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Abstract: The Industrial Revolution brought major technological progress and the growth of man-
ufacturing, which resulted in significant changes in energy use. However, it also brought about
new environmental issues such as increased energy needs, unstable electricity costs, and worsened
greenhouse gas effects. Nowadays, it is crucial to analyze energy use to stay competitive. Manu-
facturers, highly dependent on electricity, can save energy and enhance efficiency by improving
production methods. This article presents the findings of a research study conducted on a Lithuanian
manufacturing company, aiming to investigate its electricity consumption over a 15-month period
from 2022.01 to 2023.03—detailed data about the monthly consumption of the six most powerful
machines and their active and standby hours are presented. The total electricity consumption of those
matched 173.62 MWh. Employing the Decision Support Method for Dynamic Production Planning
(DSM DPP), which was previously developed and refined, the study examines the potential for time
savings and, subsequently, energy savings, through process reorganization. A detailed three-month
production orders observation period demonstrates tangible time savings while using the proposed
DSM DPP—time savings of approximately 5% can be achieved. Compared to that, production might
achieve a 20% productivity increase with advanced technology implementation, so 5% is a great result
for an easily adaptable method. Based on this, changes in energy consumption and CO2 emissions
due to electricity consumption are calculated and presented knowing that the company uses energy
from the grid. Adaptation of the replanning method resulted in a reduction of electricity use by
175 kWh and a reduction of CO2 consumption by 27 kgCO2. With proper production planning,
energy and CO2 consumption can be decreased, which is a high priority in today’s world.

Keywords: energy consumption; CO2 emissions; production planning; decision support method

1. Introduction

The Industrial Revolution has had profound implications for energy consumption
and economic progress. Europe has witnessed remarkable changes in energy consumption
and its environmental implications over the past few decades. It has seen significant
growth in energy consumption, with a 40% increase from 1990 to 2020. Nonetheless, the
resultant environmental challenges, such as increased energy demand and the amplification
of the greenhouse effect, necessitate a comprehensive analysis of energy consumption in
manufacturing companies. Thus, this topic gained significant attention in recent times [1].
The European Union has set ambitious targets to further enhance sustainability, including
a goal of achieving a net-zero greenhouse gas emissions economy by 2050 [2]. These efforts
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reflect Europe’s commitment to transitioning towards a greener, more sustainable energy
system. Based on this, it is clear that finding an easily accessible everyday way to reduce
energy consumption in manufacturing companies could help as well [3].

The production processes encounter challenges in terms of planning and adhering to
the established plan on a daily basis. These difficulties often lead to disruptions, energy
wastage, time inefficiencies, and resource mismanagement. While high-tech companies
specializing in repetitive mass production and employing modern production lines readily
embrace Industry 4.0 technologies to optimize their operations [4,5], it is important to note
that a significant portion of the economy comprises small and medium-sized enterprises
(SMEs). These SMEs adopt a successful business model and play a crucial role in the
market due to several factors. These factors include their ability to exhibit versatility in
their production capabilities, maintain close customer relationships, and swiftly respond
to evolving market demands and individual customer requests [6,7]. Thus, the following
studies present a method concentrated specifically on SMEs where production dynamics
are unavoidable. This method organizes production in the most efficient possible way and
so, as a result, electricity and CO2 consumption are lowered.

This study focuses on a Lithuanian manufacturing company, examining its electricity
consumption and investigating the potential for efficiency improvement through process
reorganization. The analyzed business is classified as a medium-sized company and most
existing businesses belong to this type [8]—SMEs. Specifically for this group, a novel
decision support method was created and presented in previous research. The main goal
of it is to replan production immediately when that is needed and give the response
without waiting for the opinion from an expert. This method does not change or optimize
the time or operation itself but changes the sequence of production based on the most
suitable scenario, which would lead to the highest profits and minimal time consumption.
This method could also be presented as a virtual production manager role [9,10]. Using
production time in a more efficient way led to better utilization of machinery and, as a
result, less waste of energy while decreasing the number of standby hours. This research
presents an investigation of electricity use, during a period of 15 months from January of
2022 until March of 2023. The production reconfiguration plan was made by using data
from 3 months—12 December 2022 to 24 March 2023. Using the created Decision Support
Method for Dynamic Production Planning (DSM DPP) allows the company to achieve time
savings and this results in energy savings and CO2 emissions reduction, as defined below.

