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Abstract: The paper describes an in-depth and systematic analysis of a pseudo direct drive 
permanent magnet machine in closed loop control. Due to the torque being transmitted 
from the high-speed rotor (HSR) to the low-speed rotor (LSR), through a relatively low 
stiffness magnetic gear with non-linear characteristics, speed oscillations appear in the drive 
output with a conventional proportional integral (PI) controller. Therefore two candidate 
controllers have been proposed as an alternative to the PI control and all controllers have 
been optimally tuned with a genetic algorithm against a defined criterion. Furthermore, 
closed loop models are established in the complex frequency domain to determine the system 
damping and the cause of the oscillations. Consequently, the best controller structure that 
improves the dynamic behaviour of the system in terms of speed tracking and disturbance 
rejection could be identified, based on the frequency domain analysis. Experimental results 
are presented to validate the analysis and the proposed control technique. 

Keywords: permanent magnet machines; electric drives; genetic algorithm; stability;  
state feedback controller; pseudo direct drive; PDD 

 

1. Introduction 

High torque, low speed machines have increasingly been used in wind turbines, ship propulsion 
systems and traction applications. Various designs and concepts have been employed to achieve high 

OPEN ACCESS 



Machines 2014, 2 159 
 

 

torque density or air-gap shear stress [1]. It has been shown that a Pseudo Direct Drive (PDD), realised 
by mechanical and magnetic integration of a permanent magnet (PM) machine and a magnetic gear, 
can achieve torque densities in excess of 60 kNm/m3 [2]. In addition, for large PDDs a torque density 
of 110 kNm/m3 is attainable as reported in [1] with a power factor greater than 0.9, with low cogging 
torque and natural air-cooling. In contrast Vernier and Transverse flux PM machines (TFM) [3–5] may 
exhibit higher torque densities at the expense of an inherently low power factor. Indeed, the power 
factor of a TFM may be lower than 0.5, resulting in very large converter volt-ampere (VA) ratings and 
requiring significant converter overhead.  

The PDD alleviates the problems associated with mechanical gearboxes, such as acoustic noise, 
vibrations, the need for lubrication and maintenance, as well as low reliability due to wear and tear [2]. 

Figures 1 and 2 show the schematic of a PDD design. The electromagnetic torque is produced by 
the interaction of the 2 pole-pair permanent magnets (𝑝𝑝ℎ  = 2) on the high-speed rotor (HSR) with the 
currents in the stator winding. This torque is transmitted to the low-speed rotor (LSR), with a gear ratio 
𝐺𝐺𝑟𝑟  =  𝑛𝑛𝑠𝑠/𝑝𝑝ℎ  , by the interaction of the 21 pole-pair (𝑝𝑝𝑙𝑙 = 21) stationary permanent magnets and the 
21st space harmonic, which results from the modulation of the 2 pole-pair magnetic field on the HSR 
by the 23 (𝑛𝑛𝑠𝑠 = 23) ferromagnetic pole-pieces of the LSR. 

Figure 1. Radial cross-section of the Pseudo Direct Drive (PDD). 

 

Since the torque is transmitted to the load through a relatively low stiffness magnetic gear, speed 
and position oscillations are present with conventional PI speed control and better control strategies are 
required. In addition, although the load is connected to the LSR, accurate position information about 
the HSR is also required for electronic commutation purposes. Inferring one rotor speed/position to 
another through the gear ratio alone is not possible due to the factor that the angular displacement 
between the two rotors varies with transmitted torque. 

Furthermore, overload protection is a significant advantage of a PDD, since when subjected to a 
load torque greater than its pull-out torque, it should harmlessly slip. However, this may lead to a 
pulsating torque which can induce noise and vibration. Although this may not result in any physical 
damage, the time taken for the machine to recover and resume normal operation after the transient 
overload torque disappears, will depend on how fast the slip can be detected and how the control 
strategy adapt when the transient overload torque occurs [6]. 
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Figure 2. Axial cross-section of the PDD. 

 

The servo control which includes two inertias connected by a compliant mechanical coupling has 
been studied in [7–9]. It is shown that the ratio of load inertia to motor inertia directly affects the 
performance of the controller in terms of suppressing resonance oscillations in the load. A drive train 
composed of a motor and load connected through a 1:1 magnetic coupling, where the inertia ratio is 
close to unity, has been reported in [10,11]. Since the magnetic gear is far more (mechanically) flexible 
than a classical mechanical coupling and has medium torsional stiffness, an integral proportional (IP) 
controller is employed to reduce the speed oscillations on the load. In contrast the PDD drive train 
contains not only a low stiffness coupling but also a gearing mechanism which has a significant 
influence on the damping and the inertia ratio between the two rotors. 

