% can be observed due to collaboration. This is what we expected.

However, what about the planning efforts provided by MoveIt!? To be able to verify these efforts
in organizing and planning the work of two robots in more detail, the same welding job was planned
again but, this time, welding has been executed by only one robot. The resulting number of planning
calls and the times for call execution are visualized in Figure 12.

In Figure 12 there are in total 217 planning cycles of different individual durations. Out of these
217 cycles, 130 cycles are considered for trajectory calculations along the predefined weldlines with

Machines 2016, 4, 23 17 of 23

interpolated waypoints. Four planning cycles were necessary to calculate the trajectories of the traversal
movement from one weldline to the next, and for the return to the home position. According to this
calculation, 83 planning cycles have been aborted because of collision problems and/or time overflow.

Compared to the time for planning the activities of two robots, now a resulting planning time
of only 7.365 s in total could be measured. Most of the planning cycles need a time of around 0.02 s.
This is 1/10 of the planning time MoveIt! has spent for path planning with teams of two robots.

Therefore, in view of these results, it might be favorable to focus on parallelism, if self-organization
and autonomous path planning with MoveIt! for multi-robot applications is requested.

To verify this assumption in more detail, tests have been continued, but now with more complex
application scenarios.

7.2. Results from Application Tests in Dynamically Changing Working Environments

To verify the performance of self-organization, self-coordination, and autonomous collaboration
at higher levels of complexity, a series of tests have been carried out together within a new test scenario.
This is shown in Figure 13. Instead of two robots of the same type, now two completely heterogeneous
welding robots (ABB, six-axis and KUKA, seven-axis) and a controllable tilt and turn table (two-axis)
have been applied to test and prove the technical feasibility of our approach. <piece 1> was selected
first because of its simple geometry and its linear fillet-type weldlines.

As it was foreseen that welding should always be performed in a gravity position during
application tests with dynamically changing conditions, the turn and tilt table had to be oriented from
a loading position (Figure 13b) towards an angular table position of 45◦ (Figure 13a). Furthermore,
an incremental reorientation of the workpiece during job execution was required to assure weldlines
were always positioned in a gravity position prior to welding.

Machines 2016, 4, 23 17 of 23

Figure 12. Times of trajectory planning with “RRT connect” for only one robot to weld workpiece 2

in a horizontal position (vertical: planning time in seconds ̧ horizontal: number of motion plan

executions).

To verify this assumption in more detail, tests have been continued, but now with more

complex application scenarios.

7.2. Results from Application Tests in Dynamically Changing Working Environments

To verify the performance of self-organization, self-coordination, and autonomous

collaboration at higher levels of complexity, a series of tests have been carried out together within a

new test scenario. This is shown in Figure 13. Instead of two robots of the same type, now two

completely heterogeneous welding robots (ABB, six-axis and KUKA, seven-axis) and a controllable

tilt and turn table (two-axis) have been applied to test and prove the technical feasibility of our

approach. <piece 1> was selected first because of its simple geometry and its linear fillet-type

weldlines.

As it was foreseen that welding should always be performed in a gravity position during

application tests with dynamically changing conditions, the turn and tilt table had to be oriented

from a loading position (Figure 13b) towards an angular table position of 45° (Figure 13a).

Furthermore, an incremental reorientation of the workpiece during job execution was required to

assure weldlines were always positioned in a gravity position prior to welding.

(a) (b)

Figure 13. Welding of <piece 1> in a permanent gravity position with ABB and KUKA robots.

(a) welding position; (b) loading position.
Figure 13. Welding of <piece 1> in a permanent gravity position with ABB and KUKA robots.
(a) welding position; (b) loading position.

Based on the list of actions derived from the corresponding XML job description the system,
again, started to plan and organize the activities of the two robots and of the tilt and turn table fully
autonomously. This happened in accordance to the self-organization algorithms and rules described in
Section 3.2.

While the planning was progressing, the list of actions has been continuously decreased depending
on the activities already having been realized. They were deleted from the list after execution.

