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Abstract: Human–robot teaming (HrT) is being adopted in an increasing range of industries and work
environments. Effective HrT relies on the success of complex and dynamic human–robot interaction.
Although it may be optimal for robots to possess all the social and emotional skills to function as
productive team members, certain cognitive capabilities can enable them to develop attitude-based
competencies for optimizing teams. Despite the extensive research into the human–human team structure,
the domain of HrT research remains relatively limited. In this sense, incorporating established human–
human teaming (HhT) elements may prove practical. One key element is mutual performance monitoring
(MPM), which involves the reciprocal observation and active anticipation of team members’ actions
within the team setting, fostering enhanced team coordination and communication. By adopting this
concept, this study uses ML-based visual action recognition as a potential tool for developing an effective
way to monitor the human component in HrT. This study utilizes a data modeling approach on an existing
dataset, the “Industrial Human Action Recognition Dataset” (InHARD), curated specifically for human
action recognition assembly tasks in industrial environments involving human–robot collaborations. This
paper presents the results of this modeling approach in analyzing the dataset to implement a theoretical
concept that can be a first step toward enabling the system to adapt dynamically. The outcomes emphasize
the significance of implementing state-of-the-art team concepts by integrating modern technologies and
assessing the possibility of advancing HrT in this direction.

Keywords: human–robot interaction; human–robot collaboration; teaming AI; human–robot teaming;
ML; human factors

1. Introduction
1.1. Human–Robot Teaming: A System Modeling Perspective

The concept of HrT depends on merging the capabilities of humans and robots. From a
system modeling perspective, a human–robot team can be regarded as a system comprising
two subsystems: a human subsystem and a robot subsystem. Each subsystem has its
own characteristics and capabilities, and the interaction between these two subsystems
determines the overall performance of the system. In order to model the human–robot team
as a system, it is necessary to understand the capabilities and limitations of each subsystem,
as well as how they can interact and cooperate to achieve a common goal.

Humans possess intrinsic flexibility, cognition, and problem-solving skills [1], whereas
robots offer high accuracy, speed, and repeatability [2]. As the ability of robots to act intel-
ligently and the potential for them to be installed without cages increases, manufacturers
have developed guidelines and design criteria such as autonomy and mechanical design [3–6].
The purpose of these guidelines and design criteria is to ensure the safety and reliability
of the system. However, HrT brings unique challenges to these guidelines. Due to cogni-
tive/computational and physiological differences between robots and humans [7], robots
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need to be programmed with the ability to predict and comprehend the tasks/intentions of
human teammates.Humans acquire the ability to predict the behaviour of other humans over
time [8], but robots must be explicitly trained on how to do this. In addition, when confronted
with the volatility of real-world applications, robots cannot rely on a human teammate to stick
to the defined task [9], nor can they consistently predict how their human partner would act
when something goes wrong. The potential solution to this problem is to equip the robot with
explicit models of their human teammates. Ideally, these models should learn the generalized
features of human behavior without requiring individuals to act in a certain manner. To this
end, machine learning (ML) offers emerging techniques for constructing cognitive models and
behavioral blocks [10], providing a vital perspective for human–robot collaborative activities.
By modeling the human–robot team from a system perspective, it is possible to gain a better
understanding of how the team functions as a whole and identify potential improvements or
enhancements to the system.

The human–robot interaction (HRI) field has advanced, and the need for applica-
tions requiring humans and robots to form a team and collaborate to solve complicated
issues has increased [11,12]. Therefore, addressing the teaming configurations and ele-
ments and showing the path to incorporate them using advanced algorithms is necessary.
However, determining the optimal teaming configuration for HrT can be complicated,
particularly due to the unpredictable nature of HRI, as well as the diverse range of tasks
and environments that human–robot teams may encounter.

1.2. Trust in Human–Robot Teaming

Trust plays a vital part in collaborative efforts, particularly in the context of HrT. In
teams where tasks are related and mutually dependent, the efficacy relies primarily on the
trust between the human and robot team members. This mutual trust is a cornerstone of
teamwork and is important for the success of HrT [13].