Previous work on the PDD control has been reported by Wang and Atallah in [12] where two types 
of controllers, a PI and a state feedback (SFBK) controller, have been studied. It has been shown that, 
due to the magnetic gearing and lack of damping, torsional oscillation will result with the PI controller, 
causing abrupt speed and position transients, increased copper loss in the motor, and poor overall 
performance. The SFBK tuned according to [13] has improved the performance, but not to the point 
where the oscillations are completely removed. An observer based SFBK controller has been applied 
to the PDD control in [14,15]. The feedback gains have been tuned using Genetic Algorithm (GA) [16] 
to satisfy the integral time multiplied by absolute error (ITAE) criterion given by Equation (1).  
This performance index has the advantages of producing smaller overshoots and less oscillation than 
the integral of square error (ISE) or integral of the absolute error (IAE). It is shown that the proposed 
control technique has significantly reduced torsional oscillations in the output. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = � 𝑡𝑡|𝑒𝑒(𝑡𝑡)|
𝑇𝑇

0
𝑑𝑑𝑑𝑑 (1) 

This paper performs complex frequency domain analyses of the PDD in closed loop. The state-space 
equations of the closed loop system with three candidate controllers, viz., PI, IP and SFBK are 
established and the resulting eigenvalues are computed and presented in the s-plane. A relationship 
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between the poles/zeros and the system states is identified, and the effect of the controller structure  
on the system damping is quantified. This provides an in-depth understanding of how the controller 
structure and control/load parameters influence the system damping. An experimental rig has been 
developed and the simulated results were validated through systematic experimental tests. 

2. Modelling of Pseudo Direct Drive 

In a PDD, the HSR and LSR are magnetically coupled and the mechanical load is applied to  
the LSR. The torque is transmitted from the HSR to the LSR. The equations that govern their motion 
are as follows 

𝑑𝑑𝜔𝜔ℎ

𝑑𝑑𝑑𝑑
=
𝑇𝑇𝑒𝑒
𝐽𝐽ℎ
−
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽ℎ𝐺𝐺𝑟𝑟

𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑒𝑒) −
𝐵𝐵ℎ
𝐽𝐽ℎ
𝜔𝜔ℎ −

𝐾𝐾𝑑𝑑
𝐽𝐽ℎ

 (𝑝𝑝ℎ𝜔𝜔ℎ − 𝑛𝑛𝑠𝑠𝜔𝜔𝑜𝑜) (2) 

𝑑𝑑𝜔𝜔𝑜𝑜
𝑑𝑑𝑑𝑑

=
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽

𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑒𝑒) −
𝐵𝐵𝑜𝑜
𝐽𝐽
𝜔𝜔𝑂𝑂 +

𝐾𝐾𝑑𝑑𝐺𝐺𝑟𝑟
𝐽𝐽

(𝑝𝑝ℎ𝜔𝜔ℎ − 𝑛𝑛𝑠𝑠𝜔𝜔𝑜𝑜) −
𝑇𝑇𝐿𝐿
𝐽𝐽

 (3) 

where 𝜔𝜔ℎ, 𝐽𝐽ℎ , 𝐵𝐵ℎ  are the angular speed, the moment of inertia and the viscous damping of the HSR 
respectively, 𝜔𝜔𝑜𝑜, 𝐽𝐽, 𝐵𝐵𝑜𝑜  are the angular speed, the combined inertia of the LSR 𝐽𝐽𝑜𝑜  and the load 𝐽𝐽𝐿𝐿, and 
the combined damping coefficient of the LSR and the load respectively. 𝐺𝐺𝑟𝑟 = 𝑛𝑛𝑠𝑠 𝑝𝑝ℎ⁄  is the magnetic 
gear ratio, where 𝑝𝑝ℎ  is the number of pole-pairs on the HSR and 𝑛𝑛𝑠𝑠 is the number of ferromagnetic 
pole pieces on the LSR. 𝑇𝑇𝐿𝐿 is the load torque, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  is the pull-out torque reflected to the LSR and 𝑇𝑇𝑒𝑒  is 
the electromagnetic torque produced by the q-axis current  𝑖𝑖𝑞𝑞 , when a surface-mounted magnet 
topology is employed for the HSR, and is given by 

𝑇𝑇𝑒𝑒 = 𝐾𝐾𝑡𝑡𝑖𝑖𝑞𝑞 , 𝐾𝐾𝑡𝑡 =
3
2

 𝑝𝑝ℎ  𝜑𝜑𝑚𝑚  (4) 

The stator flux-linkage is 𝜑𝜑𝑚𝑚 . The electromagnetic torque is transmitted to the LSR via an 
equivalent magnetic spring with a stiffness given with respect to LSR as 

𝐾𝐾𝑒𝑒𝑒𝑒 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑜𝑜

= 𝑛𝑛𝑠𝑠 × 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐⁡(𝜃𝜃𝑒𝑒) (5) 

The referred angel 𝜃𝜃𝑒𝑒  is defined as the angular displacement between the HSR and the LSR,  
given by 

𝜃𝜃𝑒𝑒 = 𝑝𝑝ℎ𝜃𝜃ℎ − 𝑛𝑛𝑠𝑠𝜃𝜃𝑜𝑜  (6) 

The angular positions of the HSR and LSR are given by 𝜃𝜃ℎ  and 𝜃𝜃𝑜𝑜  respectively. From Equation (5) 
it can be shown that the system is stable when the stiffness 𝐾𝐾𝑒𝑒𝑒𝑒  is positive, i.e., only when 𝜃𝜃𝑒𝑒  is within 
the range 2𝜋𝜋𝜋𝜋 − 𝜋𝜋

2
> 𝜃𝜃𝑒𝑒 > 2𝜋𝜋𝜋𝜋 + 𝜋𝜋

2
, 𝑛𝑛 is an integer number. 