As the joints to be welded at <piece 1> always represent straight lines in the horizontal position,
the Cartesian path between WeldStart and WeldEnd at each joint could be planned through a list of

Machines 2016, 4, 23 18 of 23

waypoints being interpolated at path segments of 10 mm per interpolation cycle. The generated path
did not need to be simplified, since it was already the shortest path to be found in the Cartesian space.

As described, it was the task of MoveIt! to plan the trajectories for the movement of the robots and
to check for collision, either between the robots and the workpiece, or between the robots themselves.
In case a collision was predicted by MoveIt!, the planning process was aborted and a new attempt was
started to find a collision-free path. Therefore, especially in complex application scenarios being applied
for testing, the planning processes can be time-consuming and may result in varying computation
times. This phenomenon is recognized in the time diagram of the planning process presented in
Figure 14.

Machines 2016, 4, 23 18 of 23

Based on the list of actions derived from the corresponding XML job description the system,

again, started to plan and organize the activities of the two robots and of the tilt and turn table fully

autonomously. This happened in accordance to the self-organization algorithms and rules described

in Section 3.2.

While the planning was progressing, the list of actions has been continuously decreased

depending on the activities already having been realized. They were deleted from the list after

execution.

As the joints to be welded at <piece 1> always represent straight lines in the horizontal position,

the Cartesian path between WeldStart and WeldEnd at each joint could be planned through a list of

waypoints being interpolated at path segments of 10 mm per interpolation cycle. The generated

path did not need to be simplified, since it was already the shortest path to be found in the

Cartesian space.

As described, it was the task of MoveIt! to plan the trajectories for the movement of the robots

and to check for collision, either between the robots and the workpiece, or between the robots

themselves. In case a collision was predicted by MoveIt!, the planning process was aborted and a

new attempt was started to find a collision-free path. Therefore, especially in complex application

scenarios being applied for testing, the planning processes can be time-consuming and may result in

varying computation times. This phenomenon is recognized in the time diagram of the planning

process presented in Figure 14.

Figure 14. Times of planning cycles with “BKPIECE” to weld <piece 1>.

The planning of the welding job to enable collaboration of the two robots and a tilt and turn

table (15 axes of motion in total) took MoveIt! 43 planning cycles as indicated in Figure 14.

Compared to the application tests described in Section 7.1 with individual motion planning, now

the planning procedures have been carried out by applying the URDF group-node concept (see:

Section 6) and use of a “BKPIECE” planner. A threshold of 15 s (red line) was defined to abort a

planning cycle due to time overflow.

According to Figure 14 an average planning time of in total 395 s = 6.6 min was measured. Nine

planning cycles had been aborted due to time overflow. In one case it was necessary to call the

individual motion planners for the ABB and the KUKA robot (blue and orange points) because of a

lack of results from calculations with the group-node concept. Finally, 15 s of the total planning time

were spent for trajectory optimization activities.

Then the degree of complexity has been increased again by selection of an application scenario

to weld <piece 2>, which included a composition of linear and circular weldlines. As shown in

Figure 15, it took MoveIt! 62 planning cycles of different times to plan the collaboration inside the

Figure 14. Times of planning cycles with “BKPIECE” to weld <piece 1>.

The planning of the welding job to enable collaboration of the two robots and a tilt and turn table
(15 axes of motion in total) took MoveIt! 43 planning cycles as indicated in Figure 14. Compared to
the application tests described in Section 7.1 with individual motion planning, now the planning
procedures have been carried out by applying the URDF group-node concept (see: Section 6) and use
of a “BKPIECE” planner. A threshold of 15 s (red line) was defined to abort a planning cycle due to
time overflow.

According to Figure 14 an average planning time of in total 395 s = 6.6 min was measured.
Nine planning cycles had been aborted due to time overflow. In one case it was necessary to call the
individual motion planners for the ABB and the KUKA robot (blue and orange points) because of
a lack of results from calculations with the group-node concept. Finally, 15 s of the total planning time
were spent for trajectory optimization activities.