During the investigation, the company was connected to the Lithuanian electricity
grid, which provides higher CO2 emission levels due to its carbon intensity, compared
to fully renewable energy. Renewable energy plays a significant role in the context of
Industry 4.0. The researched company plans to produce and use its own solar power
energy from autumn of 2023. This decision is mostly aimed at the potential for cost
savings. Additionally, renewable energy sources produce little to no greenhouse gas
emissions, making them an environmentally friendly choice [11]. By adopting renewable
energy in their operations, SMEs can reduce their carbon footprint and contribute to
mitigating climate change, aligning with sustainability goals and improving their overall
environmental performance. The Lithuanian electricity grid mix at the moment is combined
from several different sources: coal (2.7%), natural gas (27.7%), hydro (0.5%), biofuels and
waste (25.6%), oil (41%), wind and solar (2%), etc. [12]. In 2009, Lithuania eliminated
nuclear power by switching to other previously mentioned sources. Figure 1 presents the
total energy supply (TES) by source in Lithuania between 1990 and 2021 [12].

This article aims to present possible energy savings and their associated CO2 emissions
while replanning production processes with the created method. The existing situation and
optimized situation provide differences in energy and CO2 consumption results. However,
transferring to fully renewable sources of energy would be additional future research that
would follow calculations of a full green energy model.
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The article is presented in five sections. Section 1 is the introduction; Section 2 covers
the literature review to present the novelty of the study; Section 3 presents the general
methodology for the DSM DPP, energy, and CO2 calculations; Section 4 shows the required
data for investigation and case study; Section 5 provides the main results and discussion;
Section 6 delivers the conclusions.

2. Literature Review

This section focuses on the DSM DPP compared with existing solutions. Advantages
are exposed and thus key points of this method’s novelty are presented—fast implementa-
tion, focus on employees, and group segmentation of products.

The adoption of enterprise planning systems is accelerating, but compared to large
companies, SMEs have a wide range of variables, which makes the implementation of
such systems difficult. Deployments usually take 3–9 months [13], but the aim of each
company is to achieve its objectives as quickly as possible. The implementation process of
the DSM DPP is straightforward, requiring only the most important data, thus making the
process efficient.

In such production, the variety of products is high and the segmentation of products is
essential. The production of a new product requires lead times, and without this, planning is
impossible. Therefore, our product will provide times even for unknown products, because
the user will simply assign the intended category according to the group technology. The
principle of group technology has long been known and its usefulness has been proven [14],
but it is rarely used in conjunction with scheduling in the same systems.

At the moment, the transition from Industry 4.0 to Industry 5.0 has become more
common. As Industry 4.0 focuses on integrating automation, data exchange, and smart
systems into production processes, Industry 5.0 extends its principles by focusing on coop-
eration between people and machines and the integration of human skills with advanced
technologies. By combining the skills of people and machines, Industry 5.0 aims to create
flexible and customized production processes. Supporting the well-being of employees
becomes a priority, for which it is essential in manufacturing to know the competencies
of employees, so that the right task is assigned, which not only generates the most value
because it is performed by the most suitable candidate but also creates less tension when
an employee is not confident in his or her knowledge [15].

3. Methodology

This section presents the general methodology for the whole research and is divided
into three subsections: a description of the Decision Support Method for Dynamic Produc-
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tion Planning (DSM DPP), a mathematical model for energy savings, and CO2 emission
reduction calculations.

3.1. DSM DPP

The primary objective of the mentioned DSM DPP (Decision Support Method for
Dynamic Production Planning) is to dynamically adjust the production sequence in quasi-
real time. This methodology is specifically designed for SMEs that do not engage in mass
production or use innovative production planning strategies. However, such enterprises
commonly operate in a rapidly changing environment, where the production of niche
or custom-made orders is prevalent [16]. Additionally, these companies often rely on a
workforce that places emphasis on employee-centric practices, further adding complexity
to the planning process [17]. The most frequently encountered production issues and
disruptions in this context include machinery failures, material shortages, quality issues,
the introduction of new products, and employee absence [9]. The DSM DPP addresses all of
these areas and offers prompt solutions, which can range from straightforward replanning
to providing decision support information. Production is basically working in the same
circle with external disturbances as mentioned. This is presented in Figure 2.
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Figure 2. Production circle.