A human’s trust in a robot involves a belief in the robot’s proficiency [14]; as demon-
strated by the robot’s capacity to understand and conform to human preferences and the
ability to make a valuable contribution to a common objective. In exploring the factors that
influence trust in HRI, Hancock et al. [15] highlighted that various robot characteristics and
performance-based factors are particularly crucial. Their research suggests that trust in HRI
is most significantly influenced by aspects related to the robot’s ability and performance.
Therefore, manipulating and improving these performance aspects can have a substantial
impact on the level of trust established between humans and robots.

In order for robots to establish trust and work effectively alongside human teammates,
we argue that gaining an understanding of human behavior would indeed enhance the
robot’s adaptability and behavior, which are key performance factors. This would involve
analyzing contextual patterns and predicting human task performance based on this
analysis. By doing so, robots can be better equipped to anticipate the needs and actions
of their human counterparts, leading to trust building and, ultimately, effective teaming.
The study by Hancock et al. [15] stated that higher trust is associated with higher reliability.
Therefore, the implication is that if a capacity for performance monitoring in a robot is
to be developed, it also needs to be highly reliable; otherwise, it could potentially have
a detrimental effect on the overall HRI trust dynamic. Hancock et al. included team
collaboration characteristics and tasking factors as relevant factors of the HRI trust dynamic.
However, further specification of the team- and task-related effects could not be provided
because of an insufficient number of empirically codable studies. To gain more insights,
additional research experiments are required in this field.

Overall, trust in HrT is a dynamic element that should facilitate smooth interactions,
effective task execution, and adaptive coordination between human and robot team mem-
bers. The dataset we used for this preliminary analysis did not contain data regarding trust
and performance from the perspective of the human operator, as it was collected solely for
providing action recognition capabilities. However, as stated in our study, it is considered a
stepping stone for future research.
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1.3. Translating Human–Human Teaming Characteristics into a Human–Robot Teaming Setting

Teamwork is a collection of each team member’s interlinked thoughts, behaviors,
and emotions required for the team to function [16]. Teammates offer emotional support;
individuals usually feel more assured when communicating with others who share a similar
experience. Moreover, humans enjoy the sense of belonging that comes with being a team
member, especially in a well-functioning team [17].

The main elements of teamwork include coordinating teammates’ tasks, anticipating
needs based on knowledge of assigned roles, adaptability, team orientation, backup behav-
iors, closed communication, and mutual performance monitoring. The aforementioned
teaming elements are extracted from the Big Five teamwork model, a theoretical foundation
for implementing team learning theory in HhT structures [18].

Despite the fact that many researchers have discussed teaming features in the con-
text of HhT, relatively few studies [9,19–25] have underlined their importance in HrT.
Incorporating HhT features into a HrT framework may increase the team’s efficacy and
efficiency. By applying these elements, the team members may be better able to understand
each other’s strengths and weaknesses, communicate more effectively, and work together
toward shared goals and objectives. Moreover, the concept may improve overall produc-
tivity and reduce the risk of errors or miscommunication. These teaming components are
seen as universally applicable to collaborative processes [18]. It is imperative to adapt
these elements to optimize the efficacy of HrT. To this end, we have reinterpreted these
HhT elements in the context of HrT and identified current methods that hold promise for
prospective implementation while also highlighting the distinct challenges associated with
these approaches:

Team leadership roles can be dynamically allocated to robots or humans depending
on the task. For instance, a human can lead a task requiring creativity and decision making,
and a robot with advanced data processing capabilities can lead a task requiring large data
analysis. In this regard, multi-agent systems [26] can be employed to assign roles. However,
the challenge lies in human safety, and humans may resist being led by a robot.

Team orientation is important to align the objectives of both human and robot team
members. The field of social robotics can be instrumental in this regard. Utilizing Natural
Language Processing (NLP) models and social signal processing can equip robots with
social intelligence [27]. However, the implementation of NLP models requires substantial
data and model training.

Backup behaviors involve team members supporting each other when required. In HrT,
robots can be programmed to support human team members in tasks that are hazardous or
difficult for humans. Scheduling algorithms [28] can be used to optimize backup behaviors
in HrT. Additionally, multi-agent systems [26] can be used to develop a backup behavior
framework. Developing algorithms that can assess the needs of human team members and
switch tasks accordingly requires detailed design and testing to ensure functional team
collaboration.

