
Article

Software Architecture and Framework for
Programmable Logic Controllers: A Case Study and
Suggestions for Research †

E. George Walters, III 1,* and Eric J. Bryla 2

1 Penn State Erie, The Behrend College, 5101 Jordan Road, Erie, PA 16563, USA
2 neXCtrl Inc, 2303 Wassner Drive, Reading, PA 19609, USA; ebryla@nexctrl.com
* Correspondence: waltersg@ieee.org; Tel.: +1-814-898-6390
† The paper is an extended version of our paper published in Walters, E.G., III; Bryla, E.J. The Impact of PLC

Program Architecture on Production Line Efficiency: Case Study of a Control System Rewrite.
In Proceedings of the ISA Applications of Automation Conference, Wilmington, DE, USA,
23–25 March 2010.

Academic Editor: Burford J. Furman
Received: 31 December 2015; Accepted: 20 June 2016; Published: 22 June 2016

Abstract: Programmable Logic Controllers (PLCs) are widely used for control and automation of
machines and processes, so the quality of PLC software has a direct impact on production efficiency.
This paper describes a PLC program for a food production line that was completely rewritten
using a different software architecture and framework. The PLC hardware and the production
line equipment were not changed, so this project provides an opportunity to quantify the impact
of different PLC software architecture on production efficiency. The average number of cases of
products produced per production hour during the first ten months with the new program was 6.1%
higher than the average during the previous ten months with the old program. PLC software, unlike
most other software, is often used by the end-user for troubleshooting. In this case, a relatively
simple architecture and framework that favors the end-user significantly improved production
efficiency over a more sophisticated architecture and framework that favors the software developer.
Suggestions for further research on software architecture and framework are given.

Keywords: programmable logic controller (PLC); programmable automation controller (PAC);
software architecture; software framework; software engineering

1. Introduction

Programmable Logic Controllers (PLCs) are special-purpose computers that are widely used
in industry for control and automation of machinery and processes. PLCs are programmed using
languages specified by the International Electrotechnical Commission (IEC) 61131-3 standard [1],
variations of those languages, or languages specific to the vendor and PLC platform. The quality
of PLC software has a direct impact on production efficiency [2]. For example, PLC software may
sequence equipment differently than intended by the equipment designer, or interlocked equipment
may hold in a wait state longer than necessary. Such software may still produce products correctly,
but waste time and/or energy unnecessarily.

Software engineering is a large and well-studied field [3]. Some research has been published on
how to apply concepts and theories such as Petri nets, discrete event systems theory, etc. to the
development of PLC software. However, this work has had little impact on PLC programming
practice because it is too complex for most PLC programmers to apply. Some work has been
done to apply software engineering principles to PLC software development, such as recognizing
design patterns [4], using an object-oriented approach [5] and proposing new, high-level graphical

Machines 2016, 4, 13; doi:10.3390/machines4020013 www.mdpi.com/journal/machines

http://www.mdpi.com/journal/machines
http://www.mdpi.com
http://www.mdpi.com/journal/machines


Machines 2016, 4, 13 2 of 14

languages [6]. This is a good start. However, searching the literature for terms such as “PLC software
architecture,” “PLC software framework,” “scalable PLC software,” etc. yields few if any results
that are easily applied to practice. In fact, broader literature searches for “PLC software” or “PLC
programming” yield few papers, most of which are too complex to apply to actual practice. There is
a need to close the gap between academia and industrial practice.

Programmable Logic Controllers (PLCs) are becoming more sophisticated, and it seems the
trend will continue for some time. Many vendors are using the term Programmable Automation
Controller (PAC) to emphasize that the current generation is much more powerful than previous
generations of PLCs [7,8]. In the past, PLCs were often programmed by people with little or no
formal background in computer programming. Today, programs are often written by people having
a much better background in computer programming, with a good understanding of data structures,
object-oriented programming principles, etc. Naturally, these people want to use their knowledge
and take advantage of the programming capabilities offered by the latest PLCs.

Unlike most other types of software, PLC programs are often seen and used by the end-user as a
troubleshooting tool. The person doing the troubleshooting, often an electro-mechanical technician,
may have limited programming skills because they have many other responsibilities. This is a key
point that programmers must keep in mind when they develop PLC programs. The program that is
easiest to troubleshoot is often the simpler one, not the more elegant or sophisticated one. Over the
lifetime of a production line, with other factors being equal, the line that is easiest to troubleshoot will
probably have higher up-time and therefore be more efficient and profitable.