The parts in Figure 2 that are marked in red are solved with the created method.
Consequently, the overall production time is reduced, as the DSM DPP now handles
commonly occurring interruptions. The ability to obtain calculated and evaluated solutions
within seconds enables companies to proceed with minimal disruptions. Extensive testing
of this method in various production companies has demonstrated its adaptability and
versatility. By employing this approach, it was observed that the same production time
yielded higher production output [10]. In other words, standby time is minimized and
converted into active production time. This study aims to emphasize the importance
of saving production time and utilizing it to reduce electricity consumption and CO2
emissions, which are described in the following subsections of this section.

The DSM DPP works continuously during the whole production process. The main
data that are needed should be provided using different easily implemented I4.0 solutions—
sensors, Internet of Things (IoT), PID controllers, etc. Multiple data arrays are needed
to facilitate the implementation of the proposed method. The successful utilization of
this method necessitates consensus on multiple factors and the acquisition of diverse
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data inputs. Essential information includes employee skill sets, machine parameters, task
priority rankings, and the hourly costs associated with both machinery and employees.
By leveraging these data inputs, the method can autonomously make informed decisions
and dynamically adjust production processes in response to interruptions. The primary
objective of this method is to reduce reliance on human decision-making and enhance
operational efficiency. The DSM DPP covers a wide range of disruptions that typically
require expert judgment. By minimizing human intervention, the DSM DPP ensures a more
streamlined and efficient decision-making process, thereby reducing the potential for errors
and delays. It employs data-driven insights to independently evaluate and respond to
production stops, offering timely and optimal solutions. The aim is to maximize production
efficiency and minimize disruptions by relying on algorithmic analysis rather than relying
solely on human expertise.

3.2. Electricity Consumption

Electricity consumption (E) quantifies the electricity demanded by the total number
of machines in the company during the period under study, normally considering two
operating modes: active and standby, as Equation (1) reflects:

E =
∫

j
∑
m

i=2

∑
i=1

Pim·tim (1)

where Pim represents the active power consumption at each operating mode (i), and for each
machine (m), whereas tim corresponds to the sampling period. Thus, each operating mode
(i) corresponds to {i = 1 (active mode); i = 2 (standby mode)}. Finally, index j represents the
period under study.

Electricity savings (Es) after implementing the proposed DSM DPP can be quantified
with Equation (2):

Es = E0 − EDSM DPP (2)

where E0 and EDSM DPP are the consumed electricity in a base scenario and after applying
the DSM DPP, respectively.

For future analysis of solar photovoltaic (PV) integration in the company, different
factors should be considered:

Energy Output

The energy generated in output (Eout) by a solar PV system is defined in Equation (3):

Eout = A·r·H·PR (3)

where A is the total area of the panel, r represents the relationship between the electrical
power of the solar panel and its corresponding area, H is the average solar radiation per
year on tilted panels, and PR is the performance ratio (later defined).

The final yield factor (YF) relates to the total AC energy produced by the solar PV
system for a specific period (EAC) with the installed solar PV system rated output power
(PRated, PV), as follows:

YF =
EAC

PRated, PV
(4)

The reference yield factor (YR) shows the relationship between the total solar insolation
in the plane (Htot) with the reference irradiance (Gref) of 1 kW/m2:

YR =
Htot

GRe f
(5)
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The performance ratio (PR) is defined as the ratio between the final yield to the
reference yield.

PR =
YF
YR

(6)

Solar PV systems include different losses, which are detailed in Table 1:

Table 1. Solar PV system losses.

