. machines

Article

Dynamics Modeling and Redundant Force Optimization
of Modular Combination Parallel Manipulator

Aimin Jiang 12(J, Hasiaoqier Han "**, Chunyang Han !, Shuai He 1, Zhenbang Xu !

check for
updates

Citation: Jiang, A.; Han, H.; Han, C.;
He, S.; Xu, Z.; Wu, Q. Dynamics
Modeling and Redundant Force
Optimization of Modular
Combination Parallel Manipulator.
Machines 2023, 11, 247. https://
doi.org/10.3390/ machines11020247

Academic Editor: Zheng Chen

Received: 26 December 2022
Revised: 1 February 2023
Accepted: 5 February 2023
Published: 7 February 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Qingwen Wu !

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888,
Dong Nanhu Road, Changchun 130033, China

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,
Beijing 100049, China

Correspondence: aoqier@ciomp.ac.cn

Abstract: The limb-driving force mutation of the modular combination parallel manipulator (MCPM)
affects the alignment process of optical axis. In this paper, a novel optimization method based on
the force mutation penalty term is proposed to solve the problem of driving force mutation. The
kinematics and dynamics models of the manipulator are established using a modularization idea,
reducing the complexity of the modeling process, and verified using co-simulation. Moreover, particle
swarm optimization (PSO) is applied as an optimization tool. The effectiveness of the proposed
method is confirmed by comparing it with the minimize-the-maximum and Moore-Penrose (M-P)
methods, which are widely used to solve parallel manipulators with redundant drives.

Keywords: parallel manipulator; force optimization; module; dynamics; redundant drives; PSO

1. Introduction

The alignment of the optical axis of a small aperture space optical remote sensor in
space environment simulator is achieved with the Stewart parallel manipulator. With the
increase in the aperture, the requirements for the size of the moving platform and load
capacity of the Stewart parallel manipulator increase. The traditional six-point support
structure will lead to large deformation of the moving platform, severe stress concentration
at the support point, excessive driving force, and other problems. The load capacity of the
parallel manipulator can be increased without increasing the height and driving force by
splicing the platforms together.

Many scholars have researched kinematics and dynamics on the parallel manipula-
tor [1-4]. Most of the research on the MCPM focuses on the combination of the drive unit as
a module or the parallel manipulator as a module. Arrouk et al. [5] designed a 3-CRS paral-
lel kinematic machine (PRM) consisting of three modular kinematic chains. Tang et al. [6]
designed a new modular-based hybrid PRM using the joint as a module. Zhang et al. [7]
designed a generalized spherical parallel mechanism with partially decoupled characteris-
tics by combining position and orientation modules. Hao et al. [8] used identical spatial
modules to construct a large-range modular XYZ compliant parallel manipulator. Until
now, the research of parallel manipulators with redundant actuation focuses on adding
one or several redundant drives based on a particular configuration. Wu et al. [9] added
an RRR leg to the planar 2-RRR parallel mechanism. Xi et al. [10] added a redundant leg
to the three-degrees-of-freedom (DOF) tricept parallel mechanism. Yao et al. [11] added
actuation to the middle PRPU branch of the SUPS parallel platform. Zhao et al. [12] added
two PSS legs to the planar 6PSS parallel manipulator. However, there are few studies on
the Stewart platform as a modular, redundant unit.

The dynamics equation of parallel manipulator with redundant actuation is non-
homogeneous linear equations [13], with multiple solutions to the driving force. Xu et al. [14]
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used the Moore-Penrose (M-P) method to solve the driving force of redundant paral-
lel manipulators and discussed whether the calculation results contain internal forces.
Xie et al. [15] developed a novel 3DOF parallel mechanism driven by four legs and solved
the driving force distribution using the least squares norm method. Lee et al. [16] studied the
actuator power consumption of a 3-RRR fully planar parallel manipulator and proposed a
driving force optimization method to minimize the electrical energy consumed, finding that
26% of energy could be saved. Jiang et al. [17] designed a novel planar 2-DOF parallel kine-
matic machine with kinematic redundancy, and a method for redundant force optimization
is presented to improve the precision of the machine. Hino et al. [18] used minimize-the-
maximum actuator force as the objective function, using the linear matrix inequality method
to solve the actuator force. Wu et al. [19] used the minimum actuator torque range into
account and proposed a novel torque optimization method of a 3-DOF redundantly actuated
parallel manipulator for friction stir welding. The primary methods of redundant force
distribution are the M-P method [20-22], minimum norm method [23-26], minimum energy
consumption method [27-29], minimum structural deformation method [30,31], maximize
manipulator accuracy [32,33], and minimize-the-maximum driving force method [9,34]. The
driving force mutation of the modular combination parallel manipulator (MCPM) will affect
the alignment process of the optical axis. However, these methods solve the driving force
independently at each discrete point of the trajectory; the change in the driving force of the
adjacent discrete points is not considered.

