. machines

Article

Novel Gesture-Based Robot Programming Approach with the
Ability of Code Reuse

Vladyslav Andrusyshyn 12, Kamil Zidek 1, Vitalii Ivanov

check for
updates

Citation: Andrusyshyn, V.; Zidek, K.;
Ivanov, V,; Pitel,]. Novel
Gesture-Based Robot Programming
Approach with the Ability of Code
Reuse. Machines 2024, 12, 217.
https://doi.org/10.3390/
machines12040217

Academic Editor: Dan Zhang

Received: 26 December 2023
Revised: 21 March 2024
Accepted: 21 March 2024
Published: 25 March 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

12,0 and Jan Pitel' !

Faculty of Manufacturing Technologies with a seat in Presov, Technical University of Kosice, 1, Bayerova St.,
080 01 Presov, Slovakia; vladyslav.andrusyshyn@tuke.sk (V.A.); kamil.zidek@tuke.sk (K.2);
jan.pitel@tuke.sk (J.P.)

Department of Manufacturing Engineering, Machines and Tools, Faculty of Technical Systems and Energy
Efficient Technologies, Sumy State University, 116, Kharkivska St., 40007 Sumy, Ukraine

* Correspondence: ivanov@tmvi.sumdu.edu.ua

Abstract: Nowadays, there is a worldwide demand to create new, simpler, and more intuitive methods
for the manual programming of industrial robots. Gestures can allow the operator to interact with the
robot more simply and naturally, as gestures are used in everyday life. The authors have developed
and tested a gesture-based robot programming approach for part-handling applications. Compared
to classic manual programming methods using jogging and lead-through, the gesture control method
reduced wasted time by up to 70% and reduced the probability of operator error. In addition, the
proposed method compares favorably with similar works in that the proposed approach allows
one to write programs in the native programming language of the robot’s controller and allows the
operator to control the gripper of an industrial robot.

Keywords: teleoperation; assembly; gesture recognition; production line; collaborative robotics;
industrial growth; process innovation

1. Introduction

Currently, factories need to optimize costs, reduce production time, and increase
production flexibility due to market instability, growing demands of customers, ecology
requirements, competition, etc. Implementing Industry 4.0 concepts into manufacturing
can solve today’s manufacturing challenges [1].

Although the first mention of the Industry 4.0 concept appeared in 2011, at the moment,
the reference implementation or application of the concept has not yet been implemented [2].
This fact means there is still a demand for research in the field of Industry 4.0, mainly to
simplify its integration into modern industries.

The use of industrial robots as a means of industrial automation is a popular and
actively used solution for increasing production efficiency. Over the past decade, industrial
robots have become essential factory automation components due to their performance
and versatility [2]. Robotics is also one of the most researched technologies within the
framework of the Industry 4.0 concept [3]. Industrial robots can perform a wide range of
tasks in production: parts handling, welding, painting, assembly, dispensing, processing,
etc. [4]. Industrial robots are highly repeatable and can perform monotonous, heavy, or
dangerous tasks for long periods with high accuracy.

Nowadays, advances in the field of smart sensors, advanced materials, information
processing algorithms, and increasing computer computing power have made it possible to
develop and introduce a new generation of industrial robots—collaborative robots. Classic
industrial robots can effectively perform only a limited list of tasks, do not have cognitive
functions, and require readjustment when changing production conditions. Consequently,
factories cannot abandon manual labor despite its low efficiency compared to industrial
robots. A human has flexibility unreachable for a robot, can make decisions independently,

Machines 2024, 12, 217. https:/ /doi.org/10.3390/machines12040217

https:/ /www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12040217
https://doi.org/10.3390/machines12040217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-0176-7433
https://orcid.org/0000-0003-0595-2660
https://orcid.org/0000-0003-1942-0438
https://doi.org/10.3390/machines12040217
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12040217?type=check_update&version=1

Machines 2024, 12,217

20f21

and can perform new production tasks without instructions, using his previous experience
with similar tasks. Also, classic industrial robots work separately from humans due to
safety issues. The introduction of collaborative robots has dramatically changed production.
Humans can now collaborate safely with robots, combining their benefits while increasing
productivity and flexibility and creating more operator-friendly workplaces [2].

However, there are still challenges that have not yet been resolved in robotics. Despite
improvements in the design of industrial robots, robot programming methods have not
changed significantly for more than 40 years [5]. The creation of control programs for
industrial robots requires highly skilled engineers and specialized software if it is necessary
to create large programs or programs with complex trajectories. It is especially critical for
small- and medium-sized enterprises that cannot afford to have a separate department
that could serve industrial robots. Moreover, due to single-item or small-batch production,
classical programming methods are unsuitable for small- and medium-sized enterprises.
There is a huge potential for industrial robots to be applied in small- and medium-sized
enterprises, but this has not been realized [6]. At the same time, small- and medium-sized
enterprises are essential for the European economy, as they significantly contribute to the
economy and innovation [7]. Small- and medium-sized enterprises have noted that the
ease of programming and operating an industrial robot is one of the weighty criteria when
buying collaborative robots [8].

This fact encourages scientists to work with robot manufacturers to create more intu-
itive and simple methods for programming industrial robots. Instead of using the teach
pendant as an input channel for informing an industrial robot about human commands,
researchers suggest using more natural methods, such as recognition of objects, gaze, ges-
tures, voice commands, and emotions [9]. Implementing such systems is possible through
solutions related to collaborative robots, in which similar information input channels are
used to increase safety. Gaze, object, and emotion recognition are mainly used to predict
human intentions and optimize robot performance. Gestures and voice commands are used
to transfer commands to the robot, from which the program will eventually be formed. The
use of gestures is the most promising method of transmitting commands to the industrial
robot since voice control is not effective and reliable enough in a production environment
due to ambient noise.

In turn, gesture recognition can be performed using contact and non-contact systems.
Contact systems such as wearable markers or sensors are highly accurate, have low latency,
are less prone to occlusion, and may contain tactile feedback devices. However, wearable
devices hinder human movement and may require individual adjustment for a person or
group of people. Non-contact gesture recognition systems are considered more promising
since they do not hinder human movements, and accuracy, speed, and resistance to occlu-
sions are constantly increasing due to the introduction of new machine-learning algorithms.
Instead of physical feedback, it is possible to use visual or voice feedback. Also, non-contact
solutions are usually cheaper than are contact ones.

The authors discovered that works related to new simpler programming methods do
not consider the interaction between the robot controller and the developed software and
hardware complex for simplified programming and do not describe how the program is
saved and can be reproduced. In addition, related works do not consider the setting of
the application, e.g., the effect of singularity on the programming process is not described.
However, the singularity phenomenon will directly affect the application’s performance
depending on the robot’s initial position.

Based on the above, this article is dedicated to creating a more intuitive method for
programming industrial robots using gestures recognized by non-contact methods. In
addition, the authors focus particularly on code reuse. Code reuse improves the efficiency
and ease of programming industrial robots [10]. The authors of [11] also noted that in
the creation of a new flexible approach to control a robotic cell, code reuse simplifies and
speeds up the process of programming robot controllers.

Machines 2024, 12,217

3o0f21

The article is organized as follows. The Section 2 section critically reviews articles
devoted to designing intuitive methods to interact with a robot using gestures. Particular
attention was paid to analyzing software and hardware solutions for tracking human
hand movements and recognizing gestures. The Section 3 section presents hardware and
software solutions for testing the proposed approach and describes its operating principle.
The Section 4 section provides the results of an experimental comparison of the proposed
approach with classical approaches for the manual creation of programs for industrial
robots. Finally, in the Section 5 section, the proposed approach is compared with other
works in gesture-based manual program creation, the study’s findings are presented, and
plans for future research directions are summarized.