Description Abbreviation

Loss due to irradiance level Lirr
Loss due to temperature LTª
Module quality loss LQuality
Array mismatch loss LMismatch loss
Ohmic wiring loss LOhm
Inverter (DC to AC) conversion loss LInverter DC-AC

3.3. CO2 Emissions Reduction

According to the type of electricity system that supplies the company in question,
CO2 emissions due to this use will vary. Namely, the emissivity of the generation system
(ggs) will determine its sustainability, since it depends on the percentage that each energy
resource represents out of the total, as Equation (7) shows. In it, we can observe how systems
that account for a high share of renewable technologies will match lower emissivity values.

ggs = ∑
k

Ek
E
·gk (7)

where k is the index for the technologies involved in electricity generation, i.e., solar
PV, wind, hydropower, coal, and gas, and gk is the emissivity for each energy resource.
Moreover, the weight of each energy technology in the total system depends on the energy
that they provide (Ek) with respect to the total (E).

By coupling this emissivity with the total electricity consumed, CO2 emissions for this
use can be obtained.

Furthermore, a reduction in CO2 emissions (rCO2) implies a comparison of two
scenarios in which either the emissivity changes (incorporation of more renewable share in
the electricity mix, inclusion of solar PV for self-consumption, change to an off-grid system,
etc.) or the energy consumption, or even both. Equation (8) reflects this:

rCO2 = E0·g0 − EDSM DPP·gDSM DPP (8)

4. Case Study: Medium-Sized Lithuanian Metal Processing Company

The research employs a case study approach, selecting a specific Lithuanian manufac-
turing company as the subject of investigation. This examined company has a workforce of
64 employees, classifying it as a medium-sized establishment. Specializing in the produc-
tion of furniture components, such as metal tube legs, brackets, and frames for shelves and
tables, the company offers a diverse range of over 500 active product article numbers to
meet the specific requirements of its customers. In addition to accepting small-scale and
individual sample orders, the company provides metal processing services (Table 2). Due
to the variable nature of its production, characterized by daily fluctuations, the company
places high importance on flexibility, rapid responsiveness, and adaptability. Presently,
the company’s equipment is maintained by its employees, with no robotic or automated
assembly line in place. At the moment there are no specific plans to implement advanced
equipment in production.

For a duration of fifteen months, specifically from January 2022 to April 2023, the
company provided data on the energy usage of the whole company. Table 3 presents the
electricity consumption by month.
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Table 2. Company details.

Description Quantity

Employees (total) 64

Employees (administration) 11

Employees (production) 53

Active individual article numbers 524

Products

Carbon steel furniture legs
Metal frames

Aluminum legs
Wooden legs

Custom products (shelves, adjustable furniture
elements, etc.)

Services

CNC turning
Welding

Woodturning
CNC milling

Powder coating
Bending

Table 3. Current electricity usage by month.

Year Month Electricity (kWh)

2022 January 20,824
2022 February 15,367
2022 March 20,849
2022 April 17,193
2022 May 20,071
2022 June 16,200
2022 July 10,097
2022 August 17,114
2022 September 16,750
2022 October 13,884
2022 November 18,343
2022 December 14,179
2023 January 17,866
2023 February 13,424
2023 March 15,869

The investigation was conducted by the company, which operated in two shifts, each
consisting of 8 working hours. It was accepted that an average of 5% of the total electricity
consumption was allocated for administrative purposes. The administration consisted of
8 employees, each working 8 h per day. Additionally, it was accepted that 25% of the total
electricity consumption could be attributed to low-power production processes, such as
lighting, the usage of aerial devices, alarms, cameras, and other similar equipment. The
main machinery was listed. These numbers were taken by assuming the quantities of used
devices. The company offers services including CNC milling, CNC turning, welding, and
powder coating finishing, as indicated in Figure 3, which presents the base assortment.
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A total of six key machinery units were found to be responsible for consuming the
majority of the electrical energy resources:

• automatic tube cutting machine (M1);
• CNC turning machine (M2);
• painting booth (M3);
• welding machines (four identical pieces) (M4);
• wood turning machine (M5);
• CNC milling machine (M6).

It was imperative to ascertain the power consumption of each machinery unit during
both active periods and standby time. A detailed breakdown of this information can be
found in Table 4. Consequently, the amount of electricity consumed was disaggregated
based on the machinery’s utilization within each month. Specifically, the machines were
either actively operating or in standby mode during working hours.

Table 4. Power of machinery.