The equivalent inertia of the HSR with the magnetic gear seen by the LSR is obtained by 

𝐽𝐽𝑒𝑒 = 𝐺𝐺𝑟𝑟2𝐽𝐽ℎ  (7) 

The damping coefficient 𝐾𝐾𝑑𝑑 is associated with the referred angular speed 𝑑𝑑𝜃𝜃𝑒𝑒
𝑑𝑑𝑑𝑑

 between the HSR and 

LSR due to eddy current loss in the HSR and iron loss in the LSR. Since the damping effect, 𝐾𝐾𝑑𝑑  is very 
small it is assumed that 𝐾𝐾𝑑𝑑 = 0. The nonlinear transfer function block diagram of the PDD is shown in 
Figure 3. The linearized representation of the PDD transfer function is shown in Figure 3. 
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Figure 3. The transfer function block diagram 

 

The transfer function of the mechanical system in Figure 3 becomes [12] 

𝜔𝜔𝑟𝑟(𝑠𝑠)
𝑇𝑇𝑟𝑟(𝑠𝑠)

=  
𝑠𝑠2 + 𝜔𝜔𝑎𝑎2

𝐽𝐽𝑒𝑒𝑠𝑠(𝑠𝑠2 + 𝜔𝜔𝑛𝑛2)
, 𝜔𝜔𝑎𝑎 = �

𝐾𝐾𝑒𝑒𝑒𝑒
𝐽𝐽

 

𝜔𝜔𝑜𝑜(𝑠𝑠)
𝑇𝑇𝑟𝑟(𝑠𝑠)

=  
𝜔𝜔𝑎𝑎

𝐽𝐽𝑒𝑒𝑠𝑠(𝑠𝑠2 + 𝜔𝜔𝑛𝑛2)
, 𝜔𝜔𝑛𝑛 = 𝜔𝜔𝑎𝑎�1 +

𝐽𝐽
𝐽𝐽𝑒𝑒

 

(8) 

The un-damped natural frequencies 𝜔𝜔𝑛𝑛  and 𝜔𝜔𝑎𝑎  of the pole and zero pairs in Equation (8) are 
referred to as the resonant and anti-resonant frequencies [17]. As can be seen, both transfer functions 
contain an un-damped mode, and hence oscillation may occur if this mode is not adequately damped. 
With  𝐽𝐽𝑒𝑒 ≫ 𝐽𝐽, 𝜔𝜔𝑛𝑛 = 𝜔𝜔𝑎𝑎 , oscillations occur on the LSR at the resonant frequency 𝜔𝜔𝑛𝑛  but are filtered by 
the relatively large equivalent inertia seen by the HSR. With   𝐽𝐽𝑒𝑒 ≪ 𝐽𝐽, the resonant frequency given by 
𝜔𝜔𝑛𝑛 ≈ �𝐾𝐾𝑒𝑒𝑒𝑒 𝐽𝐽𝑒𝑒⁄   is dictated by the equivalent inertia and the equivalent stiffness. 

Table 1. PDD parameters. 

𝐽𝐽ℎ(𝑘𝑘𝑘𝑘𝑚𝑚2) 3.8 × 10−3 
𝐽𝐽𝑜𝑜(𝑘𝑘𝑘𝑘𝑚𝑚2) 2.5 × 10−3 
𝐽𝐽𝐿𝐿(𝑘𝑘𝑘𝑘𝑚𝑚2) 0.28 
𝑅𝑅𝑝𝑝(𝛺𝛺) 2 
𝜑𝜑𝑚𝑚(𝑊𝑊𝑊𝑊) 0.59 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (𝑁𝑁𝑁𝑁) 135 
𝐿𝐿𝑑𝑑(𝐻𝐻) 32.6 × 10−3 
𝐿𝐿𝑞𝑞(𝐻𝐻) 32.6 × 10−3 
𝐵𝐵ℎ(𝑁𝑁𝑁𝑁𝑁𝑁/𝑟𝑟𝑟𝑟𝑟𝑟) 1.0 × 10−4 
𝐵𝐵𝑜𝑜(𝑁𝑁𝑁𝑁𝑁𝑁/𝑟𝑟𝑟𝑟𝑟𝑟) 2.0 × 10−4 
𝐾𝐾𝑑𝑑(𝑁𝑁𝑁𝑁𝑁𝑁/𝑟𝑟𝑟𝑟𝑟𝑟) 0.5 × 10−4 
𝜔𝜔𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠) 30 
𝜔𝜔ℎ𝑚𝑚𝑚𝑚𝑚𝑚 (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠) 345 
𝑈𝑈𝑑𝑑𝑑𝑑 (𝑉𝑉) 435 
𝑖𝑖𝑞𝑞 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐴𝐴) 9 