In this paper, we proposed a novel optimization method based on the force mutation
penalty term to solve force mutation of the MCPM. Moreover, particle swarm optimiza-
tion (PSO) is applied as optimization tool. The proposed method is compared with the
minimize-the-maximum and M-P methods (i.e., least squares method) moving along the
same trajectory. The remainder of this paper is organized as follows. In the next section,
the structure and inverse kinematics of the MCPM is analyzed. Then, its dynamic model
is constructed in Section 3. In Section 4, the general solution of the driving force is de-
duced. Then, force mutation is minimized by optimizing the distribution of redundant
force. Section 5 gives two simulation examples of MCPM to verify the proposed method’s
effectiveness. Finally, the conclusions of this paper are provided.

2. Structure Description and Inverse Kinematics
2.1. Structure Description

A modular combination parallel manipulator (MCPM) is developed for the optical
axis alignment of a space optical remote sensor with an aperture over two meters in a
space environment simulator. As depicted in Figure 1, the modular combination parallel
manipulator (MCPM) comprises M x N 6-DOF parallel platforms, each module unit
consisting of a moving platform, base, and 6-UPU limbs. Each base is connected to the
entire base, and each moving platform is connected to the integrated moving platform.
The space optical remote sensor is installed above the integrated moving platform. A
rough adjustment device and MCPM are used to achieve rough and accurate optical axis
alignment in the space environment simulator. First, the space optical remote sensor opens
the imaging function and makes the target in the light pipe within the imaging range by
adjusting the rough adjusting device. Then, make the target in the middle of the image by
adjusting the MCPM.

2.2. Inverse Kinematics

This section uses a modularization idea to establish the MCPM kinematic model. The
modeling process of the modularization idea is as follows. Firstly, the global systems are
established on the MCPM level, and the coordinate systems for internal use are established
at the module unit level. Then, the kinematic analysis between MCPM and module unit is
carried out at the MCPM level. Finally, the kinematics analysis is carried out on the module
unit level.
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Figure 1. Schematic of (A) application scenario, (B) modular combination parallel manipulator
(MCPM), and (C) module unit.

Asillustrated in Figure 2A, an integrated moving coordinate system {P}{P — XpYpZp}
and an entire base coordinate system {O}{O — XYZ} are established in the MCPM. The
coordinate frame {P} is located at the center point P of the integrated moving platform.
The coordinate frame {O} is attached to the entire base at its center point O. As depicted

in Figure 2B, a module moving coordinate system {P;; } {Pij - Xpinpi Lp;; }, module base

coordinate system {O;; } {O,-]- — Xo, Yo, Zo; }, and six limbs coordinate system are estab-
lished in the module unit ij, which is located in row i and column j. The coordinate
frame {P;;} is located at the center point P;j of the moving platform. The coordinate
frame {Oij} is attached to the base at its center point O;;. Six limb coordinate systems

{Ag{) } {a(f‘) — Xa(k)Y #) Za(k) } are fixed to each limb and located at the center of the joint

v i %
ag() connecting the base and the limb. The Zu(k) axis points from ag() to bg() ; the Ya“‘) axis is
ij ij
parallel to the cross product of two unit vectors of the Zp, and Z () axes; the X ) axis is
ij ij

defined by the right hand. The frame {O} and {Oj;} are in parallel. The frame {P} and
{P;;} are also in parallel.
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A

Figure 2. Kinematics model of (A) MCPM and (B) module unit.

2.2.1. Kinematic Analysis between MCPM and Module Unit

Velocity transformation between the integrated moving platform and moving platform
of the module unit jj in frame {O} can be written as

op, = Tp,xp @

where Tpi]. = {E3X3—PP1-]' is a transformation matrix.