Adaptability is a key aspect that entails the ability of a team to adjust to environmental
or task-related transformations. To expedite adaptation among team members, shared
mental models are employed to modify task requirements. Advanced ML methods, such as
reinforcement learning [29] and online optimization algorithms [30], can enable robots to
adapt to environmental changes. However, the challenge lies in ensuring that the adaption
is timely, contextually appropriate, and aligns with the preferences of the human team
members.

Mutual performance monitoring involves understanding the performance of team
members to ensure that the team is working toward the goals. This requires a compre-
hensive understanding of each teammate’s actions or tasks. Sensors and real-time data
analytics can be employed to monitor teammates’ actions. Robots can be equipped to
interpret teammates’ actions by integrating cognitive abilities using ML algorithms [31].
The development of reliable algorithms demands a significant amount of training data and
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involves feature selection, model selection, and hyperparameter tuning to optimize the
performance of these algorithms.

However, the potential implementation of these teaming elements in HrT should be
investigated separately. This article considers the implementation of MPM as a key missing
ingredient in HrT structures.

1.4. The Need for Mutual Performance Monitoring in Human–Robot Teaming

Fundamental to the development of HrT is the question of how well robots can engage
in implicit collaboration, which is the process of synchronizing with team members’ actions
based on understanding what each teammate is most likely to do or is doing. It has
always been challenging for team researchers to specify cognitive skills or attributes that
enable teams to engage, adapt, and synchronize task-relevant information [32]. However,
researchers have discovered that MPM is a practical teaming component that contributes
to successful teaming [17]. MPM is the capacity to monitor the tasks of other teammates
while executing one’s own tasks [18]. It is an important aspect of teaming that can be
characterized in the context of HrT as the reciprocal understanding and monitoring of
team actions, progress, and outcomes. Here, we consider the innate human ability to
understand and interpret teammates’ actions and apply this concept to the team relations
between humans and robots. However, it is important to note that although robots may
lack the natural capabilities humans possess, they have the potential to acquire them
through artificial intelligence (AI) and programming. Through MPM, team members can
gain valuable insights into their intentions and task-related challenges, enabling effective
communication and shared decision making for successful task accomplishment. Although
humans possess the innate ability to interpret their teammates’ actions or intentions [11],
not all social skills may be necessary for robots. However, certain task-related cognitive
abilities can empower robots to function as effective team members in collaborative settings.
Further, teaming abilities involve robots’ responsiveness to adaptable team dynamics and
individual preferences. Robots should be equipped with the ability to adjust their behavior,
communication style, and task allocation to their human teammates’ preferences and
work styles [9]. In this regard, the modeling of MPM can be a step forward in achieving
adaptability, allowing for enhanced teamwork and collaboration.

To this end, this study proposes the implementation of action recognition as a pivotal
method for realizing MPM in human–robot team environments. Action recognition is a
field of ML/computer vision that involves the identification and classification of human
actions from video data. It has emerged as a sophisticated and promising approach
in contemporary research due to its potential applications in various domains, such as
surveillance and human–computer interaction [33]. In the literature, “human action” is
often translated as visual action [34], highlighting the significance of visual cues in this
field. However, action recognition goes beyond just visual aspects and encompasses
a broader range of modalities, such as depth information, pose estimation, and other
modalities, enabling a more comprehensive understanding of human actions in diverse
scenarios [35]. The process of action recognition involves several steps, including feature
extraction, representation learning, and classification. Integrating action recognition into
MPM provides a data-driven and objective framework for assessing teammates’ actions.
The system can understand their objectives and preferences by developing a computational
algorithm that translates human teammates’ actions into a trained model, enabling the
robot counterpart to effectively plan and execute subsequent tasks. However, selecting
an appropriate ML algorithm [33], developing an efficient feature extraction or learning
process, and optimizing model training and evaluation are the foremost considerations.
Moreover, it is imperative to consider additional factors, like computational cost and the
ability to process data in real time, to guarantee the system’s feasibility and efficacy [30].
This involves selecting algorithms and designing processes that balance computational
efficiency and recognition accuracy, thus facilitating real-time interactions in dynamic
environments without compromising performance. In particular, implementing a well-
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designed visual action recognition system is crucial for enabling a robot to accurately
comprehend its teammates’ actions. Thus, this paper seeks to address the following
research questions:

• RQ1: Can action recognition be used in human–robot teaming to pave the way for an
important element of human teamwork, i.e., MPM?