2. Literature Review

Due to the advantages and capabilities of camera-based gesture recognition systems,
they are the most popular choice when developing intuitive applications for human-robot
interaction. However, to better understand the current state of research, it is necessary to
analyze the articles on intuitive human-robot interaction and highlight the tools currently
used for gesture recognition.

Some authors [12] presented a collaborative robotic cell where the interaction between
a human and a robot occurs with the help of pointing gestures. The presented collaborative
cell consists of a sensory part (which includes the Leap Motion Controller camera for
tracking the position of the operator’s hands), visual feedback, and the Universal Robotics
URb5e industrial collaborative robot. Using gestures as input methods was motivated
by the desire to improve productivity and increase worker satisfaction during human-—
robot interaction. Other authors [13] used the Orbec Astra S camera for developing a
teleoperation application for the ABB YuMi robot. In the proposed application, frames
from the camera are processed by the AlphaPose neural network to determine the key
points of the skeleton and hands. Using AlphaPose allows for expanded applications for
teleoperation with several people since this solution can segment several people in the
picture. The work is also notable because it pays considerable attention to the review
of applications for determining the key points of the human skeleton based on neural
networks and datasets for their training and testing. Other authors [14] proposed a novel
application for teaching a robot by demonstration. The iPad’s front camera frames were
processed by Google MediaPipe solution for image segmentation (highlighting the area
around the hand). Next, the obtained data were processed by the FrankMocap solution,
which provides the position of the finger joints in the axis-angle format. Further, the
Perspective-n-Point algorithm provides the coordinates of the key points of the hands.
The developed application was tested on the UFactory XArm-6 robot with a dexterous
hand installed. Other authors [15] used a DAVIS 240 C event camera to track human
hand movements. Compared to classical machine vision systems, the event camera has
lower latency, no blurring in dynamic conditions, and is less demanding on processing
power when processing images. The proposed algorithm of the region of interest due to
the removal of noise made it possible to reduce the data size by 89% without reducing
the accuracy of determining the hand’s position. The developed algorithm’s accuracy for
determining the hand’s position was compared. The wearable magnetic tracking sensor
Polhemus Liberty was used as a reference. As a result, the error in determining the hand’s
position was about 28 mm in three-dimensional space.

Nevertheless, in addition to the robot’s understanding of the operator’s commands,
the person must understand the robot’s intentions, which are realized through feedback.
In order not to constrain the movement of an operator but at the same time to reliably
inform an operator, visual feedback is used in most cases. Augmented and virtual reality
are used as feedback during human-robot interaction since headsets mainly have solutions
for determining the position of key points of hands and hand gestures or for simplifying
the integration of solutions from third-party manufacturers. For example, in [16], the
authors proposed a method for programming an industrial robot by demonstrating using

Machines 2024, 12,217

40f21

the Microsoft HoloLens 2 augmented reality headset. The solution is based on ROS and
has a modular structure. The solution was successfully tested on the Universal Robots UR5
and ABB IRB 2600 robots, during which simple programs were created and reproduced.
Other authors [17] proposed a method for the remote control of an industrial robot using
Microsoft HoloLens augmented reality glasses. This work’s main focus was creating a
semi-automatic method for combining the base coordinate system of a real and virtual
industrial robot in augmented reality. The solution was successfully tested on the KUKA
KR-5 industrial robot. However, it is worth noting that the authors encountered problems
tracking the hand on a black background, probably due to absorption properties.

It is also crucial to mention a disadvantage of non-contact systems for determining the
position of key points of the human hand based on cameras. Camera-based solutions are
subject to the phenomenon of self-occlusion. Self-occlusion or partial or complete overlap
of the hands, fingers, or palms decreases the accuracy in determining key points or makes
the recognition process impossible.

Different researchers have attempted to solve the problem of occlusions in different
ways. The most common way to avoid occlusions is to use multi-camera systems. For
example, the authors of [18] used 3 Intel RealSense D435 cameras to track the position
of hands and recognize gestures when creating an intuitive approach to human-robot
interaction. The Google MediaPipe solution was used for the software component. As a
result, the developed gesture control application made it possible to speed up the creation
of a program by two times compared to manual control and four times compared to
programming using the teach pendant. Other authors [19] developed an inexpensive
remote control system based on 4 Intel RealSense D415 cameras for the KUKA LBR iiwa 7
R800 robot with a Wonik Robotics Allegro gripper, which has 23 degrees of freedom. The
developed application made it possible to perform highly complex manipulation tasks,
such as opening a box, changing the position of a part while grasping it, extracting money
from a wallet, etc.

However, there are also quite non-standard solutions. For example, to solve occlusion
problems, in [20], the authors used an active machine vision system to capture a human
hand from the most optimal angle and distance. The active machine vision system consisted
of the Universal Robotics UR5 collaborative robot, on which the Intel RealSense SR300
camera was installed. For a preliminary assessment of the position of the human hand,
the PhaseSpace motion tracking system and light LED wrist markers were used. The
remote robotic cell consisted of a Willow Garage PR2 robot, a Shadow Inc. gripper with
19 degrees of freedom, a Microsoft Kinect V2 camera, and a webcam that captures the robot’s
performance. The authors were motivated to create this system because multi-camera
systems do not entirely solve the problem of occlusions, require frame synchronization,
and require more time to process frames.

It is also worth mentioning that delays occur even when using a single camera since
the system needs time to transmit and process information from the camera. Researchers
are trying to solve this problem by trying to predict human behavior. Also, this approach
makes human-robot interaction more predictable and intuitive. Some authors [21] also
used a long short-term memory neural network to inform the robot about human intentions.
Information about the position of the key points of the operator’s hand and the direction
of his gaze was used as input data. The Google MediaPipe solution was used as the
software for determining the position of the hands, and the Nexigo N930AF RGB camera
was used as the hardware. In addition, object recognition was implemented using the
RGB camera and the YOLO v5 library. Information about the direction of the operator’s
gaze was obtained using the Pupil Core platform. Experiments showed that using all three
information streams (hand, gaze, object) showed better results in recognizing intentions
than did hand-object and hand-gaze.

In addition, prediction can improve the performance of the robotic cell. For example,
in [22], the authors used a long short-term memory neural network to predict the progress
of assembly operations—screwing manually or with the help of tools and hammering.

Machines 2024, 12,217

50f21

A convolutional neural network processed readings from a Microsoft Kinect V1 camera
and inertial measurement units from Shimmer Inc. to recognize assembly operations.
The developed application was tested on a robotic cell, where the robot had its tasks
in addition to collaborative ones. With planning, the system minimized downtime by
switching between tasks. Despite inaccuracies in the process of recognition of actions,
the success of delivery of the next part in the collaborative assembly process was more
than 80%. In [23], the authors used the Tobii Eye Tracker 4C gaze tracker and the Leap
Motion Controller camera to create a collaborative assembly application. The use of the
gaze tracker was driven by the desire to expand the list of commands for interacting with
the robot while not overloading the operator with a large number of hand gestures. The
experiment showed that the developed approach reduced the total task execution time by
57.6% compared to classical programming through the teach pendant.

The hardware and software solutions used for human position tracking are summa-
rized in Table 1.

Table 1. Hardware and software solutions used in the reviewed scientific papers.