According to the transformation formula between different coordinate systems, mov-
ing platform’s velocity vp, can be transferred to the frame {O;;} as follows:

Oi' . Oi]'
j Up; =0 Rvpij 2)
where gij R is the rotation matrix of frame {O} relative to frame {Oij}.
Substituting Equation (1) into Equation (2) yields

O“ P .
1p; = p Jxp ®)

where ;'] = RTpij.

2.2.2. Module Unit Inverse Kinematics

As depicted in Figure 2B, the closed-loop vector equation for each limb of module unit
ij can be written as

0;; 1K) |, 0; k) _ o; 0ij ,p;; k
Udl(j) + ”Oijai(j) = ”OijPi]'-i-pl.j]R l]pijbz(j) @)

Oij o, . . . .
where Pij] R is the rotation matrix of frame {P;;} relative to frame {O;; }.
The velocity of joint bi(;c) is found by the time derivative of Equation (4).

o b o
B by 3
v 4 = B, T ']xPij (5)
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(k) ~
where Plz]] T = [E3X3—Oif P;; bl(;() is a transformation matrix.

The velocity of joint b'®) can be transferred to frame {Ag() }

ij
(k) a®
A ij O;;
if = RYi 6
vbl(]k) Oz] vhl(jk) ( )
A . . . (k)
where R is the rotation matrix of frame {O;; } relative to frame {A i }
ij
Substituting Equation (5) into (6) yields
(k) p®
A i o
"oy =y I @

i

pO 4B 0

ij _ ij
where P, J=0 sz” T.

ij
In frame {Ai(]k) }, the angular velocity of the kth limb can be written as

(k) 1 (k) ()

i = i s x i’y *) (8)

d b

aj; 1
. . . (k) (k) A® . .
where da(k) is the distance between joints aj and bi]- ,and i s = [0 0 1] is the unit

ij
vector of the kth limb in frame {Ag() .

Substituting Equation (7) into (8) yields
A ”1’]' O--'
Tw=p Jo xp, ©)

o0 LAl

iy i Y
where Py Jo =7 o S Pi]] .

)

]
In the kth limb, the velocity of the cylinder’s centroid and piston’s centroid can be

expressed as
ab (k) (k)

T ) = LA w0 x Yi's (10)
i
(k) ®) ) NS
A} A} Al Al
10 ) = (dag() —lz) i wx"s +da€{() i s (11)
ij ij ij
where /1 is the distance between joint ag-{) and the kth cylinder’s centroid, and I, is between
joint bl(]k) and the kth piston’s centroid.

Substituting Equations (7) and (8) into Equations (10) and (11) yields

A 0;:
ij z)agd) = Pi]j J IJxPl_]_ (]2)
ij
() PO
A 0;:
g) z)a(@) = P’,J] ] IJxPl_]_ (]3)
ij
where N
(k1) k 0 k)
aij _ __h Afj>SA§j)Sbij i
Byj () By 17
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aij A 9 A LA ij
= ] _— Y 1

py T AT S S\ e -

3. Inverse Dynamics

In this section, a modularization idea is used to establish the MCPM dynamical model.
The modeling process of the modularization idea is as follows. Firstly, analyze the applied
and inertia force of MCPM. Then, analyze the applied and inertia force of the module unit.
Finally, the dynamic model of the entire system is derived using the virtual work principle.

3.1. MCPM Applied and Inertia Force

Assume that the mass of load is m;, the mass of integrated moving platform is m,,
and the integrated moving platform is subjected to the external force F;; acting on point O;;
by module unit ij. The applied and inertia forces imposed on the load’s centroid P, and
integrated moving platform'’s centroid P can be expressed as Equations (14) and (15).

F. = =8 — =0z (14)
—Lwy, —wp x (Lwp)

F, = [ Mp8 — MpTp ] (15)
~Iywp — wp x (Iywy)

3.2. Module Unit Applied and Inertia Force

Assuming that module unit ij is subjected to the external force —F;; acting on point
Oj; by the integrated moving platform. In frame { O;; }, the applied and inertia force OiF P,
imposed on the center of moving platform can be expressed as Equation (16). In frame
{Ag{) }, the applied and inertia forces imposed on the kth cylinder’s centroid and piston’s
centroid can be expressed as Equations (17) and (18).