The electrical dynamics of the PDD is similar to that of the conventional surface mounted brushless 
permanent magnet machine. They are given in term of the d-q axis currents by 

𝒌𝒌𝒕𝒕 
𝑻𝑻𝒆𝒆 𝒊𝒊𝒒𝒒 

-+
-

+
𝝎𝝎𝒉𝒉 

𝒑𝒑𝒉𝒉 

𝒏𝒏𝒔𝒔 

𝒑𝒑𝒉𝒉
𝒏𝒏𝒔𝒔

 

𝟏𝟏
𝒔𝒔

 

𝑻𝑻𝑳𝑳 

-
+

𝝎𝝎𝒐𝒐 𝟏𝟏
𝑱𝑱𝑱𝑱 + 𝑩𝑩𝟎𝟎

 
𝟏𝟏

𝑱𝑱𝒉𝒉𝒔𝒔 + 𝑩𝑩𝒉𝒉
 𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎. 𝒔𝒔𝒔𝒔𝒔𝒔(𝜽𝜽𝒆𝒆) 

𝜽𝜽𝒆𝒆 𝝎𝝎𝒆𝒆 
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𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑅𝑅𝑝𝑝
𝐿𝐿𝑑𝑑

𝑖𝑖𝑑𝑑 +
𝜔𝜔𝑒𝑒𝐿𝐿𝑞𝑞𝑖𝑖𝑞𝑞
𝐿𝐿𝑑𝑑

+
𝑣𝑣𝑑𝑑
𝐿𝐿𝑑𝑑

 

𝑑𝑑𝑖𝑖𝑞𝑞
𝑑𝑑𝑑𝑑

= −
𝑅𝑅𝑝𝑝
𝐿𝐿𝑞𝑞
𝑖𝑖𝑞𝑞 −

𝜔𝜔𝑒𝑒𝐿𝐿𝑑𝑑𝑖𝑖𝑑𝑑
𝐿𝐿𝑞𝑞

+
𝑣𝑣𝑞𝑞 − 𝐾𝐾𝑒𝑒𝜔𝜔ℎ

𝐿𝐿𝑞𝑞
 

(9) 

(10) 

𝐿𝐿𝑑𝑑  and 𝐿𝐿𝑞𝑞  are the d- and q-axis motor inductances, respectively; 𝑅𝑅𝑝𝑝  is the motor winding resistance per 
phase; 𝐾𝐾𝑡𝑡  and  𝐾𝐾𝑒𝑒 are the motor torque and back-emf constants, respectively. 𝑣𝑣𝑑𝑑  and 𝑣𝑣𝑞𝑞  are d- and  
q-axis voltages, respectively, and 𝜔𝜔𝑒𝑒 = 𝑝𝑝 × 𝜔𝜔ℎ is the electric angular frequency of the PDD. The 
parameters of the PDD are given in Table 1. 

3. Complex Frequency Domain Analysis of the Pseudo Direct Drive 

Figure 4 represents the PDD under a generic speed controller. The field oriented control is used to 
control the currents in the d-q axis reference frame. The gains of the PI current controllers for 𝑖𝑖𝑑𝑑   
and 𝑖𝑖𝑞𝑞  are designed for a bandwidth of 400 Hz. The generic speed controller represents one of the 
following controllers: PI, IP or SFBK controller. A derivation of the system states in closed loop is 
obtained for each controller structure. The gains of the three speed controllers have been tuned with 
GA in Simulink to satisfy the ITAE performance index defined in [15] against a complete closed-loop 
model comprised of the PDD dynamics, a pulse width modulation (PWM) block, the current 
controllers and the speed controller. The set of gains obtained by GA are used for the frequency 
domain analysis and time domain simulations as well as for validation of the system in real  
time implementation. 

Figure 4. Schematic of the Pseudo Direct Drive under a speed controller. 

 

The SFBK structure described in Figure 5 represents one of the generic controllers of the system in 
Figure 4, where the feedback signal 𝜔𝜔𝑜𝑜  is taken from the observer. The controller has four proportional 
gains and one integral gain. Three proportional gains are related to the feedback of the system states, 
viz., the speed of the HSR, 𝜔𝜔ℎ , the speed of the LSR, 𝜔𝜔𝑜𝑜  and the referred load angle 𝜃𝜃𝑒𝑒 . The fourth 
gain 𝐾𝐾𝑠𝑠 is employed to correct any deviation from synchronization that may occur in the speeds of the 
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two rotors. The gains obtained by GA tuning are given in Table 2, full details of GA tuning and 
implementation of this system is provided in [14]. 

Table 2. Gains of the implemented controllers. 