Then the degree of complexity has been increased again by selection of an application scenario to
weld <piece 2>, which included a composition of linear and circular weldlines. As shown in Figure 15,
it took MoveIt! 62 planning cycles of different times to plan the collaboration inside the team of robots.
The total time to plan the activities of robot 1 (ABB), robot 2 (KUKA LBR), and of the three-axis turn
and tilt table was 398 s, i.e., 6.6 min. Nine motion plans were aborted. The loss of time related to the
aborted plans was around 136 s. Furthermore, 8 s were necessary for path simplification.

Although the group node concept with <world.urdf.xacro> and the BKPIECE path planner have
been applied initially for trajectory planning, individual planner calls based on “RRT connect” to solve
planning problems are often recognized because of aborted calls with the group-node concept.

Machines 2016, 4, 23 19 of 23

The planning of the turn and tilt table movement appeared as an individual planner because
of the CIRC welds, which required a constant table rotation while the circular weld path had to be
tracked by one of the robots.

Machines 2016, 4, 23 19 of 23

team of robots. The total time to plan the activities of robot 1 (ABB), robot 2 (KUKA LBR), and of the

three-axis turn and tilt table was 398 s, i.e. 6.6 min. Nine motion plans were aborted. The loss of

time related to the aborted plans was around 136 s. Furthermore, 8 s were necessary for path

simplification.

Although the group node concept with <world.urdf.xacro> and the BKPIECE path planner have

been applied initially for trajectory planning, individual planner calls based on “RRT connect” to

solve planning problems are often recognized because of aborted calls with the group-node concept.

Figure 15. Time diagram of the planning procedure to weld <piece 2>.

The planning of the turn and tilt table movement appeared as an individual planner because of

the CIRC welds, which required a constant table rotation while the circular weld path had to be

tracked by one of the robots.

7.3. Evaluation of Real-Time Simulation

As the collaborative work performed by a team of robots in cooperation with a turn and tilt

table has been visualized and evaluated by means of real-time simulation (Figure 16), sometimes it

could be recognized that the planning took too much time to calculate the inverse kinematic solution

for the entire system of 15 axes in a desired position.

Figure 16. Simulation of robot collaboration.

Figure 15. Time diagram of the planning procedure to weld <piece 2>.

7.3. Evaluation of Real-Time Simulation

As the collaborative work performed by a team of robots in cooperation with a turn and tilt table
has been visualized and evaluated by means of real-time simulation (Figure 16), sometimes it could be
recognized that the planning took too much time to calculate the inverse kinematic solution for the
entire system of 15 axes in a desired position.

Machines 2016, 4, 23 19 of 23

team of robots. The total time to plan the activities of robot 1 (ABB), robot 2 (KUKA LBR), and of the

three-axis turn and tilt table was 398 s, i.e. 6.6 min. Nine motion plans were aborted. The loss of

time related to the aborted plans was around 136 s. Furthermore, 8 s were necessary for path

simplification.

Although the group node concept with <world.urdf.xacro> and the BKPIECE path planner have

been applied initially for trajectory planning, individual planner calls based on “RRT connect” to

solve planning problems are often recognized because of aborted calls with the group-node concept.

Figure 15. Time diagram of the planning procedure to weld <piece 2>.

The planning of the turn and tilt table movement appeared as an individual planner because of

the CIRC welds, which required a constant table rotation while the circular weld path had to be

tracked by one of the robots.

7.3. Evaluation of Real-Time Simulation

As the collaborative work performed by a team of robots in cooperation with a turn and tilt

table has been visualized and evaluated by means of real-time simulation (Figure 16), sometimes it

could be recognized that the planning took too much time to calculate the inverse kinematic solution

for the entire system of 15 axes in a desired position.

Figure 16. Simulation of robot collaboration. Figure 16. Simulation of robot collaboration.