[ O;; O--.
My o Rg—mp, ~op.
OiFy, mos s (16)

=0ily Oy~ Ciwy, (OiiIPijOiiwp,,)
L ij ij ij

AP A®
M (k1) 9 Rg — M (k1) i v
A® a0 af afft) a7
S S , 17
(k1)
aj ® ® ® ® ®
) 0 = w <Aii L™ w)
uij aij
- . k -
m (k2 2 Rg—m AE/')U
oy T e a
ij F = . 18
ay” AD . AB 4® AD 4
I (2) b w— Y wX i T (2) 7w
a;; a;
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3.3. Dynamics Equation
The dynamics equation of the entire system is established based on the principle of
virtual work.

(6,%2)"F, + (6x,) " 305 F,
,xz) F,+ (6xp) Fp + 121 121 (5xpl./.) Fij+---
j=li=

T T
N M6 [ [aH A® A® A®
‘21 'E Y ( ij éxb(k)> i T+ ( ij (Sxa(kl)) i P eyt oo (19)
j=1i= ij

1]k=1 ij 1]

AW TA(k) 0;: TO,, T
10X gy | F +( Uéxpij) Fp, + (6xp) " (—Fjj)
i

11

=0,

(k
where H5x, means a virtual displacement of point e in frame {H}, and A" 1 is the driving

force of the kth limb in frame {Ag() }

Based on the previous kinematics analysis, the virtual displacement can be expressed
as follows

Oif&xpij = Tijjoxy
A’(J{()besc) = Tl(]) ’15xp
Al(]k) 5xa§;d) _ gd)oﬁéxpij (20)
A % 1y = 19005,
%j
where Tl], T( ), l(] 1 and T(]kz) are virtual displacement transformation matrices.

Assummg that the load is fixed on the integrated moving platform, it’s virtual dis-
placement equation can be easily obtained using the inverse kinematics.

0x; = TLox) (21)

where T is the transformation matrix of dx, relative to dox;.
Substituting Equations (20) and (21) into Equation (19) yields

(6xp) {(TL)"F, + By + -
NMo T (k) l> 1)\ Ta® (2)\Ta®
popoat) E((T ) () o+ (07) Vo 22)

Jy=0
Because Equation (22) applies to any dx,, it can be rewritten as

(TL)TFZ +Fy A+
ZZ (T; ) Lg((T(k)) i T4 (T(k1)> A F l]m (T,(]kZ))TA’/)F I]k2> -
o4 UPPiJ =0

HMZ

=

After variable substitution, Equation (23) can be simplified as
J.E: + Fa+JT+ 1 F1 + ,F2 =0, (24)

where J, = (T;)",

FH = Pp Zl Zl (T])TOUFP ’
j=1i=

z
=



Machines 2023, 11, 247

8 of 19

1 6) (1 k 6 T X T ) T

1 6 1 (k) 6
T = [A§1>T~~-A§1)TA§1>T---Aij T---AJ<\/I)NT},
A 46 AD AP A4(6)
Fy="F gy "0F ) 2 F )70 F q) - “MNE ) |,
L 11 11 12 ij MN_
_ [ ek ) 1T (k) _ (o \T(pk0\T
S = []11 IR AW LSRR R Vi N Where]ij = (Ty) T; ’
(1) (©) (1) A® ©)
Fy= |AF - AF A0 F - 50 F ) AUNF () |,
a1 a1 12 aij MmN |

B [ TS g9 N] where ) = ()T (102
where J,, ], J1, and J, are transformation matrices, which could convert F;, 7, F;, and F;
to frame {O} and translate point of force action to point P at the same time, F; and F,
are vectors of resultant of applied and inertia wrenches exerted at cylinder’s and piston’s
centroid of all limbs. T is a vector of the driving force of all limbs. Fy is a vector of the
resultant of applied and inertia wrenches exerted at the integrated moving platform’s
centroid and moving platform’s centroid of all module units.