Proportional Gain(s) 
PI 𝐾𝐾𝑝𝑝 = 0.8386 
IP 𝐾𝐾𝑝𝑝 = 0.3469 

 
SFBK 

𝐾𝐾𝜔𝜔ℎ = 1.765 
𝐾𝐾𝜔𝜔𝜔𝜔 = 1.699 
𝐾𝐾𝜃𝜃𝑒𝑒  = 9.7856 
𝐾𝐾𝑠𝑠   = 0.1122 

Integral Gain ITAE 
PI 𝐾𝐾𝑖𝑖 = 6.863 2.03 
IP 𝐾𝐾𝑖𝑖 = 235.01 1.80 
SFBK 𝐾𝐾𝑖𝑖 = 5132.8 1.67 
Current Controller Gains 
𝐾𝐾𝑝𝑝𝑝𝑝 = 𝐾𝐾𝑝𝑝𝑝𝑝  =  81.93 

𝐾𝐾𝑖𝑖𝑖𝑖  = 𝐾𝐾𝑖𝑖𝑖𝑖  = 5026.5 

Figure 5. State Feedback Controller Structure. 

 

In the frequency domain analysis, the observer dynamics are neglected, as the estimation error of 
the observer is very small compared to direct measurements. The observer has been linearised around 
the rated torque of 100 Nm resulting in 𝜃𝜃𝑒𝑒 ≈ 0.8 rad. The design of the observer and sensitivity 
analysis has been reported in [15].   

The closed-loop system may be represented as follows 

𝑿̇𝑿 = 𝑓𝑓(𝑋𝑋, 𝑈𝑈) (11) 

where X and U are the vectors of the state variables and inputs, respectively, and 𝑓𝑓(𝑿𝑿,𝑼𝑼) is the vector 
of the non-linear functions of X and U [18]. They are given by 

𝑿𝑿 = �𝑖𝑖𝑑𝑑    𝑖𝑖𝑞𝑞    𝑥𝑥𝐷𝐷   𝑥𝑥𝑄𝑄   𝑥𝑥   𝜔𝜔ℎ   𝜔𝜔𝑜𝑜    𝜃𝜃𝑒𝑒�
𝑇𝑇
, 𝑈𝑈 = 𝜔𝜔𝑑𝑑   

+

+

+𝑮𝑮𝒓𝒓 

+
+

+          -

𝑲𝑲𝒔𝒔 𝝎𝝎𝒐𝒐 

𝜽𝜽𝒆𝒆 
Observer

𝑲𝑲𝜽𝜽𝒆𝒆 

𝑲𝑲𝝎𝝎𝝎𝝎 

𝑲𝑲𝝎𝝎𝒐𝒐 

𝝎𝝎𝒅𝒅 
𝑲𝑲𝒊𝒊

𝒔𝒔
 

 

-
+-

+

𝑻𝑻𝒆𝒆 

𝝎𝝎𝒉𝒉 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪  
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 
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The components of the vector function 𝑓𝑓(𝑼𝑼, 𝑿𝑿) for the SFBK controller are given in Equation (12), 
where 𝑥𝑥𝐷𝐷  and 𝑥𝑥𝑄𝑄  are the internal states of the d- and q-axis current PI controllers, respectively; 𝑥𝑥 is the 
internal state of the SFBK speed controller. 𝐾𝐾𝑝𝑝𝑝𝑝  and 𝐾𝐾𝑝𝑝𝑝𝑝  are proportional gains of the d- and q-axis 
current controller, respectively; 𝐾𝐾𝑖𝑖𝑖𝑖  and 𝐾𝐾𝑖𝑖𝑖𝑖  are the integral gains of the d- and q-axis current 
controllers, respectively. For a given value of the inputs 𝜔𝜔𝑑𝑑  it can be shown that in steady state, the 
operating points of the state variables are obtained as 𝑖𝑖𝑑𝑑0 = 0, 𝑥𝑥𝐷𝐷0 = 0, 𝜔𝜔ℎ0 = 𝜔𝜔𝑑𝑑, 𝑥𝑥0 = 𝑖𝑖𝑞𝑞0, the DC 
supply voltage, 𝑈𝑈𝑑𝑑𝑑𝑑 , only varies over a small range so the ratio 𝑈𝑈𝑑𝑑𝑑𝑑 𝑈𝑈𝑑𝑑𝑑𝑑∗⁄  ≈  1. 𝑖𝑖𝑑𝑑∗  is set to zero for 
maximum torque per Ampere operation since flux weakening is not required. 