Pose Recognition Sensor for Pose Resistance to B?dy Par.ts. for
Robot ore . which Position Is Source
Method Recognition Occlusions .
Determined
Universal Robots Leap Motion SDK Leap Motion — Palm [12]
UR5e
ABB YuMi Alphan)se apd Halpe Orbbec Astra S — Skeleton, palm [13]
libraries
UFactory XArm-6 MediaPipe and . .
with Allegro FrankMocap iPad or iPhone — Palm [14]
. . . camera
gripper libraries
B Custom region of DAVIS 240 C B Palm [15]
interest algorithm event camera
Universal Robots Microsoft Microsoft HoloLens 2 _ Palm [16]
UR5, ABB IRB 2600 HoloLens 2 SDK sensors
KUKA KR-5 Microsoft HoloLens 2 Microsoft HoloLens 2 B Palm [17]
SDK Sensors
Universal Robots R . Intel RealSense D435
UR3e MediaPipe library cameras (3 pes) + Palm [18]
KUKA LBR iiwa7 Dense articulated
R800 with Allegro real-time tracking Intel RealSense D435 + Palm [19]
. cameras (4 pcs)
gripper framework
Willow . End-to-end hand pose Intel Rea.ISense SR300
Garage PR2 with regression camera installed on a + Palm [20]
Shadow Inc. & Universal Robot URS5,
. network .
gripper PhaseSpace tracking system
3 Med'laplpe, Nexigo N930AF RGB B Palm, gaze [21]
Pupil Core camera
Universal Robots Convolutional Shimmer Inc. mer.t1al
UR3 neural network measurement units, — Skeleton, palm [22]
Microsoft Kinect V1 camera
Universal Robot Convolutional Leap Motion and _ Palm, gaze 23]

URS5, simulation

neural network

Tobii Eye Tracker 4C

Machines 2024, 12,217

6 of 21

3. Materials and Methods
3.1. Hardware Setup

The proposed approach was tested using the SmartTechLab laboratory’s equipment
(Faculty of Manufacturing Technologies with a seat in PreSov, Technical University of
Kosice). The proposed approach was tested using the ABB YuMi dual-arm collaborative
robot, each arm of which has seven axes for increased flexibility. The robot’s controller
used in the laboratory had the 689-1 externally guided motion option installed to transmit
the robot’s position at a frequency of 250 Hz. ABB SmartGrippers were installed on each
robot arm.

The performance and accuracy of the application depend on the optimal choice of
the camera for hand tracking. The Leap Motion Controller camera was chosen (Figure 1)
since this camera was explicitly created to determine the coordinates of key points of
the hands accurately and does not require initial training. High frame rates of up to
120 fps allow reliable tracking of hand movements and gesture recognition with high
frequency. This camera also has a relatively affordable price. The literature review in [12]
shows that the Leap Motion Controller is a popular choice as a hand-tracking device in
teleoperation applications. As for the disadvantages, the Leap Motion Controller is very
sensitive to the position of the human hands relative to the camera. The developers of
Leap Motion Controller suggest only three tracking modes: desktop, screentop, and head-
mounted. Also, the Leap Motion Controller solution does not have a built-in solution for
synchronizing multiple cameras, which does not allow the avoidance of self-occlusion of
fingers and expanding the limited workspace. However, the authors of [24] proposed an
approach to synchronizing the readings of two Leap Motion Controller cameras, which
made it possible to avoid the self-occlusion of the fingers during robot teleoperation using
gestures. Additionally, the authors proposed a process for automating camera calibration,
simplifying the workplace setup. However, while testing the cameras, the authors noticed
that interference in a multi-camera system only occurs when using the first-generation Leap
Motion Controller (Firmware version 1.7.0). When testing a multi-camera system based on
the second-generation Leap Motion Controller (Firmware version 3.8.6), no interference
is observed, and the cameras reliably read the position of the hands, which theoretically
can expand the workspace of the cameras and make the application resistant to occlusions.
However, the application was based on a single camera at this stage for simplicity.

Figure 1. Leap Motion Controller (second generation).

According to the manufacturers, the Leap Motion Controller has viewing angles of
140° x 120°. The recommended working area is an X axis from —117.5 to 117.5 mm, a
Y axis from 82.5 to 317.5 mm, and a Z axis from —73.5 to 73.5 mm [25]. One study [26]
compared the declared performance with the actual one. Based on real-world testing, the
authors recommended using the Leap Motion Controller camera in the following ranges: X
and Z axes from —200 to 200 mm and an Y axis from 50 to 600 mm. However, it is worth

Machines 2024, 12,217

7 of 21

noting that the studies were carried out with one hand size (the size of an adult man 185 cm
tall), and only static positions were tested.

Regarding accuracy issues, the authors of [27] experimentally analyzed the accuracy
and stability of hand tracking with a Leap Motion Controller camera under dynamic
conditions. Within the working space chosen by the authors (X and Z axes from —250 to
250 mm, Y axis from 0 to 400 mm), the sensor showed a less than 5 mm hand detection
deviation and less than 10 mm outside the working space. The authors also noted an
increase in deviation at a hand distance of more than 200 mm in the Y axis from the camera
to a value of less than 10 mm. Nevertheless, these accuracy characteristics are acceptable to
confirm the concept stated in this article.

For the laboratory conditions of our study, the following working area of the camera
was experimentally selected: axis X for the left hand from —180 to —30 mm and for the
right hand from 30 to 180 mm, axis Z from —40 to 80 mm, and axis Y from 180 to 260 mm.

In the proposed approach, a Lenovo Legion Pro 5 16IRX8 laptop was responsible for
processing data from the camera and for exchanging information with the robot and had
the following parameters: Intel Core i7-13700HX processor, 16 GB DDR5 RAM, Nvidia
GeForce RTX 4060 8 GB graphics card, and M.2 PCle SSD 1000 GB.

3.2. Software Setup
3.2.1. Robot Configuration

The StateMachine Add-In was used to simplify interaction with the robot. After
the add-in was installed, modular RAPID programs and configuration files were loaded
onto the controller based on system characteristics, such as the number of robots and
available options. Modular RAPID programs were implemented according to the finite
state machine model. This add-in provides an interface for controlling ABB SmartGripper
grippers, managing the connection to the robot via the externally guided motion protocol,
and executing custom RAPID modules.

The structure of the RAPID task was as follows (Figure 2):

e The TRObEGM program module provides an interface for starting and stopping robot
position control via the 689-1 externally guided motion option. With the externally
guided motion option, it is possible to transmit the desired position of the tool center
point at high frequency, which minimizes delays, thereby improving the user experi-
ence of human-robot interaction. In addition, this module provides an interface to set
externally guided motion parameters, such as the condition time, connection timeout,
maximum speed deviation, the tool and work object coordinate systems, etc.

The TRobMain program module initializes submodules and manages the state machine.
The TRobRAPID program module provides an interface for interacting with the system
and user RAPID routines.

e The TRobSG program module provides an interface for interacting with ABB Smart-
Grippers via RobotWeb Services. These include requesting gripper initialization,
calibration, gripper finger movement, setting gripper finger speed and gripping force,
and controlling suction cups on the gripper if available.

e The TRobUtility program module contains some system functions and variables other
modules use.

e The BASE system module stores predefined system data, such as a description of the char-
acteristics of the tool, work object, and loads attached to the robot’s mechanical interface.

e The TRobSystem system module allows users to add a system-specific initialization
procedure and run custom RAPID procedures.

Machines 2024, 12,217 8 of 21
Task
T_ROB_R
v v v v v v v
Program Module Program Module Program Module Program Module Program Module System Module System Module
TRobEGM TRobMain TRobRAPID TRobSG TRobUtility BASE TRobSystem
v v v v v
Procedure Procedure Procedure Procedure Procedure
procedure_n procedure_2 procedure_1 mainProcedure goToStartEGMTarget

Figure 2. The structure of the RAPID task.