4. Redundant Driving Force Optimization
4.1. General Solution of Driving Force

For a given load and trajectory, the dynamics equation of the MCPM is anon-homogeneous
linear equation. There are multiple solutions to the limb-driving force. For Equation (24), based
on the solution method of the non-homogeneous linear equations, the solution of limb-driving
forces can be written as

F=CX+G, (25)

where C; is the M-P solution which is given in Appendix A, C;= N(J) is the null space
matrix of J, X = [¥1 =X+ Xex(mxn-1)] i8 1 X (6 X (M x N — 1)) constant matrix,
and x; € (—oo,400). By taking different x; values, we can obtain an infinite number
of solutions.

4.2. Driving Force Optimization Method

The driving force mutation of MCPM affects optical axis alignment. However, the
traditional optimization method does not consider the change in the driving force of the
adjacent discrete points, causing force mutation during MCPM movement. Consequently,
given that the driving force in actual work is a bounded variable, too large a driving force
causes the driver element to fail—a smaller driving force is more optimal. Therefore, this
paper designs an improved minimize-the-maximum driving force optimization method.
The improved optimization method’s objective function is to minimize the maximum
value of all driving forces, with the change in the driving force multiplied by the penalty
coefficient added as the penalty term. The objective optimization function of the improved
optimization method can be expressed as

flx) = mxin mtax(\Ft| +wx |Fk—F_1|)|, (26)

where w is the penalty coefficient and w > 0, w x |F; — F;,_1| is the penalty term, |F| is
the absolute value of F at time ¢ in a given trajectory, |F; — F;_1| is the absolute value of F
change between time t and t — 1 in the given trajectory.

The optimization results can be changed by adjusting the penalty coefficient. When
the penalty coefficient w = 0, it equals the minimize-the-maximum optimization. The
optimization result is minimal driving force but with significant force mutation. When
the penalty coefficient is infinitely great, it equals the minimum-force-mutation optimiza-
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tion. The optimization result is the minimum-force mutation but a sizeable driving force.
Therefore, the reduction in force mutation is at the cost of increasing the driving force.

Minimize-the-maximum optimization is a special optimization problem. It uses the
maximum value of each group to form a new group and selects the minimum value
from the new group. Most previous studies on the minimize-the-maximum optimization
problem are conducted under the condition of one redundant driving force. Moreover,
the problem can be solved by geometric methods. However, the geometric method is no
longer suitable when there are too many redundant driving forces. Therefore, this paper
proposes applying PSO as the optimization tool under the condition of multiple redundant
driving forces. PSO can quickly converge to the global optimal solution. For a given load
and trajectory, the optimization process is depicted in Figure 3.

----------------- .

Initialize
t=0, F;_1=0

[ J

1|

—{  er ]
U

[ ]

Initialize N particle
velocities and positions

Calculate the fitness
value of each particle

Update optimization
functionf (x)

----- Ry

Calculate individual and
global optimal solutions

Particle velocity and position
evolution

— o o —

Calculate the optimal
driving force Fy

Y @ -

End

Figure 3. Flowchart of particle swarm optimization (PSO).

In the process of optical axis adjustment, the appropriate penalty coefficient value
must be selected to reduce the torque of the driving element under the premise of meeting
the requirements of the force mutation index. For a given load and trajectory, the procedure
for determining the value of penalty coefficient can be described as follows:

Step 1. Calculate the maximum force mutation value K that the MCPM can tolerate.

Step 2. Set the initial value of w = 0 and the search step length Aw= 1.

Step 3. For the given w, use the method shown in Figure 3 to optimize the driving
force. After optimization, the maximum driving force H and maximum force mutation U
are obtained.

Step 4. If U > K, set w = w + Aw and go to step 3; else, output the w value and H
value and end the program.

An appropriate penalty coefficient can be obtained after calculation by this algorithm.
At this time, the maximum driving force value is minimized while the force mutation
requirement is met.

5. Case Study

In order to verify the effectiveness of the dynamic model and improved optimization
method presented in this research, two examples of MCPM (M =1, N=2and M =2, N =2)
are given in this section.
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5.1. Inverse Kinematics and Dynamics Simulation

This section uses an example of MCPM (M =1, N = 2) to prove the correctness of the
dynamics modeling. Firstly, using ADAMS software to establish the dynamics model. Then,
the distribution results of limb driving force in ADAMS software are obtained through the
co-simulation of MATLAB and ADAMS. Finally, the simulation results obtained by two
different software are the same, which verifies the correctness of the dynamic modeling.