• RQ2: What types of sensor data and ML algorithms can be deployed for its practical
implementation?

This study adopts an ML paradigm to realize the conceptual framework and explore
its execution using an existing dataset (InHARD) [36] to address our research questions,
allowing us to carry out this study as a feasibility study. The organization of this paper is as
follows. Section 2 presents a comprehensive literature review. Section 3 discusses the con-
ceptual framework, the dataset adopted along with its experimental design context, and the
approach employed for the model implementation and configurations. Section 4 explains
the model results, discusses the limitations, and presents the findings obtained. Finally,
Section 5 concludes this paper by highlighting its contributions and future implications
and suggesting potential research studies in this direction.

2. Related Works

Previous studies have explored diverse facets of HrT and their significance in improv-
ing teaming performance and mitigating errors in collaborative tasks. The broader topics
of HrT discussed in the literature include trust, the shared mental model, task or role alloca-
tion, communication, and team coordination and adaptability. These elements of HrT play
an imperative role in promoting effective HrT. Yet, the introduction and implementation of
MPM remains an unexplored teaming component within HrT settings.

There is extensive literature on communication, coordination, and adaptability in
HrT [20,37,38]; core challenges, including communication modality and frequency, still
need to be resolved. For instance, a study [39] on explanation-based communication was
conducted to evaluate four communication conditions, and the experiments indicated
the need for more robust and efficient communication strategies for successful teaming.
Another component of effective teaming is encapsulated by trust, a multifaceted element in
collaborative work. The authors defined trust in the context of teamwork as the assured
dependence on a team member to accurately execute actions, even in uncertain and risky
circumstances, without the need for surveillance or control [40]. Numerous studies have
underscored the importance of trust in developing collaboration and guaranteeing the
effortless performance of collaborative tasks within HrT environments [8,23,41]. For in-
stance, the authors of [41] introduced the Trust Inference and Propagation (TIP) model,
concentrating on trust modeling in multi-human multi-robot teams. The model evaluates
both direct and indirect experiences with robots and theoretically proves that trust develops
through repeated interactions.

In human–robot team studies, researchers have sometimes used shared mental models
to measure situational awareness in human–robot teams [17,42,43]. One of these models
was presented in [43], where a capability-aware shared mental model (CASMM) was intro-
duced that uses tuples to break down tasks into sets of procedures related to complexities.
The model dynamically combines the task grouping ideas extended by humans and the
AI model via negotiation, fostering a better cohesive mental model among teammates.
Concurrently, in [44], the authors explored the importance of achieving a common, mean-
ingful, and timely understanding of the context in which humans and machines act and
interact. The study investigated how AI-related approaches of belief and reasoning based
on ontologies can enable knowledge sharing among all team members, both human and
machine, thereby attaining a high level of interoperability between heterogeneous entities.
However, upon critical analysis, these studies often assume that agents intrinsically possess
the ability to adopt shared mental models of task routines when collaborating in a team. In
practical scenarios, the assurance of a shared mental model may not always be guaranteed,
particularly in ad hoc teams [45], where agents might adhere to divergent patterns. Further-
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more, measuring situational awareness in human–robot teams poses distinct challenges.
The inherent constraint of robotic counterparts in expressing their beliefs and perceptions
to their human teammates adds another layer of complexity to this evaluative process.

Research Gap

Although extensive research has been conducted on different aspects of HrT, a signif-
icant gap exists in developing reliable HrT methodologies that can adapt to the diverse
and ever-changing nature of human–robot teams. Existing studies predominately focus on
optimizing task allocation [46], refining interaction mechanisms [4], or offering theoretical
perspectives [23]. However, current studies often disregard equipping robots with cognitive
abilities using data modeling techniques, disregarding the differences between human and
robot team members. There is a need for more comprehensive research that considers the
distinct perspectives of robot agents in HrT. Specifically, a step we consider important is
the capability of robotic agents to monitor and recognize tasks carried out by human team
members.

3. Materials and Methods

This study presents the framework for implementing MPM within the HrT paradigm.
Figure 1 outlines our methodological approach to studying MPM in human–robot teaming,
starting from the review of the original HhT framework to the final synthesis of data-driven
insights. This study begins with an integrated review of existing human–robot collaboration
frameworks and relevant literature on action recognition. This foundation facilitates the
process of identifying and evaluating public datasets and technologies relevant to our
research aims. The subsequent steps in Figure 1 explain our process of developing a
theoretical model, selecting appropriate ML algorithms, and analyzing data to derive
meaningful insights into the dynamics of MPM implementation within HrT.