It was necessary to add the following custom RAPID procedures to the TRobSystem
system module for the developed application: mainProcedure and goToStartEGMTarget.
mainProcedure is the main procedure, which includes a set of supplemental procedures that
are called sequentially. Dividing a program into procedures is a good practice and makes the
code easier to develop, maintain, and understand. This practice improves code readability
and understanding, allows code reuse, and simplifies program debugging, scaling, and
maintainability. In mainProcedure, which contains a sequence of procedures, it is possible
to add procedures that are in the scope of the current task or the TRobSystem module.

The goToStartEGMTarget procedure is responsible for moving the central tool point to
the starting point of the working object area in joint mode. Since a 7-axis robot was used for
the experimental validation of the approach, there could be different joint positions for the
same tool center point position. Also, a larger number of axes allows singularity areas to be
more effectively avoided when programming with simulation software (ABB RobotStudio,
FANUC Roboguide, RoboDK, etc.) but also increases the number of singularity areas. Since,
for ease of implementation of the application, the robot is controlled by sending the position
of the tool center point in the Cartesian coordinate system, depending on the position of
the robot joints before the start of the application, there may be cases of moving outside the
range of one joint axis of the robot or of the robot entering the singularity area, which can
lead to an emergency stop of the application. To avoid this, when transferring the position of
the tool center point in a Cartesian coordinate system, it is recommended to experimentally
select the optimal configuration of the joint at the starting point of the working object area.
The optimal configuration of robot joints can be selected by solving forward and inverse
kinematics equations. Some authors have provided equations for the forward and inverse
kinematics of the ABB YuMi robot, although the provided technique is universal and
suitable for any articulated robot. A general description of forward and inverse kinematics
is presented in [28]. Also, others authors [29] provided Denavit-Hartenberg parameters
(DH parameters) only for the left arm of the ABB YuMi robot, which are necessary for
solving kinematic equations. Also, they did not consider the robot arm’s location relative
to the robot’s base coordinate system and the joints” zero position. DH parameters for
the right hand, with consideration to the robot’s base coordinate system and the joints’
zero position, are provided in Table 2. DH parameters were obtained according to the
manufacturer’s 3D CAD model of the ABB YuMi robot [30].

Another option is to use the ABB RobotStudio, which provides forward and inverse
kinematics solutions. ABB RobotStudio provides a list of joint configurations for a given
tool center point (Figure 3). ABB RobotStudio contains information about the kinematics
of ABB robots; however, it is possible to solve forward and inverse kinematics equations
for third-party industrial robots. Creating a library file containing information about
kinematics, such as Denavit-Hartenberg parameters, joint limits, etc., is necessary. In
addition, the Robot Operating System (ROS) also provides solvers for forward and inverse
kinematics problems.

Machines 2024, 12,217 9 of 21

Table 2. Denavit-Hartenberg parameters for the right hand.

i a;, mm o, Degree d;, mm 0;, Degree
0 46.0946 —61.9756 373.6889 —112.7959
1 30 270 187.9456 —37.6 + 04
2 30 270 0 180 — 6,
3 40.5 90 251.5 07
4 40.5 90 0 90 — 03
5 27 90 265 180 + 04
6 27 90 0 180 — 05
7 0 0 36 180 + O¢
Conﬁgurations

Cfg2 (‘I -1-2.4)

Cfg3(1.3.2.4)

Cfg4 (1.3.-2.4)

Cfg5 (1.1.0.5)

Cfgh (1.-3.0.5)

___|

Include Turns

JointValues

Previous Current

J1:64.79

J2: 4177
J3: 30.87
J4:-101.47
J5: 61.91

J6: 153.00
J7:-68.60
Cfg: (1.-1.24)

Apply Close

Figure 3. Example of a list of joint configurations obtained in the ABB RobotStudio.

In choosing the optimal configuration of joints at the initial point, avoiding positions
of joints close to the limits and singularity points is recommended. At singularity points,
the robot loses one degree of freedom, and in positions close to the singularity point,
movement becomes impossible or unpredictable. Often, when the end point of the tool
passes near the singularity point, the joints begin to move at high speed while the speed
of the tool center point slows down. When controlling the ABB industrial robot using the
Externally Guided Motion option, passing the tool center point near the singularity area
causes the application to stop. The topic of singularity is complex and depends on the
robot’s geometric configuration, the chosen joint configuration, and required speed of the
tool center point.

The TRobSystem system module can also store custom procedures that can be gen-
erated by the developed application and which can later be named in the mainModule
module, for example, “procedure_1", “procedure_2”, “procedure_n", etc.

3.2.2. Desktop Application Implementation

A desktop application was developed to exchange and process data between the
industrial robot, camera, and user. The program was written in C++ and tested on the
Windows operating system, but since it used cross-platform libraries, it should work on

Machines 2024, 12,217

10 of 21

Linux without the source code being changed. The Qt library was used to build the
graphical user interface [31]. In addition, the Network and WebSockets modules of the Qt
library were used to write an interface to interact with the robot’s HTTP server through
a set of protocols and standards called RobotWebServices, which is designed to control
and monitor ABB industrial robots. The C++ library abb_libegm was used to interact with
the externally guided motion client of the robot controller [32]. A conceptual sketch of the
interaction between an external computer and an ABB robot controller is shown in Figure 4.

External computer Controller
Robot Web Services (RWS) Robot Web Services (RWS):
C++ Library:
=3 o |— ~—
V- J E==J| HTTP & Web Socket —_— o) < / >
— X (TCP)
User APIs Message Manager RWS Client RWS server | Configurations I/O signals RAPID
Lower frequency, RAPID
general communication. program

lHigher frequency, specialized communication.

l.e. direct motion control. < / >

Externally Guided Motion (EGM)
C++ Library:
— [—)
’ J— o (. p——
/'4, —_— Google Protocol Buffers H Communication with
Sl (250 Hz UDP) EGM client EGM controller robot drive system
User APIs Message Manager EGM Server

Figure 4. Interaction between an external computer and an ABB robot controller [33].

The LeapC SDK interacts with the Leap Motion Controller camera [34]. The LeapC
SDK provides service information about the status of receiving and processing camera
events and information about the position of key points of the hands, including the position
of the central point of the palm, and in addition, provides implementation of the recognition
of simple gestures such as pinch and grab. An example of performing the pinch and grab
gestures is shown in Figures 5 and 6, respectively. In the developed application, the right
hand is used to move the robot’s arm, and the pinch gesture of the right hand is used
to control the gripper installed on the robot. The left hand is responsible for recording
the state of the robot and the grip when creating a new procedure using the grab gesture.
The library also provides information about confidence in recognizing hand positions and
gestures, which was used to improve the reliability of the application.

Figure 5. The pinch gesture.

Machines 2024, 12,217

11 of 21

Figure 6. The grab gesture.