Recently, a leading food manufacturer commissioned a completely rewritten PLC program
that controls a major production line [9]. After ten full months running the new program, the
production efficiency was 6.1% higher on average than it was during the ten full months prior to the
conversion. The Supervisory Control and Data Acquisition (SCADA) system and Human-Machine
Interface (HMI) screens were modified to communicate with the new PLC program. Some additional
informational screens were added, but the control screens used by operators were not changed
significantly and operator procedures remained the same. The PLC hardware and the equipment
on the line were not changed. The only changes made were to the control software, primarily the
PLC software. The new PLC software uses an architecture and framework that favors simplicity,
replacing an architecture and framework that favored more sophistication and used more of the
advanced capabilities of the PLC processor. As such, this project provides an unusual opportunity to
quantify the impact of different PLC software architectures on production efficiency. This is only one
case study, so many conclusions drawn from the experience require further investigation to confirm.
However, it is safe to conclude that two different PLC programs for the same production line can
result in significantly different efficiencies that equate to significant differences in profitability. This,
in turn, motivates the need for research in software architecture and software framework for PLC
software, as well as research in applying other knowledge from the field of software engineering to
PLC software development.

This paper gives a brief background on PLC programming languages in Section 2. An overview
of the old and new PLC software architecture and framework is given in Section 3. Implementation
details of framework elements of the old and new programs are compared in Section 4. Section 5
presents objective, quantifiable results from the conversion experience. Section 6 is a more subjective
discussion of the results, suggesting possible reasons for the improvements. Section 7 discusses
suggestions for further research, asking how PLC programs should be written and what they should
look like in the future.

2. PLC Programming Languages

Most PLCs can be programmed using several different languages. Some of the most common
languages are:



Machines 2016, 4, 13 3 of 14

• Ladder Diagram (LD). LD is a graphical language that was developed to mimic hard-wired
relay logic.

• Structured Text (ST). ST is a textual language that is similar to the BASIC programming
language.

• Sequential Function Chart (SFC). SFC is a graphical language that resembles a flow chart.
• Function Block Diagram (FBD). FBD is a graphical language where blocks are

connected to show data flow. Blocks include logic functions, math functions, timers,
proportional-integral-derivative (PID) control, etc.

Most PLCs allow a program to consist of routines written in different languages. For example,
LD might be used for much of the program, ST might be used for math-intensive computations,
SFC might be used to drive sequenced operations and FBD might be used for control of continuous
processes. Ladder diagram is a very commonly used language and is used in the examples in this
paper. Ladder diagram can be used to do anything the other languages can do, although other
languages may be easier to use for some applications.

Figure 1 shows a basic example of a ladder diagram program that implements the logic function
F = ((A · B) + C) · (D + E), where ‘·’ denotes the logical AND function, ‘+’ denotes the logical OR
function and B is the complement of B (i.e., NOT B). The symbol under A in Figure 1 is called a
normally open contact that is logically true if A = 1. The symbol under B in Figure 1 is called a
normally closed contact that is logically true if B = 0. Symbols connected in series, such as A and
B, are logically ANDed together. Symbols connected in parallel, such as D and E, are logically ORed
together. The symbol under F is called a coil that is logically true if the logic leading into it is true and
is false if the logic leading into it is false. The function implemented by the example in Figure 1 could
be written in pseudocode as:

if (((A and not B) or C) and (D or E)) then
F = 1

else
F = 0

end if

Figure 1. Basic example of ladder diagram (LD).

Normally closed and normally open contacts are called input instructions. Other input
instructions are available, such as equals, greater than, etc. Input instructions are evaluated as
logically true or false, and then work like contacts. The coil is called an output instruction. Other
output instructions are available such as timers, computation, PID, jumps, etc. Output instructions
perform an action such as time, compute, execute the PID equation, jump to subroutine, etc. when
the logic into the instruction is logically true. Output instructions are not executed when the logic
into the function is false.

3. PLC Architecture and Framework

In this paper, PLC software architecture is the highest level of abstraction of a PLC program. It
includes the high-level building blocks of the program, how they interact with each other and how



Machines 2016, 4, 13 4 of 14

they interact with other parts of the control system such as SCADA/HMI systems. It also includes
the programming philosophy, or guiding principles, that apply down to the implementation level.