The following section discusses the details of our methodology.

3.1. Conceptual Foundation

To implement action recognition within the context of MPM, we conceptualize a
scenario in which a human and a robot collaboratively work on a manufacturing task, such
as assembling a complex product. The assembly station has vision sensors, a robot, and a
human teammate. The robot is connected to a vision system that monitors human tasks
and predicts actions through a predictive model, as illustrated in Figure 2. The model used
in the task recognition system anticipates actions based on observed action sequences and
contextual information. As the task progresses, the task recognition algorithm continuously
analyzes the vision inputs to track human actions. The system identifies the actions,
recognizes the sequence of task steps being executed, and assesses the quality and progress
of each step. Moreover, if the system predicts that a human team member will require a
tool or assistance in the next step, it can prepare the necessary resources or communicate
the need to the robot, ensuring a smooth workflow. To validate this concept, we explore
the potential of visual recognition as a powerful tool for realizing MPM in practical HrT
scenarios.

The following sections discuss the data description and modeling of MPM, using
industrial datasets and deep learning methodologies.
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Step 1: Review exiting human robot collaboration
frameworks to identify key components and deficiencies

in human robot teaming

Step 2: Identification of areas of applications and
available dataset regarding existing technologies to

implement mutual performance monitoring

Step 3: Focus on action recognition capability for mutual
performance monitoring: Assess public dataset for

suitability within human robotic team

Step 4: Construct a theoretical model that integrates
action recognition into mutual performance monitoring,
grounded in literature findings and dataset potentials

Step 5: Selection of a possible ML approach for action
recognition considering the data and the area of

applications found in the literature

Step 6: Feasibility Study: Model training and testing

Step 7: Synthesize results to show the viability of action
recognition for enhancing mutual performance monitoring,
and report on potential applications and future research

directions study

Figure 1. Methodological framework for studying mutual performance monitoring in human–robot
teaming.

Sequence of Task

Visual Sensor Visual Recognition
Algorithm

Predicted Action Robot Behavioral
Control Module

Action
Command

Assistance

Meta-Action
Class n1

Meta-Action
Class n2

Action1
Actions

Action1
Actions

Action1
Action1

Action1
Actions

Actions
Actions

Actions
Actions

Actions
Actions

Actions
Actions

Meta-Action
Class n3

Meta-Action
Class nn

Sensor Data

Figure 2. Mutual performance monitoring in human–robot teaming with task/action recognition.
Visual sensors capture real-time human actions, facilitating data transfer to the computational
algorithm for human action recognition.
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3.2. Dataset Description and Experimental Design

The dataset used in this study is the “Industrial Human Action Recognition Dataset”
(InHARD) [36], curated specifically for human action recognition assembly tasks in indus-
trial environments involving human–robot collaborations. The dataset was selected for its
comprehensive multi-modal sensor data and diverse HRI scenarios, which are essential
for accurately modeling and analyzing complex HrT dynamics. The dataset’s extensive
annotations and metadata provide insights for developing an exact understanding and
predictive capacity in MPM.

In the InHARD dataset, participants are tasked with assembling a component by
following sets of instructions and using the UR10 robotic arm, screws, hooks, and tools
like a screwdriver. The data used in this study were collected using image-based cameras.
The dataset contains over 2 million frames and fourteen industrial action classes gathered
from 16 distinct individuals, providing more than 4800 diverse action samples captured
across 38 videos. To ensure comprehensive coverage of actions and address occlusion
challenges, the videos were captured from three different viewpoints: a top view, a left
view, and a right view. Each frame in the video is annotated with the action performed by
the subject. The data labeling is performed at the frame level, with each frame assigned
an action label. The assembly task consists primarily of seven operations, each requiring
approximately 15 actions. Throughout a complete assembly, the human performs between
100 and 180 actions, each taking between 0.5 and 27.0 s [36].