Machinery Code Active Power (kW) Standby Power (kW)

M1 4 1.5
M2 7.5 3
M3 15 4
M4 6 1.5
M5 5 1.5
M6 7.5 3

As described, the company is connected to the grid. Lithuania is connected to the
wider European electricity grid through several interconnections. The NordBalt submarine
HVDC (high-voltage direct current) cable connects Lithuania with Sweden, while the
LitPol Link interconnection connects Lithuania with Poland [18]. These interconnections
allow for the import and export of electricity, enhancing energy security and enabling
the integration of renewable energy sources. Lithuania has been actively transitioning its
energy sector to reduce dependence on fossil fuels and increase the share of renewable
energy [19,20]. The country has a diverse mix of energy sources, including natural gas, oil,
coal, and renewable energy, as presented in Figure 1. The latest statistics from 2022 show
the average emissions of Lithuania were 154 g CO2eq/kWh. A total of 78% of energy was
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produced from renewable sources, with the main source of energy being wind (36.1%) [21].
Figure 4 presents this specific data from 2022 in more detail. These data will be helpful in
calculations of the fourth section, where the main results are presented.
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5. Results and Discussion

There are two scenarios: the base scenario, in which we have collected data from
the company as a fact and the DSM DPP is not applied, and the “DSM DPP scenario”,
in which it has been applied and savings of energy are calculated. The DSM DPP was
implemented to assess the potential for time savings and subsequent energy savings
resulting from process rearrangement. The research incorporates a three-month observation
period to evaluate the effectiveness of the proposed “DSM DPP scenario”. Throughout this
designated timeframe, all completed production orders were taken into consideration. The
aforementioned research spanned from 12 December 2022 to 24 March 2023, encompassing
a total of 72 working days conducted in two shifts. A grand total of 491 production orders
were executed, and Figure 5 depicts a selected portion of the collected data. The historical
production order data were provided by the company and subsequently extracted and
organized to obtain the required information for testing with DSM DPP. The presented
information is the base scenario data.
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It is seen from Figure 3 that the quantity of orders varies for even one piece. Such
fluctuations in production volume result in varying energy consumption patterns on
a monthly basis, as well as differential electricity usage for individual machines. The
specifics regarding the number of working days in each investigated month, along with the
corresponding total working hours, are presented in Table 5.

Table 5. Investigated period by working days and hours.

Year Month Working Days Working Hours (of 2 Shifts)

2022 January 21 336
2022 February 19 304
2022 March 22 352
2022 April 20 320
2022 May 22 352
2022 June 21 336
2022 July 12 192
2022 August 20 320
2022 September 20 320
2022 October 17 272
2022 November 20 320
2022 December 15 240
2023 January 22 352
2023 February 19 304
2023 March 21 336

In light of the aforementioned information, Figures 6–11 are derived to delineate the
temporal aspects of electricity consumption for each machine. These chart representations
provide insight into the duration during which each machine operated in both active and
standby modes. The figures are divided for each mentioned machine and the blue color
presents active hours in each month of observation. Active hours are when the machinery
is fully working. The orange color is a representation of standby hours, which are when
machinery is not working at full power.
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lined in Table 2, the requisite data for subsequent energy consumption for the base sce-
nario can be obtained, as Figures 12–17 show. The total electricity consumption due to the 
six machines for the period 2022.01 to 2023.03 was 173.62 MWh. From them, M3 accounted 
for the highest total electricity consumption (37.7%), while M5 was the lowest (5.5%). On 
the other side, 92% of the whole demand corresponded to active electricity consumption 
and the other 8% to standby electricity consumption. In this regard, M3 stands out from 
the others with a standby consumption of 30.8%, and M4 was the one with the lowest 
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This part of the results presented the base scenario and its data from the company.
By coupling this information with the power specifications of each machine, as out-

lined in Table 2, the requisite data for subsequent energy consumption for the base scenario
can be obtained, as Figures 12–17 show. The total electricity consumption due to the six
machines for the period 2022.01 to 2023.03 was 173.62 MWh. From them, M3 accounted for
the highest total electricity consumption (37.7%), while M5 was the lowest (5.5%). On the
other side, 92% of the whole demand corresponded to active electricity consumption and
the other 8% to standby electricity consumption. In this regard, M3 stands out from the
others with a standby consumption of 30.8%, and M4 was the one with the lowest standby
consumption (4.3%).