By default, the location of hand key points relative to the camera’s coordinate system
and the location of the robot’s tool center point in its global coordinate system are not
connected. In addition, the robot and camera have their own working area. The working
area of the camera is limited by the values (in mm) Xjmc min and Xjmc max, and the robot’s
working area is limited by the values (in mm) X¢cp_min and Xtcp_max- The coordinates of
the position of the hands key points Xjy,., mm, in the camera coordinate system can be
converted into the coordinates of the tool center point xtp, mm, using Equation (1):

Xtep = Cotts + Cr X Xime- 1)

Here, C,gs, mm, is the offset of the camera and robot workspaces, and C; is the
ratio of the workspaces. These values can be calculated according to Equations (2) and
(3), respectively:

Cotfs = (Xth_maX - Xtcpfmin)/ (Ximc_max — Xlme_min)» (2)

C = Xtcp_min — Xlmc_min X Coffs~ 3)

The left side of the main application window (Figure 7) contains a block of connection
parameters, with fields for entering the IP address, port, login, and password of the HTTP
robot server, which is responsible for RobotWebServices, as well as the port for connecting
to the client externally guided motion of the robot controller. Before the application is
launched for the first time, the connection settings to the externally guided motion client on
the controller must be checked. In “Configuration”, “Communication”, and “Transmission
Protocol”, the StateMachine Add-In automatically creates the connection parameters for
remote control of the mechanical unit groups. However, the system administrator must
ensure that the IP address specified in the UdpUc protocol connection parameters matches
the IP address of the remote computer. On the right side of the application, there is a
drop-down list in which the user can select the task with which he will work and the
contents of the mainProcedure procedure of the selected task. The procedure list widget
allows the user to change the sequence of procedures in the list by simply dragging and
dropping. When the user right-clicks on the list of procedures, a context menu will appear,
with which the user can add a new procedure to the list, add a previously created procedure
to the list, or remove the selected procedure from the list.

When the user selects the “Add a new procedure” action from the context menu, a
new window opens (Figure 8). In the left part of the “Add a new procedure” window, the
user can see the status of the application services: the RobotWebServices HTTP client, the
externally guided motion service, and the Leap Motion camera service. For the normal
functioning of recognition of hand positions and gestures, the person’s hands must be in
the optimal working area of the camera. The application will signal the person when his
hands move outside the optimal working area of the camera. For this purpose, “Adding
points” and “Right arm in working space” indicators have been added to the services
status widget.

Machines 2024, 12,217

12 of 21

Connection parameters

B | Simplified Programming Application = (] X
Application
Task
T_ROB_R v

Username

Default User

Connected

Main procedure

| pick_1_3
Add a new procedure
Add an existing procedure
Delete procedure
Reset Save Save and Run

5| Add a new procedure

Services status

RWS service

EGM service

Leap Motion service
Adding points

Right arm in working space

Figure 7. The main desktop application window.

- O] X
New procedure

Running New procedure name

Running test_procedure_01

Running Name “test_procedure_01" is valid

Avaible R — .

Point Speed Positioning accuracy Gripper state
True
[[480.843,-56.0277,101.217],[0.00615731,... v100 z50 opened
[[481.991,-50.5861,39.9875],[0.00616336,... v100 z50 closed
[[480.105,-46.5129,83.1962],[0.00618003,... v100 z50 closed
[[409.015,-150.557,82.7901],[0.00615786,... v100 z50 closed
[[413.072,-150.541,40.0246),[0.00610224,... v100 250 opened
[[426.482,-145.359,119.745],[0.00615612,... v100 250 opened
Clear all Save Cancel

Figure 8. The “Add a new procedure” window.

The “Adding points” indicator informs the user whether the following conditions are
met: whether the camera recognizes the position of the left and right hands simultaneously
and whether the left hand is in the optimal working area of the camera. If the “Adding
points” indicator has the status “Available”, the user can record the robot’s position and
gripper state in the procedure using the grab gesture of the left hand. The “Right arm in
working space” item informs the user whether the person’s right hand is in the optimal
working area of the camera, which is responsible for controlling the position of the robot
and the state of the robot’s grip (open or closed). Going outside the optimal working
area of the camera results in a significant reduction in the accuracy of gesture recognition,
which can lead to either unintentional recording of the robot’s position and gripper state or
unintentional opening or closing of the gripper (which in early testing of the application
led to collisions between the gripper and the part where the operator tried to pick the part
with the robot).

Machines 2024, 12,217

13 of 21

On the right side of the “Add a new procedure” window, there is a field for entering
the name of the new procedure and a list of robot position points with the state of the
gripper that will be written in the new procedure. After writing the procedure and entering
the correct name of the new procedure, the user can save it in the native programming
language of the robot controller (ABB RAPID) by clicking the “Save” button. The user can
also delete the created point using the context menu, which is called by right-clicking the
mouse, completely clearing the list of points using the “Clear all” button, and closing the
window to cancel the creation of a new procedure.

Example of RAPID code generated by the program:

PROC test_procedure_01()

g_GripOut;

Movel [[480.843,-56.0277,101.217],[0.00615731,-0.707066,-0.707094,0.00623345],[1,
-1,2,4],[162.399, 9E+09,9E+09, 9E+09, 9E+09,9E+09]], v100, 250, Servo;

Movel [[481.991,-50.5861,39.9875],[0.00616336,-0.707082,-0.707077,0.00619356],[1
-1,2,4],[166.821,9E+09,9E+09,9E+09,9E+09,9E+09]], v10@, z50, Servo;

WaitRob \InPos;

g_Gripln;

Movel [[480.105,-46.5129,83.1962],[0.00618003,-0.70707,-0.707089,0.00619892],[1,
-1,2,4],[164.041,9E+09,9E+09,9E+09,9E+09,9E+09]], v100, 250, Servo;

Movel [[409.015,-150.557,82.7901],[0.00615786,-0.707057,-0.707103,0.00613658],[1,
-1,2,4],[154.645,9E+09,9E+09,9E+09,9E+09,9E+09]], v100, 250, Servo;

Movel [[413.072,-150.541,40.0246],[0.00610224,-0.707113,-0.707048,0.00612799],[1,
-1,2,4],[159.223,9E+09,9E+09,9E+09,9E+09,9E+09]], v100, z50, Servo;

WaitRob \InPos;

g _GripOut;

Movel [[426.482,-145.359,119.745],[0.00615612,-0.707063,-0.707097,0.00616934],[1,
-1,2,4],[151.882,9E+09,9E+09,9E+09, 9E+09,9E+09]], v100, 250, Servo;
ENDPROC

When the user selects the “Add an existing procedure” action from the context menu
of the main window, a dialog box opens (Figure 9) in which, using a drop-down list, the
user can select a previously created procedure that is not a StateMachine Add-In system
procedure, and which is either in the global scope or which is in the TRobSystem task, and
add it to mainProcedure procedure.

® | Add an existing procedure — O X
pick_1_3 v
pick_1_3
test_procedure_01

Save Cancel

Figure 9. The “Add an existing procedure” window.

After forming the desired sequence of supplemental procedures in the mainProcedure
procedure, the user can request that it be saved on the controller and saved and run. In
addition, the user can cancel all changes made to the mainProcedure procedure by clicking
the “Reset” button.

A simplified diagram of the entire developed application is shown in Figure 10.

Machines 2024, 12,217

14 of 21

g A

{ Start)

Entering
connection
parameters

Sending
an error
message

Connection
successful?

Selecting
atask
(if necessary),

Was it
the "Save"
button?

the buttons
pressed?

Restore the list of Writing the list of

b do[;c;e;‘: fne;,n cox!:; mgnu procedures in main procedures from
window? invoked? window to the last the main window
saved state to mainProcedure

Is "Add an
existing procedure!
selected?

isplay the "Add
a new procedure”
‘window

the list

-
Deleting a selected
"Delete procedure”
e }—» procedure from

Itwas

the "Save and Run"

button

Were there any’
changes to the list
of procedures ?