In this case, planning was divided per robot and was calculated individually. This resulted in
simulation sequences where only one robot at one time was executed. The reason was, as already
mentioned, that the ROS Master Server and MoveIt! are only able to support path planning by means
of only one URDF file at a time.

During simulation, to visualize was also how the path planner and MoveIt! have planned to
continue the next movement of the robots in the configuration space. For this purpose the motion
planning offered an animation before execution of the movement. A “shadowed” robot, shown in

Machines 2016, 4, 23 20 of 23

Figure 17, represents the trajectory to be executed next, while the real robot model has been visualized
in its actual position.

Machines 2016, 4, 23 20 of 23

In this case, planning was divided per robot and was calculated individually. This resulted in

simulation sequences where only one robot at one time was executed. The reason was, as already

mentioned, that the ROS Master Server and MoveIt! are only able to support path planning by

means of only one URDF file at a time.

During simulation, to visualize was also how the path planner and MoveIt! have planned to

continue the next movement of the robots in the configuration space. For this purpose the motion

planning offered an animation before execution of the movement. A “shadowed” robot, shown in

Figure 17, represents the trajectory to be executed next, while the real robot model has been

visualized in its actual position.

Figure 17. Motion planning with real and “shadowed“ robots for detailed evaluation of the

planning process.

As soon as the planning result was evaluated and released by MoveIt!, the trajectory data were

transferred to GAZEBO and the simulated robots moved. In this way the quality of planning results

could be studied in detail if necessary.

Due to the different cycle times during trajectory planning with MoveIt!, but also because of the

variations in motion execution which were influenced by the communication and data transfer

speed between MoveIt! and the GAZEBO simulator, the measurable total times of welding job

execution in the simulation were not applicable to predict any execution times to be expected

in reality.

However, GAZEBO has been very useful in demonstrating the technical feasibility and

applicability of our approach. It also provided powerful tools for studying the performance of

self-organization and autonomous planning in obtaining collision-free and executable trajectories

for a coordinated and controlled execution of given welding jobs through collaboration by teams of

industrial robots.

By application of the URDF group-node concept in trajectory planning, it was possible to

control and move the simulated robots simultaneously. However, as soon as the group-node concept

failed in finding executable trajectories, individual planners per robot had to be used to replace

them. Fast solutions have been achieved, but only with simulated movements, robot by robot.

7.4. Interface Concept to Control Real Physical Robots

The MoveIt!-based motion planning concept developed in the project was able to generate not

only trajectories and waypoints to control the movement of the robot models in a simulation

environment of GAZEBO. The output of the planning procedures was also applicable for the control

of real physical robots being connected to the ROS planning and control environment shown in

Figure 7. For this purpose, the “controller interface“ needs to be extended on one side by hardware

Figure 17. Motion planning with real and “shadowed“ robots for detailed evaluation of the
planning process.

As soon as the planning result was evaluated and released by MoveIt!, the trajectory data were
transferred to GAZEBO and the simulated robots moved. In this way the quality of planning results
could be studied in detail if necessary.

Due to the different cycle times during trajectory planning with MoveIt!, but also because of the
variations in motion execution which were influenced by the communication and data transfer speed
between MoveIt! and the GAZEBO simulator, the measurable total times of welding job execution in
the simulation were not applicable to predict any execution times to be expected in reality.

However, GAZEBO has been very useful in demonstrating the technical feasibility and
applicability of our approach. It also provided powerful tools for studying the performance of
self-organization and autonomous planning in obtaining collision-free and executable trajectories
for a coordinated and controlled execution of given welding jobs through collaboration by teams of
industrial robots.

By application of the URDF group-node concept in trajectory planning, it was possible to control
and move the simulated robots simultaneously. However, as soon as the group-node concept failed
in finding executable trajectories, individual planners per robot had to be used to replace them.
Fast solutions have been achieved, but only with simulated movements, robot by robot.