Machines 2023, 11, 939 14 of 21

Figure 12. M1 machine, active and standby electricity consumption, period of 2022.01–2023.03
(base scenario).

Figure 13. M2 machine, active and standby electricity consumption, period of 2022.01–2023.03
(base scenario).
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Preliminary findings indicate that the implementation of the DSM DPP enables notable
time savings in the manufacturing processes of the selected Lithuanian company. These
time savings, achieved through optimized process reorganization, offer the potential for
corresponding energy savings. The observed three-month period demonstrates promising
outcomes, suggesting that the proposed approach has the potential to improve energy effi-
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ciency in manufacturing operations. As mentioned earlier, the total period of examination
was 72 working days. After the DSM DPO adaptation, all of these orders were filled in
68 days, giving an average of 5% time savings. This is shown in Figure 18.
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This means that standby time, which in total was 1432 h, was reduced by 64 h, which 
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Figure 18. Sequence of orders after DSM DPP adaptation.

As presented, total savings during this observed period was 4 working days which
can be converted to 64 working hours based on the fact that production was working in
two shifts of 8 h. As the time of operations has not been changed, these hours are only
saved out of standby time. Production operations stay the same since this method does not
influence the process itself. It only optimizes the sequence of processes and divides them
into several groups.

The observation was made between the middle of December to almost the end of
March. Thus, the overall time of active and standby hours of machines M1–M6 are shown
from data for half of December 2022 and January, February, and March 2023. This is given
in Figure 19.
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This means that standby time, which in total was 1432 h, was reduced by 64 h, which
is 4.5%. The reduced time displacement is presented in Figure 20.
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The reduction of standby hours for the three-month period under study resulted in
a decrease in electricity consumption, as Figures 21 and 22 represent. Namely, the total
electricity consumption was reduced by 175 kWh after applying the DSM DPP. In this
regard, the highest electricity reduction corresponded to M2, with a decrease of 86.7 kWh.
This situation matched two circumstances: this machine has the highest standby hours
decrease after the application of the DSM DPP (Figure 21), and it has a relatively high
standby power consumption (Table 3).
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(DSM DPP scenario).

Furthermore, the company under study is connected to the Lithuanian electricity grid,
with an emissivity of 154 gCO2/kWh [21]. Moreover, the company does not currently have
any self-consumption renewable system. Thus, these above-mentioned electricity savings
lead to a decrease in the CO2 emissions of the company due to electricity consumption.
Specifically, the CO2 emission reduction due to electricity consumption of the six machines
after applying our method corresponded to 27 kgCO2, compared to the base scenario. M3
accounts for the highest emissions value (40%), while M5 is the lowest (1%), matching the
energy consumption rates (Figure 23).
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The results highlight the significance of process reorganization as a means to enhance
energy efficiency in manufacturing companies. By optimizing production processes, com-
panies can achieve time savings, thereby reducing electricity consumption and minimizing
their environmental impact.
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The application of the DSM DPP method in the case study demonstrates its potential
as a decision support tool for dynamic production planning, facilitating energy savings
in manufacturing operations. The manufacturing industry relies heavily on electricity
for powering machinery, equipment, and assembly lines. Industries such as automotive,
electronics, textiles, and food processing require significant electricity consumption. The
presented method can be easily adapted to different types of manufacturing industries.

6. Conclusions

By employing the DSM DPP, manufacturing companies can enhance their competi-
tiveness while simultaneously reducing their ecological footprint. The investigated case
presented time savings of 5% (from 72 to 68 working days after the implementation of the
DSM DPP). In total, 491 production orders were examined, and information about each of
these orders was collected from the metal processing company.

Energy savings of 175 kWh were achieved after applying the proposed method, with
a reduction of 27 kgCO2 due to electricity consumption. Although these results show the
importance of process planning with the DSM DPP, the authors consider that further and
stronger environmental measurements should be studied for energy sustainability in the
company. Specifically, future research will focus on renewable energy systems design for
the company, considering grid-connected and off-grid options.

These findings contribute to the broader discourse on energy consumption in the manufac-
turing sector and inform strategies for achieving sustainable and resource-efficient operations.
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