5.1.1. ADAMS Model

ADAMS software is used to build a dynamics model of the MCPM (M =1, N = 2).
The dynamics model is depicted in Figure 4. The geometrical and inertia parameters of
the module unit are presented in Table 1. The geometrical and inertia parameters of the
MCPM are presented in Table 2.

Figure 4. Dynamics model in ADAMS.

Table 1. Module unit parameters.

Parameters Value Parameters Value

Oijq (D (—0.1488, —0.1416, 0.1) m %ijp® (—0.1530, 0.04837, 0.6651) m
%, 1.(.2> (—0.04818, —0.1997, 0.1) m Oijp ,@ (0.3463, —0.1567, 0.6651) m
%ijq( (0.1970, —0.05810, 0.1) m Oifbié) (0.1184, —0.1084, 0.6651) m
Oifaié) (0.1961, 0.05810, 0.1) m Oi/b,(f“ (0.1184, 0.1084, 0.6651) m
Offai@ (—0.04818,0.1997, 0.1) m Oifbf@ (0.03463, 0.1567, 0.6651) m
Oijag@ (—0.1488, 0.1416, 0.1) m Oz'jbf]?) (—0.1530, 0.04837, 0.6651) m
Ojj pii (0,0, 0.7288) m My 30.68 kg

I 0.1495 m m 3.089 kg

I 0.1221 m m (i) 1.825kg

lli]-
oy 0404 0 0 A® 0.0413 0 0
P 0 0404 0 | kgm? T gy 0 0.0414 0 | kgm?
0 0 0.779 ij 0 0 0.002

Ak 0.0147 0 0
0 0 0.001

0 0.0150 0 :| kg-m?
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Table 2. MCPM parameters.

Parameters Value Parameters Value

My 1000 kg mp 103.5 kg

P, (0,0,0.9776) m P (0,0,0.7776) m

126 0 0
§ (0.0, ~10N/kg T 0 608 0 |kgm?
0 0 731

‘P(Fl)jpzj 051 m Piti-1)Pij 051 m

I 434 0 0

z 0 365 0 |kgm?
0 0 583

5.1.2. Co-Simulation

MATLAB and ADAMS software are used for co-simulation. the simulation flow chart
is depicted in Figure 5. In ADAMS, the limb of module unit 11 is driven by force, and
the limb of module unit 12 is driven by motion. The penalty coefficient w is set to 500,
and the given trajectory of the integrated moving platform is defined by Equation (27),
where xp, yp, and z, are the translational motion in frame {0} with time, Px,r Pyps Pz, ATE
the Tait-Bryan angles extrinsic rotations motion in frame {O} with time. The rotation is
defined as follows: a rotation of ¢, about the fixed X axis followed by a rotation of ¢,
about the fixed Y axis and a rotation of ¢, about the fixed Z axis. The given position and
attitude are illustrated in Figure 6A,C. The position and attitude results of the ADAMS
simulation output are illustrated in Figure 6B,D. Based on Figure 6, the given trajectory
and ADAMS outputs trajectory are almost identical. This finding confirms that the inverse
kinematics is correct. The MATLAB and ADAMS simulation results of the limb-driving
force of the module unit 12 are depicted in Figure 7. Based on Figure 7, the output driving
force of each limb is identical from different software, verifying correct inverse dynamics.

xp = 0.010 x sin(0.1 x t) (m)

yp = 0.007 x sin(0.1 x t) (m)

zp = 0.003 x sin(0.1 x £) +0.778  (m) € (0,2071) )
¢x, = 0.10 x sin(0.1 x ) (rad) At =0.1(s)

¢y, = 0.07 x sin(0.1 x t) (rad)

¢z, = 0.03 x sin(0.1 x t) (rad)

5.2. Redundant-Force-Optimization Method Simulation

This section uses the M-P, minimize-the-maximum, and improved optimization meth-
ods to calculate the driving force of MCPM (M =1, N =2 and M =2, N = 2) in the given
trajectory to confirm the superiority of the improved optimization method. The penalty
coefficients of the improved optimization method are set as 0, 30, 50, 100, 200, 300, 500,
and 800 for calculation. When w = 0, the improved optimization method is equal to the
minimize-the-maximum method.