Writing the list of
procedures from
the main window
to mainProcedure

Execution of

the mainProcedure

procedure

» Display (o)

H?Igzk?: gs 'g;’ n a dialog box Selecting Addlr[l)goﬂg:dsue[l:cted

with a list a procedure

the camera o iee-kliied L to mainProcedure
—

Sending a new Is ves | Sending arequest

'Sdg?ehc‘";g“ position to pitch gesture to change
¢ the robot changed? the gripper state

Is Recording the robot's

Is lefthand :
grab gesture position and . d a new procedure
CEEEer detected? aripping state Pt glinoy to the end of
procedure to the list of d
the controller Ve st o p“)c? ures
in the main window

Is the program Cancel

}7

to add or remove

R press?

Select the point,
call the context menu
and select"Delete”

Figure 10. The flowchart of the data flow and control of developed software.

4. Results

Regarding manual programming, classic industrial robots can generally be pro-
grammed via jogging. Collaborative robots can also be controlled through lead-through
programming. Using these methods simultaneously allows the operator to create programs
more flexibly, increases accuracy, and reduces program creation time, especially for complex
and precise applications. However, due to the simplicity and naturalness of the interaction,
gesture-based manual programming methods can significantly reduce the time needed
to create programs, especially for tasks with complex trajectories. Also, due to simplicity
and intuitiveness, this approach can reduce the amount of errors in the program, which is

especially critical for inexperienced operators.

Machines 2024, 12,217

15 of 21

An experiment was conducted to confirm this theory (Figure 11). As part of the
experiment, the operator was required to create a program to move a cube-shaped part
to specified positions on the workspace, which were marked from 1 to 6 (Figure 12). The
length of the cube-shaped part edges was 20 mm. The experiment consisted of four tests.
On the first test, the operator was required create a program to move the part from position
1 to position 6. During the second test, the operator needed to create a program to move
the part from position 6 to position 1. On the third test, moving the part from position 4 to
position 3 was necessary. The fourth test was to create a program to move the part from
position 3 to position 4. On each test of the experiment, the program was created from
scratch. The size of the operating area relative to the robot’s base coordinate system was as
follows: X axis, from 380 to 500 mm; Y axis, from —200 to —40 mm; and Z axis, from 40 to
120 mm. The dimensions of the working area on the base plate were a length of 120 mm
and a width of 95 mm. The pitch between the positions for workpiece installation was
75 mm vertically and 50 mm horizontally.

-—
~—

l ABB YuMi :
collaborative robot

, |

ABB SmartGripper .
with cube-shaped part !
g N 5~

PC with the program
running

Leap Motion Controller

Figure 12. Robot workplace configuration.

Machines 2024, 12,217

16 of 21

As a result, with both the limits of the robot’s working area and the camera’s working
area being known, Equation (4) can be obtained to calculate the current position of the tool
center point depending on the position of the hands with Equations (1)—(3). It is also worth
considering the different directions of the coordinate systems of the robot and the camera:
the Z axis of the camera is directed along the X axis of the robot, the X axis of the camera is
directed along the Y axis of the robot, and the Y axis of the camera is directed along the Z

axis of the robot.
Xtep = 420 + Zjm,

Yiep = —220 + Ximes (4)
Zicp = —140 + Yime

The purpose of the experiment was the following. It was necessary to determine
the difference in time between the existing and proposed manual programming methods
and to analyze the probability of errors occurring during programming. The time was
measured from the beginning of program creation to the end of execution of the created
program without errors (the first successful debugging run). The results of the experiment
are summarized in Table 3. The final table contains the time of creating programs without
errors, and the total number of errors during the entire experiment for each method is in a
separate row. It is worth considering that the experiment involved an operator who had
experience working with ABB industrial robots.

Table 3. Time spent on program creation and a number of errors during the programming process.

Criterion Jogging + Lead-Through Gestures
Time spent, test 1, seconds 258 95
Time spent, test 2, seconds 296 106
Time spent, test 3, seconds 333 81
Time spent, test 4, seconds 306 77
Average time spent, seconds 298.25 89.75
Number of errors 2 0

As a result, the proposed approach reduced the program creation time by up to 70%. In
addition, when using built-in programming methods at the fourth stage of the experiment,
errors occurred twice—the first time, the operator did not reassign one of the points in
the program, and the second time, there was a collision between the captured part and
the base plate. The time spent creating a program with error correction was 502 and 417 s,
respectively. This means that, on average, the presence of an error increases the program
creation time by up to 50%. As a result, using the proposed method made it possible to
significantly reduce the time required to create a program manually, reducing time losses.

It is also worth noting that since lead-through programming is only available for
collaborative robots due to safety issues, the time required to create a program manually
for classic industrial robots may increase. However, since the proposed approach, unlike
lead-through programming, does not require contact between the operator and the robot, it
is available for classical industrial robots.

In addition to testing programming speed and the number of errors encountered dur-
ing the programming process, the accuracy of object placement was tested. It is necessary
to be aware of the proposed approach’s accuracy to understand the range of industrial
applications for which this programming method is applicable. The principle of this test is
that while picking and placing the part, its position along the X-axis is measured by a laser
sensor. A Micro-Epsilon optoNCDT 1420-10 sensor was used to measure the position of the
part. The Micro-Epsilon optoNCDT 1420-10 sensor has a measuring range of 10 mm, the
middle of the measuring range is 25 mm, and the sensor can measure the distance to an
object with a repeatability of 0.5 um and a frequency of 2000 Hz. The reference location
of the part is set to the middle of the laser sensor’s measuring range. The process of the

Machines 2024, 12,217

17 of 21

Distance, mm

experiments is shown in Figure 13. Graphs of the distance to the part during the process of
picking and placing the part are shown in Figures 14 and 15, respectively.

Figure 13. Application accuracy testing.

Test 3 Test 4

Test 1

Test 2

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time, s

Figure 14. Accuracy of picking operation.

Machines 2024, 12,217

18 of 21

Distance, mm

10

Test 1 Test 2 Test 3 Test 4

T —

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time, s

Figure 15. Accuracy of the placing operation.

As a result, the distance deviation during picking operations ranged from —1.1 mm to
2.8 mm; the distance deviation during placing operations ranged from —2.3 mm to 5.0 mm.

5. Discussion

Several studies in this area use gesture-based position control and robot programming
methods. For example, in [5], the authors created applications for the teleoperation of
the ABB YuMi robot using gestures. The application uses the Leap Motion Controller 1
camera, which can provide information about the position of key points of the hands. In
contrast to our proposed solution, the authors in [5] used ROS, which allows for the use
of position solvers for this type of robot, thereby flexibly specifying the position of the
tool. Our proposed approach has a limited rotational position of the tool—it can only be
perpendicular to the base plate. However, the application developed by the authors in [5]
is not designed for gesture-based program creation. In addition, the authors in [5] did not
implement control of the robot’s grippers.

It is also possible to compare the proposed approach with the study described in [18].
In contrast to our proposed method, in [18], the authors exclusively used gesture control,
simplifying the organization of the operator’s workspace. Also, visual feedback from the
robot on the display improved the user experience. However, other researchers [23] have
noted that a large number of gestures can increase the load on the user. Also, in [18], the
authors did not provide gripper control option, which does not allow for the use of the
developed approach for parts handling.

One of the main contributions of this article is as follows. The difference between
this article and similar works related to new, more simplified methods lies in the form
of interaction with the controller. Particularly, the created programs are directly written
to the controller in the native programming language of the controller. The proposed
approach allows the creation of modular, flexible, and portable programs. This approach is
also of interest to enterprises that can easily integrate the programming method into the
production area due to compatibility with existing (previously developed) programs.