In this paper, PLC software framework refers to code that helps implement the architecture.
Framework code is intended to be reuseable and extensible. It helps the programmer write code that
follows the philospohy of the architecture. It also helps make the programmer more productive by
providing common functionality, allowing them to focus on code that is unique to the application.

This section describes key elements of the architecture and framework of the old and new
programs. A complete description is beyond the scope of this paper. Implementation details of the
framework elements are described in Section 4.

3.1. Old Architecture vs. New Architecture

The high-level building blocks of the old and new architectures are similar. The major building
blocks include the following:

• SCADA/HMI. The SCADA system and HMI screens provide inputs to the PLC and receive
outputs from the PLC.

• Hand/Off/Auto Handling. Hand/off/auto handling logic manages the mode of output devices,
based primarily on operator input from the HMI and alarms that put devices into off mode.

• Alarm Handling. Alarm handling logic detects alarms and tracks which alarms have been
acknowledged by the operator.

• Auto Logic. Auto logic controls devices that are in auto mode, based primarily on operator input
from the HMI and the state of input devices.

• Output Logic. Output logic controls output devices based on the state of the auto logic,
hand/off/auto mode, alarms and interlocks.

• Interlocking. Interlocks refer to conditions that must be met for an output to be energized or for
an operation to proceed. Typically, interlocks are important for personnel safety or protecting
equipment from damage, so it is especially important that they be implemented correctly.

• Input Devices. Switches, sensors, etc.
• Output Devices. Valves, motors, etc.

The main difference between the old architecture and the new architecture is the programming
philosophy. The general philosophy of the old architecture is to use more of the advanced capabilities
of the PLC such as user-defined data types (UDTs) and subroutines to mimic an object-oriented
approach that favors the software developer. The general philosophy of the new architecture is to take
a simple but highly structured approach that favors the end-user. Both philosophies require a learning
curve for the developer to implement properly and both allow for high programmer productivity.

3.2. Old Framework vs. New Framework

The frameworks of the old and new programs are significantly different, following the different
programming philosophies of the architecture. Both frameworks are implemented using ladder
diagram for most of the code, although other languages could be used to implement more of the
functionality if desired.

Figure 2 shows a block diagram of the framework used to implement the old architecture. The
old framework uses a subroutine for each type of output device to encapsulate common functionality
for that type of device, and a UDT tag to store its state. The auto logic and interlock logic set the value
of input bits in the UDT tags for each device, which are then used in the respective subroutines to
set output bits in the UDT tags, which are then used to drive the PLC outputs for the output devices.
Hand/off/auto and alarm handling are done on an individual basis for each device in its respective
subroutine. Alarms are also processed individually using a UDT tag for each alarm and a subroutine.

Figure 3 shows a block diagram of the framework used to implement the new architecture. The
new framework handles hand/off/auto and alarming centrally using tables and logic that operates
on whole tables rather than individual bits. Auto logic in the new framework stays at a higher level of



Machines 2016, 4, 13 5 of 14

abstraction compared to the old framework. For example, one of the bits driven by the new auto logic
is set while water should be added to the batch tank for the first water addition step. The output logic
uses these bits along with hand/off/auto status bits to drive the PLC outputs for the output devices.
Interlock logic is placed on the rung that drives the PLC output so it is easy to find and verify. A
significant advantage of the new framework is that troubleshooting is much easier for end users who
have modest programming ability because they only need to look at simple ladder logic, as opposed
to the old framework where they need to look in subroutines and bits in UDT tags.

Figure 2. Framework used to implement the old architecture.

Figure 3. Framework used to implement the new architecture.



Machines 2016, 4, 13 6 of 14

4. Case Study: Control System Rewrite

A food production line at a leading food manufacturer was in service and considered to be fully
debugged for several years. However, there were some issues with the system. Two batch tanks used
to mix a slurry for the final product were unable to keep up with the line speed because the batching
sequences of the tanks had unnecessary interlocks. Batching sequences for the tanks and other
processes on the line were controlled by software running on a personal computer (PC), which added
some delay between steps and would occasionally lock up and halt production. The PLC program
was written using sophisticated techniques to take advantage of the advanced PLC capabilities, which
made it difficult for electro-mechanical technicians to use the program to troubleshoot problems when
the line went down. The manufacturer considered a proposal to rewrite the PLC program to fix these
issues. However, it was difficult to justify the cost, because the line was in full production and it
was difficult to quantify the benefits of replacing one commissioned program with another. One day
during production, the line went down but showed no alarms. The electro-mechanical technicians
were not able to troubleshoot the problem and eventually called a plant controls engineer, who could
not find the problem either. An outside contractor was called who eventually found the problem,
which was an internal bit several subroutines deep in the program that had been set by the brief loss
of an emergency stop input and had to be cleared in the program to start the line. The downtime
spanned two shifts, and the incident was used to justify rewriting the PLC program.