The driving force calculation results of the three types of optimization methods are
depicted in Figures 8 and 9 (each optimization result curve takes the maximum of the
absolute value of all driving forces at a discrete point-in-time of the trajectory as source
data). Based on Figures 8 and 9, for each discrete point of the trajectory, the maximum
driving force increases as the penalty coefficient increases, although they are larger than
the minimize-the-maximum method but much smaller than the M-P method.
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Figure 6. Comparison of trajectories: (A) given position trajectory, (B) ADAMS outputs position
trajectory, (C) given attitude trajectory, and (D) ADAMS outputs attitude trajectory.
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Figure 7. Simulation results of limb-driving force of the module unit 12 from MATLAB and ADAMS
software:(A) 1 th limb, (B) 2 th limb, (C) 3 th limb, (D) 4 th limb, (E) 5 th limb and (F) 6 th limb.
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Figure 8. Driving force optimization results (M = 1, N = 2) using different optimization methods:
(A) overall view and (B) partial enlarged view.
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Figure 9. Driving force optimization results of MCPM(M = 2, N = 2) using different optimization
methods: (A) overall view and (B) partial enlarged view.

The force mutations of the three types of optimization methods are depicted in
Figure 10 (each force mutation curve takes the maximum of the absolute value of all
force mutation at a discrete point-in-time of the trajectory as source data). As depicted
in Figures 10A and 11A, for each discrete point of the trajectory, the force mutation value
decreases with the increase in the penalty coefficient. Moreover, they are all much smaller
than the minimize-the-maximum method. As depicted in Figures 10B and 11B, the force
mutation is better than the M-P method when the penalty coefficient is greater than a

specific value.

A

/\Force (N)

Time (s)

Time (s)

Figure 10. Driving force mutation of MCPM (M = 1, N = 2) using different optimization methods:
(A) overall 3D view and (B) comparison of the M-P method and improved method in 2D view.

/Force (N)

Time (s)

Figure 11. Driving force mutation of MCPM (M = 2, N = 2) using different optimization methods:
(A) overall 3D view and (B) comparison of the M-P method and improved method in 2D view.
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The maximum driving forces and force mutations of the three types of optimization
methods are depicted in Figures 12 and 13 (each column takes the maximum of the absolute
value of the driving force or force mutation of the entire trajectory as source data). Based
on Figures 12 and 13, for the entire trajectory, compared with the minimize-the-maximum
driving force method, the maximum force value increases slightly after introducing the
penalty term, but the force mutation decreases significantly. Moreover, by choosing appro-
priate penalty coefficients (w = 300, 500, and 800), the maximum driving force and force
mutation are both smaller than the M-P method. In particular, the maximum driving force
decreased significantly.
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Figure 12. The entire trajectory’s simulation results of MCPM (M = 1, N = 2) using different optimiza-
tion methods: (A) maximum driving force and (B) maximum driving force mutation.
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Figure 13. The entire trajectory’s simulation results of MCPM(M = 2, N = 2) using different optimiza-
tion methods: (A) maximum driving force and (B) maximum driving force mutation.

6. Conclusions

This paper investigates the driving force of the limb optimization method of the
MCPM by taking force mutation into account. A novel optimization method based on the
force mutation penalty term is proposed to solve the problem of force mutation. The PSO
has been considered the optimization tool under multiple redundant driving forces. The
performance of the proposed method is simulated with a series of w values. Compared
with the minimize-the-maximum driving force method, the maximum force value increases
slightly after introducing the penalty term, but the force mutation decreases significantly.
Compared with the widely used M-P method, the proposed method can reduce both
the maximum driving force and force mutation. Especially, the maximum driving force
decreased significantly. The simulation results verify the effectiveness of the proposed
optimization method.