Machines 2024, 12,217

19 of 21

6. Conclusions

The article is devoted to creating a methodology for developing an application for
programming robots using gestures, and it also contains a detailed description of an exam-
ple of creating such an application for an ABB YuMi collaborative robot. The article also
provides a detailed description of the process of setting up and calibrating the application
for gesture-based programming. The proposed concept allows the operator to control
the gripper and write new programs directly into the controller using ABB’s native robot
programming language—RAPID. Moreover, the proposed concept allows for the addition
of previously created procedures to the main program list. Thereby, the operator can create
flexible programs quickly by reusing the code. The developed application and programs
written using this application can work not only with the ABB YuMi collaborative robot
but also with all ABB robots with the RobotWare software platform installed from version
6.07.01 to version 6.15.04. Similar interaction protocols are proposed for other popular in-
dustrial robots, such as robots from Universal Robots, KUKA, Fanug, etc., and the proposed
approach can be adapted for robots from other manufacturers. Due to these features, the
proposed approach can be used in production to create simple programs quickly. Simplified
programming methods can significantly reduce the time spent writing a program. During
experimental testing, the time spent creating a program was reduced by up to 70%.

The proposed approach is theoretically applicable in production. The X axis part
positioning deviations ranged from —2.3 to 5 mm, which should be satisfactory for most
pick and place operations (e.g., moving goods in a warehouse, loading and unloading
equipment), especially when damping elements are used in the gripper design. However,
the accuracy of this type of programming is highly dependent on individual motor skills
as well as the visibility of the work area. One of the options for solving this problem can
be the adjustment of the sensitivity coefficient of hand movement. Issues of accuracy and
implementation of the sensitivity coefficient will be an area of future research.

It is also worth noting that when testing the proposed solution, we encountered
gesture recognition problems using the LeapC API’s built-in methods. The problem was
partially solved by experimentally selecting the working area of the camera. However,
when testing the application with inexperienced users, it took time for it to adapt to the
gesture recognition system. In addition, there were cases of the false triggering of the
gripper release gesture while a part was being moved, even in the recommended working
area of the camera. In future research, the authors plan to use other types of cameras in
conjunction with neural networks to increase the reliability and intuitiveness of gesture
recognition. Problems with gesture recognition could also arise due to lighting conditions:
the laboratory contained sunlight and sources of infrared lighting. The applicability of
other types of cameras should be tested in the future.

Author Contributions: Conceptualization, V.A. and K.Z.; methodology, V.A. and K.Z.; software, V.A.;
validation, V.A., V.I. and J.P,; formal analysis, V.A.; investigation, V.A. and V.I.; resources, V.A,, K.Z.,
V.I. and]J.P,; data curation, V.A. and K.Z.; writing—original draft preparation, V.A.; writing—review
and editing, K.Z. and V.L; visualization, V.A.; supervision, V.I. and J.P; project administration, V.I.
and J.P; funding acquisition, V.I. and].P. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Slovak Research and Development Agency under contract
Nno. APVV-19-0590 and by the projects VEGA 1/0061/23 and KEGA 014TUKE-4/2023 granted by
the Ministry of Education, Science, Research and Sport of the Slovak Republic. The research was
funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under
project no. 09103-03-V01-00102 and no. 09103-03-V01-00094. The research was partially supported
by The NAWA Ulam Programme under grant number BPN/ULM/2022/1/00045, the Research
and Educational Center for Industrial Engineering (Sumy State University), and the International
Association for Technological Development and Innovations.

Data Availability Statement: The application’s source code is available on request from the authors.

Machines 2024, 12,217 20 of 21

Acknowledgments: The authors wish to acknowledge the European Union’s Horizon research and
innovation program under the Marie Skfodowska-Curie Grant aAgreement ID 101086487).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Hricova, R.; Madzinova, R. Innovations in a Modern Engineering Enterprise in the Context of Industry 4.0 Strategy. JES 2023, 10,
A1-A9. [CrossRef] [PubMed]

2. Evjemo, L.D,; Gjerstad, T.; Grotli, E.L; Sziebig, G. Trends in Smart Manufacturing: Role of Humans and Industrial Robots in Smart
Factories. Curr. Robot. Rep. 2020, 1, 35—41. [CrossRef]

3. Karabegovi¢, I.; Karabegovi¢, E.; Mahmié¢, M.; Husak, E. Implementation of Industry 4.0 and Industrial Robots in the Manufactur-
ing Processes. In New Technologies, Development and Application II; Karabegovié, 1., Ed.; Springer International Publishing: Cham,
Switzerland, 2020; pp. 3-14.

4. Bill, M.; Miiller, C.; Kraus, W.; Bieller, S. World Robotics 2022 Report; International Federation of Robotics: Frankfurt, Germany,
2022.

5. Forgo, Z.; Villanueva Portela, M.A.; Hypki, A.; Kuhlenkoetter, B. Dual Arm Robot Control by Hands Gestures Using ROS. In
Proceedings of the ISR 2020—52nd International Symposium on Robotics, Online, 9-10 December 2020; pp. 1-6.

6. Perzylo, A; Rickert, M.; Kahl, B.; Somani, N.; Lehmann, C.; Kuss, A.; Profanter, S.; Beck, A.B.; Haage, M.; Rath Hansen, M.; et al.
SMErobotics: Smart Robots for Flexible Manufacturing. IEEE Robot. Autom. Mag. 2019, 26, 78-90. [CrossRef]

7. Multi-Annual Roadmap (MAR) for Horizon 2020 Call ICT-2017 (ICT-25, 27 & 28); SPARC, 2016. Available online: https://old.eu-
robotics.net/sparc/newsroom/press/multi-annual-roadmap-mar-for-horizon-2020-call-ict-2017-ict-25-27-28-published.html
(accessed on 12 February 2023).

8. Schwind, T. Safe, Fast, and Flexible—Cobots. An Ideal Solution for Small and Mid-Sized Businesses; IFR: Frankfurt, Germany, 2023.

9. Mukherjee, D.; Gupta, K.; Chang, L.H.; Najjaran, H. A Survey of Robot Learning Strategies for Human-Robot Collaboration in
Industrial Settings. Robot. Comput.-Integr. Manuf. 2022, 73, 102231. [CrossRef]

10. A Survey on End-User Robot Programming | ACM Computing Surveys. Available online: https://dl.acm.org/doi/10.1145/3466
819?sid=SCITRUS (accessed on 30 August 2023).

11. Wiese, T.; Abicht, J.; Friedrich, C.; Hellmich, A.; Ihlenfeldt, S. Flexible Skill-Based Control for Robot Cells in Manufacturing. Front.
Robot. Al 2022, 9,1014476. [CrossRef] [PubMed]

12. Corndk, M.; Tolgyessy, M.; Hubinsky, P. Innovative Collaborative Method for Interaction between a Human Operator and Robotic
Manipulator Using Pointing Gestures. Appl. Sci. 2022, 12, 258. [CrossRef]

13. Michalik, R.; Janota, A.; Gregor, M.; Hrubos, M. Human-Robot Motion Control Application with Artificial Intelligence for a
Cooperating YuMi Robot. Electronics 2021, 10, 1976. [CrossRef]

14. Qin, Y;; Su, H.; Wang, X. From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera
Teleoperation. IEEE Robot. Autom. Lett. 2022, 7, 10873-10881. [CrossRef]

15. Duarte, L.; Safeea, M.; Neto, P. Event-Based Tracking of Human Hands. Sens. Rev. 2021, 41, 382-389. [CrossRef]

16. Soares, I.; Petry, M.; Moreira, A.P. Programming Robots by Demonstration Using Augmented Reality. Sensors 2021, 21, 5976.
[CrossRef] [PubMed]

17. Puljiz, D.; Stohr, E.; Riesterer, K.S.; Hein, B.; Kroger, T. General Hand Guidance Framework Using Microsoft HoloLens. In
Proceedings of the 2019 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3-8
November 2019; pp. 5185-5190.