The new program uses a software architecture and framework that favors simplicity, and
considers that the end user will use the program as a troubleshooting tool. A complete discussion of
the architecture and framework differences between the old and new programs is beyond the scope
of this paper. This section describes a few key differences between the two programs.

4.1. Control of Output Devices

This section discusses how logic for the control of output devices such as motors and valves is
implemented in each program.

4.1.1. Original Program

The original program takes advantage of user-defined data types (UDTs) and subroutines.
Each device class (two-way valve, reversing motor starter, variable frequency drive, etc.) has a
corresponding UDT and an associated subroutine. A data tag of the appropriate UDT is created
for each device to represent its state. Logic that is common to all devices in a class is contained in the
device subroutine. Control of the device is implemented as follows:

• The input members in the data tag are assigned appropriate values.
• The device subroutine is called, passing the data tag as a parameter.
• The output members in the data tag are assigned to real-world outputs.

As an example, consider the two-way valve V1000. Two-way valves use the V_2WAY UDT,
shown in Table 1, and the V_2WAY_SBR subroutine. Valve V1000 has a data tag named V1000 of type
V_2WAY. Figure 4 shows a simplified example of how the control of V1000 is implemented. First, the
real-world inputs for the valve position switches are assigned to V1000.ZSO and V1000.ZSC. Next, the
V_2WAY_SBR subroutine is called, passing V1000 as an input parameter. The subroutine processes
the input members of V1000 and assigns values to the output members according to the common
control logic for a two-way valve. Finally, V1000.FYO, which is assigned a value in the subroutine, is
assigned to the real-world output for the solenoid that actuates V1000. In the actual program, more
logic is required to set up the other input members.



Machines 2016, 4, 13 7 of 14

Table 1. User-defined data type for a two-way valve, original program.

Member Name Data Type Description

HOA DINT 0 = Hand Close, 1 = Auto, 2 = Hand Open
IDX DINT Data Table Index
Area DINT Area Assignment
DFA Alrm Position Alarm
AE_OPEN BOOL Auto Enable Open
AI_OPEN BOOL Auto Open Interlock
HI_OPEN BOOL Hand Open interlock
INHA BOOL Inhibit Auto Mode
FOM BOOL Force Off Mode
FYO BOOL Solenoid Output Open
FYC BOOL Solenoid Output Close
ZSO BOOL Open Status
ZSC BOOL Closed Status
H2V BOOL Hand 2 HOA CMD Visible
ES BOOL E-Stop Condition
NO BOOL Normal Open

Figure 4. Simplified implementation for control of a two-way valve, original program.

4.1.2. New Program

In the new program, a much simpler approach is taken. Figure 5 shows ladder logic that is
typical for discrete outputs. The real-world output is programmed on the second rung. In general,
devices with hand/off/auto control are energized if either (a) the device is in auto mode and the auto
logic is trying to energize it; or (b) the device is in hand mode. This is reflected by the contacts on the
left side of the rung. If there are any interlocks that must be met to energize the output, they are added
in the series in the middle of the rung so they inhibit the output regardless of mode. The auto logic
for the device (i.e., the “auto command”) is programmed on a single rung above the output rung.



Machines 2016, 4, 13 8 of 14

Figure 5. Typical rungs for a discrete output, new program.

In addition to the real-world output, the output rung has two other coils that are programmed in
parallel so they all have the same value. The first is the mapped output bit and the second is an alias
bit. Real-world output bits are mapped to a single table primarily so they can be read efficiently by
the HMI. The name of the alias bit is the tag name of the device. Device tag names are indicated on the
HMI screens, the piping and instrumentation diagrams (P&IDs), and the physical devices themselves,
so it is convenient to use the alias throughout the program because it is easier to remember than the
output address.

The example given in Figure 5 is the control logic for the water inlet valve on batch tank #1 (BT1).
Opening the water valve when the dry ingredient slide gate is open may allow some water to get into
the dry line and cause problems. The auto logic accounts for this, but the dry inlet slide gate closed
prox is added as an interlock to prevent it from happening in hand mode. There are three phases in
the batching operation where water is added to the batch tank. This can be seen clearly in the logic
for the auto command.