The number of data samples varies across the classes, with some having a higher
representation than others (Table 1). In order to address the issue of class imbalance caused
by fewer data samples in certain classes, such as the Take Subsystem, we employed the
temporal cropping data augmentation [47]. This technique randomly selects fixed-duration
segments from the video sequences, generating multiple crops for the respective class. For
the final implementation, we considered only 450 samples for all classes. To prepare the
dataset, we transformed it into a feature vector using one-hot encoding labels. Subsequently,
we divided the dataset into two arrays: one for training, which accounted for 80 percent
of the data, and another for model testing, which comprised the remaining 20 percent.
We used stratified sampling when selecting the test data to ensure that the training and
test sets had the same class label distributions. This partitioning enabled us to effectively
assess the performance of the trained model. For model evaluation, we used accuracy and
a confusion matrix [31,48] to understand the model’s performance and ability to correctly
classify instances.

Our experiments used a hardware setup comprising an Intel Core i9-9900X processor,
64 GB of RAM, and two NVIDIA Geforce RTX 2080TI graphic cards.

Table 1. Number of samples for each class.

Meta-Action Class Label No. of Samples

Assemble System 1378
Consult Sheets 132
No Action 500
Picking in Front 456
Picking Left 641
Put Down Component 385
Put Down Measuring Rod 74
Put Down Screwdriver 416
Put Down Subsystem 77
Take Component 485
Take Measuring Rod 76
Take Screwdriver 420
Take Subsystem 39
Turn Sheets 224
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3.3. Action Recognition Model Configurations Based on the InHARD Dataset

To implement MPM, we trained a deep learning model, specifically a 2D convolutional
neural network (2DCNN) [49], on the InHARD dataset. We used a 2DCNN, as it excels in
extracting spatial features from individual frames. This ability is important for understating
body postures and fine-grained motion details given the dynamic HrT environments, as
highlighted in the recent literature [33]. Moreover, 2DCNNs offer better computational
efficiency compared to 3DCNNs [50], which is particularly important for real-time or
resource-constrained applications.

The objective of our task was to recognize the action performed by a human based on
an input image. We specifically designed the 2DCNN with certain task-related concerns.
The model comprises two convolutional layers with 256 filters with a kernel size of 3 × 3, a
stride of 1, and zero padding, each followed by a pooling layer. The activation function
used in the network is the Rectified Liner Unit (ReLU) [51], promoting non-linearity and
enabling better feature extraction. The fully connected layers have 512 and 256 neurons,
which are designed to further process the features extracted by the convolutional layers.
The final layer of the network is a softmax output layer, with the number of neurons equal
to the number of action classes in the dataset. The softmax layer is connected to the last fully
connected layer and is responsible for generating the predicted action class probabilities.
During training, the Adam optimization algorithm was used with a learning rate of 0.001,
a batch size of 32, and a momentum of 0.9. The model was trained until convergence,
wherein the improvement in the validation loss was determined, and the training process
was stopped when the improvement fell below the threshold.

4. Results and Discussion

In our study, we focused on the implementation of MPM in HrT through the use of
action recognition. The primary aim of the study was to conceptualize and demonstrate how
MPM could be enabled in such HrT settings with robots equipped to effectively understand
and interpret human actions. To achieve this, we employed a 2DCNN to develop a human
action recognition model capable of accurately identifying actions during the assembly task.
The results from our experiments primarily centered around the classification capabilities
of the 2DCNN model.

The model’s performance was evaluated by generating accuracy and confusion metrics.
The metrics provided valuable insights into our action recognition model’s performance
and its ability to distinguish different actions during the assembly process. Using the
designated training and testing datasets, the model demonstrated an accuracy of ∼82% and
∼73% for the training and testing phases, respectively, as shown in Figure 3. In addition,
we observed variations in the performance across different action classes, as presented in
Table 2. The “Picking Left” action class exhibited the highest accuracy, with the model
achieving an accuracy of 95%. This high accuracy can be attributed to the distinct visual
cues and unique features associated with the “Picking Left” action. These cues included
specific hand movements, object-grasping techniques, and body positions, allowing the
model to accurately identify and classify this action. Conversely, the No Action, Turn
Sheets, and Put Down Measuring Rod action classes exhibited relatively lower accuracy rates.
This can be attributed to the inherent similarities between actions involving hand-object
interactions and object manipulations. The model became confused between similar actions
such as Turn Sheets and Consult Sheets. The challenges in accurately differentiating between
these actions resulted in misclassifications and lower precision rates. The confusion matrix
is presented in Figure 4, which compares the actual and predicted actions.
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Figure 3. Accuracy graph for human action recognition on the InHARD dataset.