7.4. Interface Concept to Control Real Physical Robots

The MoveIt!-based motion planning concept developed in the project was able to generate
not only trajectories and waypoints to control the movement of the robot models in a simulation
environment of GAZEBO. The output of the planning procedures was also applicable for the control of
real physical robots being connected to the ROS planning and control environment shown in Figure 7.
For this purpose, the “controller interface“ needs to be extended on one side by hardware modules,
like real-time Ethernet and a TCP/IP network to support communication and, on the other side,
by software that has to be implemented to transform the output data from MoveIt! into a robot-specific
machine code, as well as to feedback data from the robots to MoveIt!

For communication with the KUKA robot LBR IV, the “KUKA Ethernet KRL XML” package can
be used. It supports data exchange through the use of XML messages.

Machines 2016, 4, 23 21 of 23

For ABB robots the appropriate hardware for networking has to be established. Furthermore,
a special software converter has to be developed and integrated into the controller interface of MoveIt!.
This wraps the waypoint data from MoveIt! into messages of defined syntax and cares for the
transmission to the ABB robot controller. By means of the “READ” task, provided by the ABB controller,
strings of a maximum of 80 characters can be decoded to start the defined robot programs inside the
ABB controller. A “SEND” task can be used inside the ABB controller to send messages to the ROS
world. In this way bi-directional communication can be achieved and managed.

However, the connection to real physical robots, which will replace the GAZEBO simulator,
was not part of the project and, therefore, a topic of future work.

8. Conclusions

The proposed ROS-based concept with integrated self-organization, autonomous trajectory
planning, and simulation capabilities offers new perspectives and advantages in applying collaborating
multi-robot systems for welding automation purposes. Even if the robot teams are composed of totally
heterogeneous machines, with ROS it could be demonstrated that just one programming language is
sufficient to support direct communication and any interaction between them. This makes control and
collaborative automation easy and fast to implement.

It became obvious during the project work that ROS and ROS-based software functions,
available as open source products, can provide a suitable platform for developers to implement
powerful and intelligent solutions capable of applying and controlling industrial robots in special
application scenarios and advanced automation concepts.

User input to operate multi-robot applications could be reduced considerably by our approach.
Instead of complex programming and synchronization, now it is focused more or less on the description
of the manufacturing job to be executed by the robots.

The results achieved so far from extensive application tests and performance studies have
demonstrated the technical feasibility of our approach, in principle.

The selected algorithms for trajectory planning, represented by “RRT connect” and “BKPIECE”,
are able to create fast results at acceptable planning times. Individual trajectory planning for one robot
with “RRT connect” could be performed within seconds for an entire welding job of, for instance,
14 welds and four PTP-based traversal movements. This is a very promising result which should
stimulate follow-up research.

An increase of planning time could be recognized as soon as the number of robots and additional
peripheral kinematic systems, like multi-axis workpiece positioners, are considered for collaboration.
Especially, inverse kinematic calculations, as well as more extensive collision checks, will extend the
planning times. However, sufficient planning results and smooth control can be expected from our
approach, if applications are restricted towards teams with only two or three robots, respectively,
with kinematic devices of up to a maximum of 15–18 DOF.

In addition to individual trajectory planning calls per robot, the group–node concept with grouped
URDFs has been introduced and tested. Its application resulted in a decreased number of planning
cycles or calls, but at increased planning times per call due to more complex collision checks and
inverse kinematic transformations. If those calculations with the group-node concept can be achieved
without any time overflow, a smooth and collision-free interaction of the robots can be expected
as demonstrated in Figure 14. However, at increasing complexity of the calculations and planning
efforts, the URDF group-node concept will lose its applicability because of increasing numbers of
planning calls with time overflow. The growing dominance of individual planning activities should be
recognized, in this case, as shown in Figure 15.