�

𝑓𝑓1 = −
𝑅𝑅𝑝𝑝
𝐿𝐿𝑑𝑑

𝑖𝑖𝑑𝑑 −
𝐾𝐾𝑝𝑝𝑝𝑝
𝐿𝐿𝑑𝑑

𝑖𝑖𝑑𝑑 +
1
𝐿𝐿𝑑𝑑
𝑥𝑥𝐷𝐷

𝑓𝑓2 = −
𝑅𝑅𝑝𝑝
𝐿𝐿𝑞𝑞
𝑖𝑖𝑞𝑞 −

𝐾𝐾𝑝𝑝𝑝𝑝
𝐿𝐿𝑞𝑞

𝑖𝑖𝑞𝑞 +
1
𝐿𝐿𝑞𝑞
𝑥𝑥𝑄𝑄 +

𝐾𝐾𝑝𝑝𝑝𝑝
𝐿𝐿𝑞𝑞

𝑥𝑥 − �
𝐾𝐾𝑝𝑝𝑝𝑝𝐾𝐾𝜔𝜔ℎ
𝐿𝐿𝑞𝑞

+
𝑝𝑝ℎ𝜓𝜓𝑚𝑚
𝐿𝐿𝑞𝑞

�𝜔𝜔ℎ −
𝐾𝐾𝜔𝜔𝑜𝑜𝐾𝐾𝑝𝑝𝑝𝑝
𝐿𝐿𝑞𝑞

𝜔𝜔𝑜𝑜 −
𝐾𝐾𝜃𝜃𝑒𝑒𝐾𝐾𝑝𝑝𝑝𝑝
𝐿𝐿𝑞𝑞

𝜃𝜃𝑒𝑒

𝑓𝑓3 = −𝐾𝐾𝑖𝑖𝑖𝑖 𝑖𝑖𝑑𝑑
𝑓𝑓4 = −𝐾𝐾𝑖𝑖𝑖𝑖 𝑖𝑖𝑞𝑞 + 𝑥𝑥𝐾𝐾𝑖𝑖𝑖𝑖 − 𝐾𝐾𝜔𝜔ℎ𝐾𝐾𝑖𝑖𝑖𝑖𝜔𝜔ℎ − 𝐾𝐾𝜔𝜔𝑜𝑜𝐾𝐾𝑖𝑖𝑖𝑖𝜔𝜔𝑜𝑜 − 𝐾𝐾𝜃𝜃𝑒𝑒𝐾𝐾𝑖𝑖𝑖𝑖𝜃𝜃𝑒𝑒

𝑓𝑓5 = 𝐾𝐾𝑖𝑖
𝜔𝜔𝑑𝑑

𝐺𝐺𝑟𝑟
− 𝐾𝐾𝑖𝑖𝐾𝐾𝑠𝑠𝜔𝜔ℎ + 𝐾𝐾𝑖𝑖𝐾𝐾𝑠𝑠𝐺𝐺𝑟𝑟𝜔𝜔𝑜𝑜 − 𝐾𝐾𝑖𝑖𝜔𝜔𝑜𝑜

𝑓𝑓6 =
𝑇𝑇𝑒𝑒
𝐽𝐽ℎ
−
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽ℎ𝐺𝐺𝑟𝑟

𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑒𝑒)

𝑓𝑓7 =
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽

𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑒𝑒) −
𝑇𝑇𝐿𝐿
𝐽𝐽

𝑓𝑓8 = 𝑝𝑝ℎ𝜔𝜔ℎ − 𝑛𝑛𝑠𝑠𝜔𝜔𝑜𝑜 ⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎫

 (12) 

The state-space equation in Equation (11) can be linearized at the steady-state operating point  
(X0, U0), and the Jacobian matrix of Equation (12) is obtained as follows 

𝑨𝑨 = �𝜕𝜕𝜕𝜕(𝑋𝑋, 𝑈𝑈)
𝜕𝜕𝜕𝜕

�
𝑋𝑋=𝑋𝑋0
𝑈𝑈=𝑈𝑈0

                      𝑩𝑩 = �𝜕𝜕𝜕𝜕(𝑋𝑋, 𝑈𝑈)
𝜕𝜕𝜕𝜕

�
𝑋𝑋=𝑋𝑋0
𝑈𝑈=𝑈𝑈0

 

The matrices A, B, C and D are given by 

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

𝑅𝑅 + 𝐾𝐾𝑝𝑝𝑝𝑝
𝐿𝐿𝑑𝑑

0
1
𝐿𝐿𝑑𝑑

0 0 0 0 0

0 −
𝑅𝑅 + 𝐾𝐾𝑝𝑝𝑝𝑝
𝐿𝐿𝑞𝑞

0 
1
𝐿𝐿𝑞𝑞

𝐾𝐾𝑝𝑝𝑝𝑝
𝐿𝐿𝑞𝑞

−
𝐾𝐾𝑝𝑝𝑝𝑝𝐾𝐾𝜔𝜔ℎ +  𝑝𝑝ℎ𝜓𝜓𝑚𝑚

𝐿𝐿𝑞𝑞
−
𝐾𝐾𝑝𝑝𝑝𝑝𝐾𝐾𝜔𝜔𝑜𝑜
𝐿𝐿𝑞𝑞

−
𝐾𝐾𝑝𝑝𝑝𝑝𝐾𝐾𝜃𝜃𝑒𝑒
𝐿𝐿𝑞𝑞

−𝐾𝐾𝑖𝑖𝑖𝑖 0 0 0 0 0 0 0
0 −𝐾𝐾𝑖𝑖𝑖𝑖 0 0 𝐾𝐾𝑖𝑖𝑖𝑖 −𝐾𝐾𝑖𝑖𝑖𝑖𝐾𝐾𝜔𝜔ℎ

−𝐾𝐾𝑖𝑖𝑖𝑖𝐾𝐾𝜔𝜔𝑜𝑜 −𝐾𝐾𝑖𝑖𝑖𝑖𝐾𝐾𝜃𝜃𝑒𝑒
0 0 0 0 0 −𝐾𝐾𝑖𝑖𝐾𝐾𝑠𝑠 −𝐾𝐾𝑖𝑖 + 𝐾𝐾𝑖𝑖𝐾𝐾𝑠𝑠𝐺𝐺𝑟𝑟 0

0
𝐾𝐾𝑡𝑡
𝐽𝐽ℎ

0 0 0 0 0 −
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽ℎ𝐺𝐺𝑟𝑟

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑒𝑒)