The logic for outputs is written with the end-user in mind. In this example, if the valve does
not open or close as expected these two rungs are an excellent troubleshooting tool. It is easy to find
these rungs using a cross-reference or a search for V1000. The state of each contact and coil is clearly
indicated in color when online with the PLC, so it is quickly obvious if the output is energized. If not,
it is easy to see why it is not. The logic on the auto command rung is written to be simple, so it almost
reads the way a person would describe the automatic operation of the device. In this case, it almost
reads “in auto mode, the inlet valve opens when the batching operation is in the first, second, or third
add water phases.” If more detail is desired, the logic for the bits on the auto command rung can be
found by a quick cross-reference.

There are several advantages to the simple, end-user-friendly approach of the new program
versus the more sophisticated, developer-oriented approach of the original program:

• In the original program, the user cannot see the state of contacts and coils in the subroutine for
a particular device (note that this problem can be avoided in newer PLC revisions by using an
Add-On instruction instead of a UDT and a subroutine. Add-On instructions were not available



Machines 2016, 4, 13 9 of 14

when the original program was written.) This makes troubleshooting the original program very
difficult for many technicians and inconvenient even for experienced developers who are not
familiar with the architecture. Troubleshooting the new program requires only the most basic
PLC skills.

• In the original program, a subroutine for a class of devices contains logic for every feature or
mode of operation that may be used. All of the logic is processed by the PLC for each device
when the subroutine is called, even if it is not needed. In the new program, only the logic that is
needed is included and processed.

• In the original program, all devices in a class have exactly the same logic. This is usually an
advantage, but if one device must operate slightly differently than the others either (a) a new
subroutine must be created with slightly different logic; or (b) the UDT must be expanded to
parameterize the change and the subroutine must be modified to process the new parameter.
This is not an issue in the new program.

4.2. Hand/Off/Auto Control of Devices

Operators can select hand, off, or auto mode for most devices in the production line. A device
in hand or off mode is energized or de-energized, respectively. Assuming interlocks are satisfied,
this effectively forces the device on or off. A device in auto mode is energized or de-energized
automatically without operator intervention, allowing the PLC to control the device according to
the auto logic. This section discusses how hand/off/auto control of output devices is implemented
in each program.

4.2.1. Original Program

In the original program, the UDT for each type of device includes a member named HOA
(hand/off/auto status) of type DINT (32-bit integer). A value of zero indicates off mode, one indicates
auto mode, and two indicates hand mode. When a mode is selected from the Human-Machine
Interface (HMI) for a device, the appropriate value is written to a table in the PLC. The subroutine for
the device determines the new mode based on the value in the table and the value of other bits such
as FOH, the force off mode bit, and INHA, the inhibit auto mode bit. The new mode is then written
back to the table, possibly overwriting the value from the HMI, so the HMI can display the actual
mode. The appropriate element in the table is determined by the IDX (data table index) member of
the data tag for the device.

4.2.2. New Program

In the new program, there are several tables of bits: request hand mode, in hand mode, request
off mode, in off mode, request auto mode, and in auto mode. When a mode is selected from the HMI,
the appropriate request bit is set. A centralized handler processes all the hand, off, and auto requests,
compares them to the corresponding in hand, in off, and in auto status bits, and updates the status
bits accordingly. Forced modes, such as forcing an alarmed device into off mode, is implemented by
setting the request off mode bit every scan that the alarm is active. If there are requests for multiple
modes for the same device, which can result from multiple HMI stations and/or from a forced mode,
only one mode status bit is set. The order of priority is off mode, auto mode, then hand mode. If a
device is in off mode, the handler ensures that the auto mode and hand mode status bits are off, so
the off mode status bit does not need to appear in the output rung, as can be seen in Figure 5.

There are several advantages to the centralized approach of the new program over the device
approach of the original program:

• Less memory is needed. The original program uses two 32-bit DINTs per device, one in the data
tag for the device and the other in the table that interfaces to the HMI. The new program uses
only six bits for each device, packed efficiently in tables.



Machines 2016, 4, 13 10 of 14

• In the original program, the hand/off/auto logic is in the same subroutine as the logic for the
output. In the new program, the handler is in a routine separate from the output logic, so the
end-user does not have to look at it while troubleshooting outputs.

• In the original program, logic for processing hand/off/auto requests is duplicated in each
subroutine for the different device classes. If a change is required, it must be duplicated in each
subroutine. There is only one copy of the logic for processing requests in the new program.