Therefore, future work should be focused on technological improvement and better applicability.
A promising approach seems to be the implementation of parallel planning activities as soon
as the number of robots or peripheral devices increases towards the defined limits and beyond.
Operating with individual ROS frameworks and motion planners per robot is recommended in this

Machines 2016, 4, 23 22 of 23

case. A ROSTCP-based communication infrastructure to assure gapless interaction inside the team is
to create. Additionally, useful could be the implementation of a pre-calculus for motion planning and
collaborative control as one instrument for further improvement.

In view of the goals and visions of Industry 4.0, which had stimulated our project, the outcome
achieved so far demonstrates how cognitive functions and autonomy may open new perspectives
towards the development of intelligent machines and advanced automation concepts. In this context
the frameworks of ROS and industrial ROS can offer excellent tools, functions, and open source
software, especially applicable for research and technological development in the field of robotics and
robot applications.

The technical approach on self-organization and autonomous path planning, developed to
improve the applicability of robot teamwork and collaboration in welding automation, may also
contribute to meet the goals and visions in developing intelligent machines that will help humans to
master the challenges of the future.

Acknowledgments: The authors like to thank the German Research Foundation (DFG) for funding this project.
Special thanks also to APS GmbH-European Centre for Mechatronics, Aachen for their support and for providing
the resources that had been necessary to work on this project successfully.

Author Contributions: Günther Starke conceived the ideas for the project, defined the goals of research,
and specified the work program. As project manager he supervised the progress of work, coordinated the
research activities, and wrote this paper. Daniel Hahn provided the technical support in the field of robotics,
robot modeling, and control. He also supplied the project work with relevant feedback. Diana G. Pedroza Yanez
and Luz M. Ugalde Leal developed the ROS IT-infrastructure to organize, plan, and coordinate the robot actions
to enable collaboration. In this context, Ms Ugalde has focused her research on the application of teams of robots
for collaboration in static working environments, while Ms Pedroza has concentrated her scientific work on the
application of collaborating robots in dynamically changing working environments. Both of them performed
experiments and functional tests, measured relevant process data, and contributed to the evaluation of results
from application tests.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IFR: Executive Summary World Robotics 2016 Industrial Robots. Available online: http://www.ifr.
org/fileadmin/user_upload/downloads/World_Robotics/2016/Executive_Summary_WR_Industrial_
Robots_2016.pdf (accessed on 24 November 2016).

2. Papakostas, N.; Michalos, G.; Makris, S.; Zouzias, D.; Chryssolouris, G. Industrial applications with
cooperating robots for the flexible assembly. Int. J. Comput. Integr. Manuf. 2001, 24, 650–660. [CrossRef]

3. ABB: ABB MultiMove Functionality Heralds a New Era in Robot Applications. Available online: https://
library.e.abb.com/public/734fb908d1c8ee50c12576dd005b69d0/ABB%20MultiMove%20functionality.pdf
(accessed on 28 November 2016).

4. Hub Technologies. Available online: http://www.kuka-robotics.com/en/products/software/hub_
technologies/print/start.htm (accessed on 28 November 2016).

5. MOTOMAN XRC 201 Controller Independent-Coordinated Function. Available online: http://cdn2.
hubspot.net/hubfs/366775/downloads/documentation/142969-1.pdf?t=1468601845515 (accessed on
6 October 2016).

6. Parker, L.E. Current research in multi-robot systems. Artif. Life Robot. 2013, 7, 1. [CrossRef]
7. Lazinica, A. Recent Advances in Multi-Robot Systems; I-Tech Education and Publishing: Rijeka, Croatia, 2008.
8. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. SHP-Smooth Hypocycloidal Paths with Collision-Free

and Decoupled Multi-Robot Path Planning. Int. J. Adv. Robot. Syst. 2016, 13, 1–21. [CrossRef]
9. Latombe, J.C. Robot Motion Planning; Springer: New York, NY, USA, 2012.
10. RoboCup. Available online: www.robocup.org (accessed on 28 November 2016).
11. Chen, X.; Stone, P.; Sucar, L.E.; Zant, T. RoboCup 2012: Robot Soccer World Cup XVI; Springer: Berlin/Heidelberg,

Germany, 2013.
12. Yan, Z.; Jouandeau, N.; Cherif, A.A. A Survey and Analysis of Multi-Robot Coordination. Int. J. Adv.