Figure 4. The confusion matrix for human action recognition using the InHARD dataset shows the
classification results and is calculated by comparing the predicted action labels with the ground-truth
labels for a given dataset.
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Table 2. Accuracy results for each class.

Meta-Action Class Label Accuracy %

Assemble System ∼64
Consult Sheets ∼58
No Action ∼35
Picking in Front ∼52
Picking Left ∼95
Put Down Component ∼78
Put Down Measuring Rod ∼47
Put Down Screwdriver ∼68
Put Down Subsystem ∼90
Take Component ∼69
Take Measuring Rod ∼60
Take Screwdriver ∼65
Take Subsystem ∼88
Turn Sheets ∼32

Despite some confusion in certain action classes, the overall scores indicate that the model
learned to recognize and discern human action patterns within the testing data, enabling
the accurate identification of various actions in the assembly setting. Importantly, the model
also demonstrated its ability to generalize this knowledge and accurately interpret previously
unseen data. Figure 5 shows the system’s working outcomes, presenting the accuracy scores
for different action classes. The outcomes demonstrate the system’s proficiency in action
recognition, offering valuable insights for implementing MPM in HrT applications.

Take Screwdriver  0.8212

Turn Sheets  0.5633Consult Sheets  0.4282

Assemble System     0.7290

Picking in Front   0.7823

Picking Left  0.9513

Figure 5. System in operation: action recognition on InHARD test set.

While our study mainly focused on presenting classification results, it is important to
acknowledge the broader implications of these findings. Our research contributes more
than merely the attainment of classification accuracy. Instead, it serves as a key contribution
to redefining the dynamics of HrT. The article advocates for a broader perspective on HrT,
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urging future research to delve into the intricate components that define successful HhT and
apply these insights to the realm of HrT using advanced algorithms, as we presented in this
article. The approach represents a shift from viewing robots only as tools or independent
agents to seeing them as integral and interactive components within human–robot teams.

Findings and Limitations

This study has delineated the pipeline, conceptual framework, and model essential for
implementing MPM using action recognition in HrT settings. Our findings,derived from the
data used in this study, reveal promising avenues for enhancing team coordination and task
efficiency. The ML model, specifically designed for action recognition, suggests the prospect
of real-time behavioral adaptation, facilitating responsive teamwork in human–robot teams.
These results, while preliminary, indicate an increased level of trust and reliability in these
interactions, aligning with prior research, such as that of Hancock et al. [15].

However, a significant limitation lies in the fact that the integration and empirical
validation of the proposed approach remain unexplored. Furthermore, we have identified
several other challenges regarding model implementation, including the need for a large
amount of training data for deep learning models, the possibility of low accuracy for certain
actions, and the sensitivity of action recognition systems to environmental changes. We
have observed that the variations in accuracy are primarily due to the inherent limitations
within the data used in our study, particularly when dealing with actions that share similar
characteristics within the dataset. These similarities can sometimes lead to confusion in
accurate recognition for machine learning models. However, resolving this issue effectively
would require expanding our training datasets or integrating more advanced sensors,
which are both resource-intensive solutions. Furthermore, the reliance on an ML model for
action recognition, despite its innovative application, brings forth challenges in decoding
complex human behaviors and the variability inherent in real-world settings.

Potential solutions to these limitations could involve using transfer learning tech-
niques and domain adaptation [52], which lay the groundwork for future work. Transfer
learning involves using the knowledge learned by a pre-trained action recognition system
on one dataset as the starting point for training a new action recognition system on a
different dataset. It can allow the new system to benefit from the knowledge learned by the
pre-trained system, which can improve overall performance in the new environment or
situation. Additionally, it may be possible to improve the accuracy of the action recogni-
tion system for certain actions using domain adaptation techniques. Domain adaptation
involves modifying the training data or the system architecture to better suit the specific
actions or environment under consideration. The constraints in terms of data availability
and the accuracy of the captured information highlight the need for further research and
development to enhance data collection studies.