0 0 0 0 0 0 0
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑒𝑒)

0 0 0 0 0 𝑝𝑝ℎ −𝑛𝑛𝑠𝑠 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (13) 
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𝑩𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
𝐾𝐾𝑖𝑖
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                       𝑪𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
1
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤
𝑇𝑇

                𝑫𝑫 = [0] 

The state-space equations of the drive system with the IP and PI structures shown in Figures 6 and 7 
are obtained by replacing the generic controller of the system in Figure 4. The speed and position 
feedback signals are directly measured from a resolver mounted on the HSR. 

Figure 6. Integral and proportional controller structure. 

 

Figure 7. Proportional and integral controller structure. 

 

A detailed derivation and the resulting equations of the PI and IP controllers are given in [19]. 
From the linearized state-space equations, closed-loop transfer functions between the speed demand 

and speed output can be obtained and their poles and zeros are explicitly plotted in Figure 8, where  
the poles are marked in “x” and zeros in “o”. The overlapping poles on the negative real axis close to 
the origin are related to the electric time constant of the d- and q- axis currents. Their effects are 
cancelled by two zeros through the pole/zero cancellation in the current controller design. The complex 
conjugate poles-pair with great negative real is associated with the interaction of the SFBK control 
with the mechanical dynamics of the PDD. However, the dominant pole-pair of the closed loop system 
is the complex conjugate pole-pair with far less negative real and the imaginary close to the torsional 
resonant frequency given in Equation (8). The complex pair of zeros, representing the anti-resonant 
frequency, is very close to the dominant poles. The load torque, motor/load inertia, gear ratio, 
magnetic damping and the stiffness of the magnetic gear influence the location of the dominant  
pole-pair and hence the dynamic behaviour of the closed loop drive system. 
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Figure 8. Poles and zeros distribution for 𝐺𝐺1(𝑠𝑠) = 𝜔𝜔ℎ
𝜔𝜔𝑑𝑑

. 

 

Figure 9 shows the poles/zeros of the transfer function 𝐺𝐺2(𝑠𝑠) , where the distribution is similar to 
𝐺𝐺1(𝑠𝑠) in Figure 8 except the zeros at the anti-resonant frequency is not present in 𝐺𝐺2(𝑠𝑠) in accordance 
with Equation (8). Pole-zero distributions associated with IP and PI controllers have a similar pattern 
and therefore not plotted. Their dominant poles are also associated with the torsional resonance.  
In order to compare the performance of three optimally designed controllers for suppression of  
the torsional oscillation, the dominant poles which result from the three controllers are plotted together 
in the same s-plane. 

Figure 9. Poles and zeros distribution for 𝐺𝐺2(𝑠𝑠) = 𝜔𝜔𝑜𝑜
𝜔𝜔𝑑𝑑

. 

 

Figure 10 shows the dominant poles of the three controllers in closed loop. It is evident that much 
more damping has been achieved with the SFBK controller. By using a well-tuned controller the poles 
are placed such that the ITAE is minimised, hence optimum damping and bandwidth is achieved.  
This also confirms the time domain simulation results that show the system having achieved more 
damping by reducing the oscillations in the output. 

In contrast, the PI and IP control structure results in the dominant poles being close to the imaginary 
axis and hence much lower damping. The IP can only achieve a maximum damping of 𝜁𝜁 = 0.13 and 
the PI exhibit very poor damping of  𝜁𝜁 = 0.023, being an order of magnitude lower in comparison with 
the damping obtained by the SFBK controller. Hence both the PI and IP structures are not capable of 
improving the damping of the dominant pole-pair associated with torsional resonance in the PDD 
dynamics as compared to the SFBK. 
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Figure 10. The dominant poles for all controllers. 

 

Figure 11 shows the loci of the dominant pole-pair with increase in the load torque 𝑇𝑇𝐿𝐿 from 0 to  
the maximum load in 3 steps (0 Nm, 50 Nm, 100 Nm). As will be seen, the SFBK control exhibits 
robust performance against the load torque variations as the system damping increases and bandwidth 
is nearly constant with increase in load torque. An increase in the load torque seems to slightly 
increase the system damping under the PI albeit its damping is still significantly low. The load torque 
increase did not affect the system damping under IP controller. However, the bandwidth has been 
reduced by more than 15% with the load torque increase.  

Figure 11. Loci of dominant poles with load torque variation for PI, IP and SFBK controllers. 