However, the difficulty of MCPM motion control lies in the cooperative movement of
each module unit, which belongs to the traditional closed-chain system control problem.
With the module as the redundant driving unit, the control system with the proposed
method will be more complex, which could be the future research direction.
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Appendix A

al(;() = center of the joint connecting the base and the k th limb;

bg{) = center of the joint connecting the moving platform and the kth limb;
v, = velocity of integrated moving platform in frame {O};

v, = acceleration of integrated moving platform in frame {O};

v, = load’s centroid acceleration in frame {O};

wy = angular velocity of integrated moving platform in frame {O};

a}p = angular acceleration of integrated moving platform in frame {O};

Xp = [Z)p } generalized velocity of integrated moving platform frame {O};

p
vp, = moving platform velocity of the module unit ij in frame {0};

0ij vy, = moving platform velocity of the module unit ij in frame {O;; };

Oij w, =wp angular velocity of moving platform of module unit ij in frame {O;; };
l6) ’ Oijvp..
i Xy, = O[jw;f moving platform generalized velocity in frame { O;; };

i
PP;; = skew symmetric matrix of vector PPjj;

3 k
Pl]pijbzgj )

10ipij, 10455,

= position vector in frame {Pl-j };

(k) OiiPl-]-bgc), 0ij dg() = position vector in frame {O;; };
Oij Pi]-bl(]k) = skew symmetric matrix of vector Oij Pz-jbgc);
0;i _ . . . (k) . .
v 0 = velocity of joint b;;” in frame {O;;};
(k) !
4o © = velocity of joint bg() in frame {Ag() },'
b
i
A® . . AP
ii § = skew symmetric matrix of vector "'/ s;

d () = derivative of d ();
a;; @ij
g = vector of gravity;
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F, = resultant of applied and inertia wrenches exerted at the load’s centroid;

F, =resultant of applied and inertia wrenches exerted at integrated moving platform’s centroid;
I, = inertia matrix of load relative to its center in frame {O};

Ip = inertia matrix of integrated moving platform relative to its center in frame {O};
O"fFP = resultant of applied and inertia wrenches exerted at the center of moving

i
platform of module unit 7j in frame {Oij} ;
(k)
i F @ = resultant of applied and inertia wrenches exerted at the kth cylinder’s
ﬂ’]
centroid of module unit ij in frame {AE;() },’
(k)
Ai'F () = resultant of applied and inertia wrenches exerted at the kth piston’s centroid
a..
if
of module unit ij in frame {Af}c) ;
Mpijs M k1), M (i2) = MAsSS of moving platform, cylinder, and piston of module unit ij;
i ij
A% Ab . . . .
P’ / Uﬂ(m i vﬂ 6 = centroid acceleration of moving platform in frame {O;;},
ij ij

cylinder in frame {Agc) }, and piston in frame {AE}C) } ;

Oy,

o)

Al(fk ) w = the angular acceleration of the kth limb in frame {Ag() } ;
0jj IPz‘j = inertia matrix of moving platform relative to its center in frame {O;; };
AP AP N . . . . . 1
i Ia w Ia @ = inertia matrix of cylinder and piston relative to its centroid in
ij ij
frame {Ag{) } ;
Ox; = virtual displacement of the load in frame {O};

dx, = virtual displacement of the integrated moving platform in frame {O};

0jj dxp, = virtual displacement of moving platform of module unit i in frame {0;};

(k)
AT = driving force of kth limb in frame {Ag() } ;

(k)
Al 5x () = virtual displacement of kth limb in frame {Ag() } ;
bij
AP . . . . (k)
i 6x (q) = virtual displacement of kth cylinder in frame {A ij } ;
a..
Y
ij
E3x3, O3x3 and O34 =3 x 3 identity matrix, 3 X 6 zero matrix and 3 x 6 zero matrix;

Ag{ ) ox = virtual displacement of kth piston in frame A(k) ;
) P P ’

1

P.,
gl
T; = pJ virtual displacement transformation matrix of dx, relative
O3x3  Esxs
p®)
0;; (k) J ] . . . . 0 .
to i 5.76'131.]. ; T i = P;; virtual displacement transformation matrix of lféxpij relative
O3x6
(k)
to Aij ox (k)l
bij
[ a0
o |9 . r
Tl(‘j =1 virtual displacement transformation matrix of "f(Sxpi]. relative to ™ dx );
aji ajj
o T f
[ o0
) ®
k2) Pij . . . . Oi' . Ai' .
= ® virtual displacement transformation matrix of ¥ dxp, relative to " un@,
o T ”
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00 G 00 O]T = —J*(J,F; + Fy + J; F1 + J,F)—the M-P solution, where
J* is the M-P inverse matrix of J.
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