5. Conclusions and Future Directions

The achievement of effective HrT conditions in HRI remains challenging, marked
by various unresolved issues that parallel those found in human teamwork dynamics.
However, a step toward improving teamwork conditions is implementing capabilities
to enable MPM in HrT settings. Our paper demonstrates that MPM is a necessary step
in this direction and can be achieved using current unobtrusive sensor technologies and
the adoption of a suitable ML algorithm. In this regard, we trained an ML model for
human action recognition using a state-of-the-art deep learning algorithm on an existing
industrial-setting dataset. The results from the evaluation represent a substantial leap
forward, marking a promising contribution in this domain. This approach was specifically
introduced to facilitate performance monitoring in a robot teammate, allowing it to interpret
and understand the actions of its human counterparts for enhanced teaming effectiveness.
Additionally, we discussed the limitations inherent in our proposal.

Given the recent advancements in AI and the development of complex algorithms,
realizing fundamental teaming components is becoming increasingly feasible. Building
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on the outcomes of our study, we propose two sets of possible research avenues for future
investigations: one set for immediate follow-ups and another with longer-term theoretical
implications.

The immediate follow-up research avenues are described below:

• Proposal 1: Advanced ML techniques for developing visual recognition-based MPM—
The integration and implementation of advanced ML models in MPM represent several
unexplored areas. Specifically, we suggest exploring deep learning architectures,
representation learning [53], and evolutionary computation techniques for adapting
to environmental cues [54], and fusion techniques to overcome obstacles in MPM
action recognition such as context information, model performance, and data-related
issues. Deep learning architectures, adept at processing complex data, can accurately
interpret context, enhancing MPM’s effectiveness.

• Proposal 2: Empirical validation—While this study has laid the groundwork for in-
troducing the HhT element into HrT, conducting validation and evaluation studies
is essential. The imperative nature of undertaking validation and evaluation studies
cannot be overstated, as they are instrumental in generating empirical evidence con-
cerning the effectiveness and implications of incorporating HhT components within
real-world HrT settings.

• Proposal 3: Task-oriented action recognition for improving security in collaborative
applications—Action recognition can be regarded as a practical method to improve
security measures in HRC. It can function as a useful tool for detecting anomalies in
behavior or performance that might signify potential security problems. For example,
if a robot or human team member indicates activities or performance patterns that
differ from established norms, this could be an early sign of a security breach. Rep-
etition of such anomalies can be used as an indicator of a system being potentially
compromised. Such deviations, once detected by the action recognition system, would
prompt further investigation and appropriate response steps. This proactive strategy
for security risks within HRC can manage immediate risks and contribute to the
development of more resilient and secure collaborative systems.

The longer-term theoretical implications of our study that merit in-depth exploration are:

• Proposal 1: Further exploring big-five teaming elements in HrT—The intersection of
established big-five HhT characteristics with the evolving landscape of HrT invites
further empirical analysis. This study suggests exploring the potential alignment
between the key characteristics of HhT, such as mutual performance monitoring, team
orientation, backup behaviors, team leadership, and adaptability, and the distinc-
tive skills exhibited by robots. This exploration has the potential to generate novel
approaches for enhancing team performance.

• Proposal 2: Improving levels of safety and security in HrT—Considering the complex-
ity of HrT, especially with ML for performance monitoring, future research should
focus on enhancing safety and security levels. The example explored in this paper
regarding action recognition shows the potential to redefine safety proximity criteria,
and at the same time, provides an additional tool for identifying possible security
breaches. It introduces the potential of a more context-aware robotic intelligent system.
As stated by Schaefer et al. [55], incorporating context-driven AI is important for ad-
vancing future robotic capabilities, thereby promoting the development of situational
awareness, calibrating trust, and enhancing team performance in collaborative HrT.
Furthermore, the application of MPM based on human action recognition is likely to
be highly advantageous in safety-critical settings such as shared manufacturing cells.
By using human data, the system can foresee possible threats and take proactive steps
to prevent hazardous situations. Hence, the system can improve the performance,
safety, and efficiency of the production cell by accurately predicting human behaviors.
Therefore, the system can make more informed decisions about its actions and better
understand the context of the manufacturing process. However, this requires improv-
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ing the reliability and robustness of the AI algorithm underpinning these functions
beyond the values achieved by the confusion matrix discussed in this paper.

In conclusion, the motivation for this study is not only to investigate MPM in HrT but
also to pave the way for the formulation of novel ideas by utilizing current technological
possibilities to develop real teamwork capabilities in HrT.
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