 

Figure 12 shows the dominant poles of the three controllers when subjected to a load inertia 
variation, where the load to motor inertia ratio 𝑅𝑅 is given by 

𝑅𝑅 =  
𝐽𝐽
𝐽𝐽𝑒𝑒

 (14) 

By changing the load inertia in four steps, 𝑅𝑅 varies from 0.25, 0.56, 1 to 2. It can be seen that with 
the PI control, both the system damping and control bandwidth decrease with decrease in the inertia 
ratio. The damping and bandwidth are still very poor even when the ratio is increased to 𝑅𝑅 =  2.  

The dominant poles of the closed loop system under the IP control show a high level of sensitivity 
to the inertia variation, and any decrease in 𝑅𝑅  results in significant reduction in the damping.  
More specifically, the figure shows that the system damping can be reduced by an order of magnitude 
and the bandwidth by more than half when 𝑅𝑅 is varied from 0.56 to 0.125. Also the bandwidth may  
be reduced significantly when 𝑅𝑅 is increased to 𝑅𝑅 =  2 as the two real poles representing the d-q axis 
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currents are pushed further towards the origin reducing the system bandwidth as shown with  
a green arrow. 

Figure 12. Loci of dominant poles with load inertia variation for PI, IP and SFBK controllers. 

 

The SFBK controller is much robust than the other two controllers. It has been seen that the lowest 
damping which results when 𝑅𝑅 = 0.125 is 0.14, is still more than an order of magnitude greater than 
the damping achieved by the PI control, and much greater than that of the IP control. Moreover,  
the SFBK control bandwidth is insensitive to the inertia ratio variations. Therefore, the system with  
the SFBK control exhibits more robustness towards parameter variations.  

4. Experimental Results and Discussion 

The findings of the above analysis have been validated with a specially designed and built test  
rig as shown in Figure 13. The PDD control, including the PI, IP and, the SFBK and observer, is 
implemented in a dSPACE real-time hardware platform at sampling frequency of 10 kHz with PWM 
of the drive machine set at 8 kHz. The resulting torque command is fed to a commercial drive in torque 
control mode. The PDD operates in speed control mode and is loaded by the PM machine in torque 
control mode. The PM load machine is coupled to the PDD via a 10:1 inline gear box in order to 
provide sufficient load torque for the PDD operation. The speed/position of the HSR is measured with 
a resolver, and an encoder is placed on the LSR for the purpose of monitoring its speed/position only. 
The load torque is inferred from the current in the load machine and the relationship between the 
current and the torque has been determined using torque transducer. 

Figure 13. The Pseudo Direct Drive test Rig. 
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To test the speed response with one of the controllers PI, IP, and SFBK, the LSR of the PDD is 
accelerated from standstill to 100 rpm, and at 2 s a load torque of 100 Nm is applied by the load 
machine for duration of 3 s. Simulated and experimental results are shown in Figures 14–16 for the 
three controllers together with the load torque waveform.  

Figure 14 shows the simulation and measured PDD responses under the PI control. It can be seen 
that whilst the simulated and measured speed responses agree very well, undesirable oscillations which 
result from the poor damping in both rotor speeds are very significant. 

Figure 14. PDD speed responses under PI. (a) Simulated; (b) Measured. 

  
(a) (b) 

Figure 15 shows the PDD speed responses under the IP controller, where an improved speed tracking 
and disturbance rejection is achieved in comparison with the PI control. However, oscillations still 
appear when the load is applied or removed. 

Figure 15. PDD responses under IP. (a) Simulated; (b) Measured. 

  
(a) (b) 

Figure 16 shows the response of the PDD under SFBK control, where the controller exhibits good 
disturbance rejection and speed tracking, with no visible oscillations in the output. 

The SFBK is realized using a reduced order observer. Figure 17 shows the measured speed 𝜔𝜔𝑜𝑜  
against the estimated speed 𝜔𝜔�𝑜𝑜  from the reduced order observer in real time. 
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Figure 16. PDD responses under SFBK. (a) Simulated; (b) Measured. 

  

(a) (b) 

Figure 17. Measured and estimated LSR and HSR speeds. 

 

Figures 18–20 show the measured d-q axis currents of the three controllers PI, IP and SFBK. 

Figure 18. Measured currents iq  and id  under PI control. 
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Figure 19. Measured currents iq  and id  under IP control. 

 

Figure 20. Measured currents iq  and id  under SFBK control. 

 

Figures 21 and 22 show the PDD operated at ±50 and ±150 rpm with load torque of 100 and 50 Nm 
applied to the LSR from time 2 to 5 s and 10 to 13 s respectively. 

Figure 21. LSR under SFBK control and 100 Nm load torque. 
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Figure 22. LSR under SFBK control and 50 Nm load torque. 

 

5. Conclusions 

The complex frequency domain analysis has provided an in-depth understanding of the behaviour 
of the Pseudo Direct Drive with three candidate controllers. A closed loop model of the PDD under 
three controller structures PI, IP, SFBK has been established and the influence of the control structures 
and parameters, such as the load torque, load inertia on the system damping and the controller 
bandwidth have been investigated. It has been shown that the state feedback controller tuned with a 
genetic algorithm provides the best damping and robustness to parameter changes and uncertainties 
compared to the PI and IP. Experimental results have validated the findings of the theoretical analysis. 
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