Robot. Syst. 2013, 10, 1–18. [CrossRef]

http://www.ifr.org/fileadmin/user_upload/downloads/World_Robotics/2016/Executive_Summary_WR_Industrial_Robots_2016.pdf
http://www.ifr.org/fileadmin/user_upload/downloads/World_Robotics/2016/Executive_Summary_WR_Industrial_Robots_2016.pdf
http://www.ifr.org/fileadmin/user_upload/downloads/World_Robotics/2016/Executive_Summary_WR_Industrial_Robots_2016.pdf
http://dx.doi.org/10.1080/0951192X.2011.570790
https://library.e.abb.com/public/734fb908d1c8ee50c12576dd005b69d0/ABB%20MultiMove%20functionality.pdf
https://library.e.abb.com/public/734fb908d1c8ee50c12576dd005b69d0/ABB%20MultiMove%20functionality.pdf
http://www.kuka-robotics.com/en/products/software/hub_technologies/print/start.htm
http://www.kuka-robotics.com/en/products/software/hub_technologies/print/start.htm
http://cdn2.hubspot.net/hubfs/366775/downloads/documentation/142969-1.pdf?t=1468601845515
http://cdn2.hubspot.net/hubfs/366775/downloads/documentation/142969-1.pdf?t=1468601845515
http://dx.doi.org/10.1007/BF02480877
http://dx.doi.org/10.5772/63458
www.robocup.org
http://dx.doi.org/10.5772/57313

Machines 2016, 4, 23 23 of 23

13. Multi-Robot Technology. Available online: http://www.motoman.co.uk/en/solutions/multi-robot-
technology/ (accessed on 6 October 2016).

14. About ROS. Available online: http://www.ros.org/about-ros/ (accessed on 25 November 2016).
15. S, ucan, I.A.; Moll, M.; Kavraki, L.E. The Open Motion Planning Library. IEEE Robot. Autom Mag. 2012, 4,

72–82. [CrossRef]
16. Kuffner, J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of

2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000.
17. Şucan, I.A.; Kavraki, L.E. Kinodynamic motion planning by interior-exterior cell exploration. In Algorithmic

Foundation of Robotics VIII; Springer: Berlin/Heidelberg, Germany, 2009.
18. MoveIt! Setup Assistant Tutorial. Available online: http://docs.ros.org/hydro/api/moveit_setup_assistant/

html/doc/tutorial.html (accessed on 4 October 2016).
19. Gazebo: ROS Control, Tutorial. Available online: http://gazebosim.org/tutorials/?tut=ros_control

(accessed on 4 October 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.motoman.co.uk/en/solutions/multi-robot-technology/
http://www.motoman.co.uk/en/solutions/multi-robot-technology/
http://www.ros.org/about-ros/
http://dx.doi.org/10.1109/MRA.2012.2205651
http://docs.ros.org/hydro/api/moveit_setup_assistant/html/doc/tutorial.html
http://docs.ros.org/hydro/api/moveit_setup_assistant/html/doc/tutorial.html
http://gazebosim.org/tutorials/?tut=ros_control
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	XML-Based Job Description
	Planning and Self-Organization of Robot Team Work
	Self-Organization of Robot Collaboration in Static Working Environments
	Self-Organization in Dynamically-Changing Working Environments

	Autonomous Collision—Free Motion Planning
	ROS-based IT Infrastructure for Motion Planning and Control
	Interaction between MoveIt! and GAZEBO
	Simulation of Robot Collaboration
	Results from Application Tests in a Static Working Environment
	Results from Application Tests in Dynamically Changing Working Environments
	Evaluation of Real-Time Simulation
	Interface Concept to Control Real Physical Robots

	Conclusions