18. Vysocky, A.; Postulka, T.; Chlebek,]J.; Kot, T.; Maslowski,]J.; Grushko, S. Hand Gesture Interface for Robot Path Definition in
Collaborative Applications: Implementation and Comparative Study. Sensors 2023, 23, 4219. [CrossRef] [PubMed]

19. Handa, A.; Van Wyk, K.; Yang, W.; Liang, J.; Chao, Y.-W.; Wan, Q.; Birchfield, S.; Ratliff, N.; Fox, D. DexPilot: Vision-Based
Teleoperation of Dexterous Robotic Hand-Arm System. In Proceedings of the 2020 IEEE International Conference on Robotics
and Automation (ICRA), Paris, France, 31 May-31 August 2020; pp. 9164-9170.

20. Li, S.; Hendrich, N.; Liang, H.; Ruppel, P.; Zhang, C.; Zhang, J. A Dexterous Hand-Arm Teleoperation System Based on Hand
Pose Estimation and Active Vision. IEEE Trans. Cybern. 2024, 54, 1417-1428. [CrossRef] [PubMed]

21. Adebayo, S.; McLoone, S.; Dessing, J.C. Hand-Eye-Object Tracking for Human Intention Inference. IFAC-PapersOnLine 2022, 55,
174-179. [CrossRef]

22. Male, J.; Martinez-Hernandez, U. Deep Learning Based Robot Cognitive Architecture for Collaborative Assembly Tasks. Robot.
Comput. Integr. Manuf. 2023, 83, 102572. [CrossRef]

23. Zhao, X.; He, Y.; Chen, X,; Liu, Z. Human—-Robot Collaborative Assembly Based on Eye-Hand and a Finite State Machine in a
Virtual Environment. Appl. Sci. 2021, 11, 5754. [CrossRef]

24. Jin, H.; Chen, Q.; Chen, Z.; Hu, Y.; Zhang,]. Multi-LeapMotion Sensor Based Demonstration for Robotic Refine Tabletop Object
Manipulation Task. CAAI Trans. Intell. Technol. 2016, 1, 104-113. [CrossRef]

25. Coordinate Systems—Leap Motion C# SDK v3.2 Beta Documentation. Available online: https://developer-archive.leapmotion.

com/documentation/csharp/devguide/Leap_Coordinate_Mapping.html (accessed on 10 October 2023).

https://doi.org/10.21272/jes.2023.10(2).a1
https://www.ncbi.nlm.nih.gov/pubmed/31516457
https://doi.org/10.1007/s43154-020-00006-5
https://doi.org/10.1109/MRA.2018.2879747
https://old.eu-robotics.net/sparc/newsroom/press/multi-annual-roadmap-mar-for-horizon-2020-call-ict-2017-ict-25-27-28-published.html
https://old.eu-robotics.net/sparc/newsroom/press/multi-annual-roadmap-mar-for-horizon-2020-call-ict-2017-ict-25-27-28-published.html
https://doi.org/10.1016/j.rcim.2021.102231
https://dl.acm.org/doi/10.1145/3466819?sid=SCITRUS
https://dl.acm.org/doi/10.1145/3466819?sid=SCITRUS
https://doi.org/10.3389/frobt.2022.1014476
https://www.ncbi.nlm.nih.gov/pubmed/36246488
https://doi.org/10.3390/app12010258
https://doi.org/10.3390/electronics10161976
https://doi.org/10.1109/LRA.2022.3196104
https://doi.org/10.1108/SR-03-2021-0095
https://doi.org/10.3390/s21175976
https://www.ncbi.nlm.nih.gov/pubmed/34502864
https://doi.org/10.3390/s23094219
https://www.ncbi.nlm.nih.gov/pubmed/37177421
https://doi.org/10.1109/TCYB.2022.3207290
https://www.ncbi.nlm.nih.gov/pubmed/36179009
https://doi.org/10.1016/j.ifacol.2022.07.627
https://doi.org/10.1016/j.rcim.2023.102572
https://doi.org/10.3390/app11125754
https://doi.org/10.1016/j.trit.2016.03.010
https://developer-archive.leapmotion.com/documentation/csharp/devguide/Leap_Coordinate_Mapping.html
https://developer-archive.leapmotion.com/documentation/csharp/devguide/Leap_Coordinate_Mapping.html

Machines 2024, 12,217 21 of 21

26.
27.
28.
29.
30.
31.
32.

33.

34.

Tolgyessy, M.; Dekan, M.; Rodina, J.; Duchon, F. Analysis of the Leap Motion Controller Workspace for HRI Gesture Applications.
Appl. Sci. 2023, 13, 742. [CrossRef]

Vysocky, A.; Grushko, S.; Os¢adal, P.; Kot, T.; Babjak, J.; Janos, R.; Sukop, M.; Bobovsky, Z. Analysis of Precision and Stability of
Hand Tracking with Leap Motion Sensor. Sensors 2020, 20, 4088. [CrossRef] [PubMed]

Sokolov, O.; HoSovsky, A.; Trojanova, M. Design, Modelling, and Control of Continuum Arms with Pneumatic Artificial Muscles:
A Review. Machines 2023, 11, 936. [CrossRef]

Shi, J.; Mao, Y,; Li, P; Liu, G;; Liu, P; Yang, X.; Wang, D. Hybrid Mutation Fruit Fly Optimization Algorithm for Solving the
Inverse Kinematics of a Redundant Robot Manipulator. Math. Probl. Eng. 2020, 2020, e6315675. [CrossRef]

ABB Library—IRB 14000. Available online: https://library.abb.com/r?cid=9AAC184341 (accessed on 24 January 2024).

Qt Documentation | Modules. Available online: https://doc.qt.io/qt.html (accessed on 29 October 2023).

GitHub - Ros-Industrial / Abb_libegm: A C++ Library for Interfacing with ABB Robot Controllers Supporting Externally Guided
Motion (689-1). Available online: https://github.com/ros-industrial /abb_libegm (accessed on 29 October 2023).

ABB Robotics Application Manual - Externally Guided Motion - RobotWare 6.14 202. Available online: https://library.e.abb.com/
public/4c9bfaba4e9542bf9386c87f5377a27f / 3HAC073319%20AM%20Externally %20Guided %20Motion %20RW6-en.pdf (accessed
on 2 September 2023).

Leap Motion C API: LeapC Guide. Available online: https://developer.leapmotion.com/documentation/v4/index.html (ac-
cessed on 29 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app13020742
https://doi.org/10.3390/s20154088
https://www.ncbi.nlm.nih.gov/pubmed/32707927
https://doi.org/10.3390/machines11100936
https://doi.org/10.1155/2020/6315675
https://library.abb.com/r?cid=9AAC184341
https://doc.qt.io/qt.html
https://github.com/ros-industrial/abb_libegm
https://library.e.abb.com/public/4c9bfa6a4e9542bf9386c87f5377a27f/3HAC073319%20AM%20Externally%20Guided%20Motion%20RW6-en.pdf
https://library.e.abb.com/public/4c9bfa6a4e9542bf9386c87f5377a27f/3HAC073319%20AM%20Externally%20Guided%20Motion%20RW6-en.pdf
https://developer.leapmotion.com/documentation/v4/index.html

	Introduction
	Literature Review
	Materials and Methods
	Hardware Setup
	Software Setup
	Robot Configuration
	Desktop Application Implementation

	Results
	Discussion
	Conclusions
	References