• The original program processes one device at a time. The new program processes the tables word
by word, so it executes much faster.

4.3. Alarm Handling

This section discusses how alarm handling is implemented in each program.

4.3.1. Original Program

In the original program, each alarm is represented by a data tag of the user-defined data type
Alrm. The Alrm UDT is shown in Table 2. Alarm handling is implemented as follows:

• The CONDITION bit of the alarm tag is programmed.
• The Z_ALRMD subroutine is called, passing the alarm tag as an input parameter.

For example, the CONDITION bit for a motor alarm might be programmed to be on if the motor
run output is on and the motor running input is off. The subroutine uses the CONDITION bit to
enable a timer defined by the TIMER member. If the timer times out, the subroutine sets the ALM
bit. The subroutine handles alarm acknowledgement and silencing, and determines if there are any
audible alarms or alarms that should light the alarm beacon.

Most of the alarms in the original program are device alarms, such as when a motor fails to run
or a valve fails to move into position. The UDTs for devices include a member named DFA of type
Alrm. The subroutine for each device class includes logic to set the DFA.CONDITION bit and call the
Z_ALRMD subroutine.

Table 2. User-defined data type for alarms, original program.

Member Name Data Type Description

IDX DINT Data Table Index
TIMER TIMER Alarm Timer
ALM BOOL 0 = OK, 1 = In Alarm
ACK BOOL 0 = UnAck’d, 1 = Ack’d
HORN BOOL Set if this alarm should sound horn
SILENCE BOOL 0 = Alarm Silenced, 1 = Alarm Audible
CONDITION BOOL Active Condition for Alarm
FLAG BOOL Alarm Flag

4.3.2. New Program

In the new program, there is a table of alarm bits. Alarm bits are latched using logic similar to that
shown in Figure 6 for the V1000 failure to open alarm. Logic for latching alarms is grouped by area
into routines so it is easy to browse. A centralized alarm handler processes alarm acknowledgement
and alarm silence inputs.

There are several advantages to the simple alarm detection logic with a centralized handling
approach of the new program over the device approach of the original program:

• In the original program, the condition logic for device alarms is located in the subroutine for the
device class. This makes troubleshooting alarms difficult for the same reasons why it is difficult
to troubleshoot output logic. In the new program, alarm logic is easy to find and view the state
of contact and coils online.



Machines 2016, 4, 13 11 of 14

• The original program processes one alarm at a time. The new program processes the
condition logic without the overhead of a subroutine call, and processes the alarm table for
acknowledgement and silence handling word by word, so it executes much faster.

Figure 6. Typical rung for an alarm, new program.

5. Results

The plant manager provided production data for ten full months prior to the conversion and ten
full months after the conversion. The plant defines production efficiency as the number of cases of
products produced per production hour divided by the number of cases per hour that the system was
designed to produce. For example, if the line was designed to produce 1000 cases per hour and an
average of 900 cases are produced per hour, the efficiency is 90%. The average efficiency for the ten
full months after the conversion was 6.1% higher than the average efficiency for the ten full months
immediately prior to the conversion.

The cost of rewriting the PLC program was recovered through increased efficiency after just a
few months, and continues to pay dividends every production run going forward. Other quantifiable
improvements are as follows:

• The scan time of the program went from approximately 220 ms down to 18 ms. The new
program is an order of magnitude faster than the original program for several reasons. The
overhead from calling subroutines for each device and each alarm is eliminated. Hand/off/auto
requests and status are processed centrally as a table rather than individually by device. One
benefit is that PID loops are updated much faster, which is important for several speed, flow,
pressure, and continuous blending loops in the production line. Another benefit is better
response time, which allows faster and more consistent reaction to inputs.

• The memory footprint of the PLC program is about 14% smaller. Memory size was reduced
even though batch execution logic and additional recipe related logic were moved into the PLC.
The original program had common logic in a single subroutine, but the memory savings were
more than offset by the memory requirements of the UDT-based data tags for each device. The
benefit is that more memory is available for expansion even though more functionality has been
added to the PLC.

6. Discussion

There are a number benefits of the new program that cannot be easily quantified and are
more subjective:

• The overall control system is simpler. All batching control was moved into the PLC, eliminating
a batch execution package that was running on a separate workstation. The original batching
system would sometimes run slowly, and would often lock up or get stuck in a phase. The
benefit of the new system is that a significant source of downtime and wasted product has



Machines 2016, 4, 13 12 of 14

been eliminated. Recipe management interactions were migrated to an existing plant-wide
system, eliminating a piece of custom software for recipe management. The original custom
software lacked important functionality and could not be modified because the source code was
not provided to the manufacturer. The benefit is that the new system leverages the existing
plant-wide system and has no proprietary code.

• The PLC program is simpler. There is no indexed addressing except in hand/off/auto and
alarm handler code, which does not need to be seen by the end-user. Subroutines are only used
to organize code, none are called more than once per scan, and none are called with parameters.
Logic for outputs and alarms is simple and the state can be viewed easily when online with
the PLC. The benefit is that the technicians who support the line have a much easier time
troubleshooting problems. The program was also easy to startup, producing more consistent
products and exceeding target production rates on the first day.

• The PLC program is better organized for troubleshooting. Each area of the line has three
separate program routines: auto logic, output logic as in Figure 5, and alarm logic as in Figure 6.
The benefit is that all three routines can be viewed at the same time, and logic can be browsed
easily without the distraction of hand/off/auto and alarm handling code. This, in combination
with simple logic, makes troubleshooting easier.

• The HMI shows operators more information about the batching phases. Each phase of each
batching operation is shown on the HMI so the operators know how the system works. The
current phase and the state of each condition required to advance to the next phase are also
indicated. If necessary, it is possible to manually advance phases or reset the operation from the
HMI. The benefit is that operators always know what the system is doing and what it is waiting
for. They also have manual control of each operation so they can recover easily from problems
such as power failures without loss of time or product.

The original control system was developed using a sound, legitimate programming philosophy.
Good arguments can be made in support of each element of the original architecture. The new
control system follows a different, but also sound and legitimate philosophy. The decision of which
philosophy to follow, or combination of the two, should take into account how the program will be
used and the skill level of the people who will use it. Regardless of how the results are interpreted,
this case study suggests the following:

• The choice of program architecture can have a significant impact on production efficiency.
• Programs favoring simplicity have advantages over programs favoring sophistication.

7. Suggestions for Research

The purpose of this paper is not to claim the best way to write a PLC program. The purpose is
to show that the software architecture of PLC programs makes a difference in production efficiency,
and is deserving of further study. Some questions to guide this research are as follows:

• What software architecture(s) should be used for PLC programs now and in the future?
• How can the increasing power and sophistication of PLCs be exploited while keeping programs

simple enough for infrequent users to use them for troubleshooting?
• What new troubleshooting tools and techniques can be developed to reduce or eliminate the

need for the end-user to use the PLC program?

Some suggested topics for further research include the following:

• Framework for PLC Software.
A framework for PLC programming is an implementation shell of the software architecture. It
provides common functionality, such as hand/off/auto control and alarm handling, so that the
programmer does not have to “reinvent the wheel.” Framework also speeds up development
and leads to code that is more scalable and robust. The case study suggests that portions of



Machines 2016, 4, 13 13 of 14

the framework that the end-user will see should favor simplicity, while portions that will only
be seen by developers can take advantage of the increasing sophistication and power of current
and future PLC generations. Developments in other suggested areas may influence framework
design. For example, improved troubleshooting tools may eliminate the need for end-users to
view the program, automatic code generation may benefit from specific framework support, etc.

• Design Patterns for PLC Software.
Design patterns recognize recurring programming challenges and suggest a common way of
handling them. Simple patterns, such as standard PID control of an analog output, may be
handled sufficiently using existing templates. Research to identify more complex patterns is
suggested, followed by development of well-thought solutions. For example, multiple PLCs
controlling different equipment on a production line, which may be programmed by different
people, often need to share command and status data to interoperate efficiently.

• Simulation of PLC-Based Control Systems.
Simulations of control systems can be used for initial testing of control programs to speed
commissioning and startup. The simulations can be used after startup to train operators off-line
and to try alternate control strategies. Simulation packages are available commercially. However,
research in this area could lead to open source methods to develop simulations, which would
reduce the cost and increase the availability of useful simulators.

• Automatic Generation of PLC Code from High Level Specifications.
When a framework is developed, much of the customization code could be generated
automatically. For example, an input/output (I/O) list could be used to generate tags, comments
and output logic similar to that shown in Figure 5. Steps in a sequence, which are easily described
as a finite state machine, can be converted to PLC logic. One overall goal of this research could
be to generate as much code as possible from a specification of the process. The specification
could be largely derived from mechanical and electrical drawings of the system that are typically
produced already. This could be extended to automatically generate a process simulator.

• Verification and Validation of PLC-Based Control Systems.
A framework and a process simulator could help enable automatic verification and validation
of PLC programs. If the framework includes a standard interface to the HMI software, operator
actions could be simulated to verify the correct response of the control system. Unit testing,
common in general software application develpoment, could be applied to PLC software.

• Troubleshooting Tools and Techniques for End-Users.
The case study exposed the need to keep PLC software simple so end-users could use it as a
troubleshooting tool. This is at odds with the desire of many developers to take advantage of
the increasing sophistication of PLCs. Machine learning techniques could be applied for fault
diagnosis. A simpler approach for the near term could involve automatic generation of HMI
screens that provide the information the end-user would normally look for in the PLC code.

• Integration of PLC Software and HMI Development.
PLC programming and HMI development of HMI screens are often done by different people.
In an effective system, the PLC code and HMI must work well together to get the most benefit
from each. It would be beneficial to approach most of the suggested research topics from this
perspective. For example, a high level specification could be used to generate integrated PLC
code and corresponding HMI screens, design patterns could account for operator interaction
with a mechanical system, simulators could simulate operator actions as well as the process, etc.



Machines 2016, 4, 13 14 of 14

8. Conclusions

As PLCs and the skills of people who program them become more sophisticated, the natural
inclination is often to use a programming style oriented more toward the developer than the end-user.
In many PLC-controlled production lines, however, the programs are used for troubleshooting by
people with modest programming ability. The original program described in this paper uses more
sophisticated techniques, while the new program favors a much simpler approach. This simple
approach led to a program with fewer issues that cause downtime. The simpler program is also a
better troubleshooting tool, reducing downtime when problems do occur. This paper shows that PLC
program architecture can have a significant impact on production efficiency, and suggests topics for
further research in this area.

Author Contributions: G.W. and E.B. performed the programming of the new system; G.W. compared the old
and new programs; E.B. analyzed the production efficiency data; G.W. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

HMI: Human-Machine Interface
I/O: Input/Output
IEC: International Electrotechnical Commission
PAC: Programmable Automation Controller
PC: Personal Computer
P&ID: Piping and Instrumentation Diagram
PID: Proportional-Integral-Derivative
PLC: Programmable Logic Controller
SCADA: Supervisory Control and Data Acquisition
UDT: User-Defined Data Type

References

1. International Electrotechnical Commission. IEC 61131-3 Programmable Controllers–Part 3: Programming
Languages, 2nd ed.; IEC: Geneva, Switzerland, 2003.

2. Barrett, M. Managing the Invisible Assets. Eng. Technol. 2008, 3, 50–52.
3. Bourque, P.; Fairley, R.E.; IEEE Computer Society. Guide to the Software Engineering Body of Knowledge

(SWEBOK (R)): Version 3.0; IEEE Computer Society Press: Piscataway, NJ, USA, 2014.
4. Bonfè, M.; Fantuzzi, C.; Secchi, C. Design patterns for model-based automation software design and

implementation. Control Eng. Pract. 2013, 21, 1608–1619.
5. Obermeier, M.; Braun, S.; Vogel-Heuser, B. A Model Driven Approach on Object Oriented PLC

Programming for Manufacturing Systems with Regard to Usability. IEEE Trans. Ind. Inform. 2015, 11,
790–800.

6. Kandare, G.; Godena, G.; Strmčnik, S. A new approach to PLC software design. ISA Trans. 2003, 42, 279–288.
7. Bell, I. The future of control. Manuf. Eng. 2005, 84, 36–39.
8. Walter, T. Welcome PAC: Moving on to the next generation controller. InTech 2005, 52, 41–43.
9. Walters, E.G., III; Bryla, E.J. The Impact of PLC Program Architecture on Production Line Efficiency: Case

Study of a Control System Rewrite. In Proceedings of the ISA Applications of Automation Conference,
Wilmington, DE, USA, 23–25 March 2010.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	PLC Programming Languages
	PLC Architecture and Framework
	Old Architecture vs. New Architecture
	Old Framework vs. New Framework

	Case Study: Control System Rewrite
	Control of Output Devices
	Original Program
	New Program

	Hand/Off/Auto Control of Devices
	Original Program
	New Program

	Alarm Handling
	Original Program
	New Program


	Results
	Discussion
	Suggestions for Research
	Conclusions

