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Abstract: Robotic applications, such as educational programs, are well-known. Nonetheless, there
are challenges to be implemented in other settings, e.g., mine detection, agriculture support, and
tasks for industry 4.0. The main challenge consists of robotic operations supported by autonomous
decision using sensed-based features extraction. A prototype of a robot assembled using mechanical
parts of a LEGO MINDSTORMS Robotic Kit EV3 and a Raspberry Pi controlled through servo
algorithms of 2D and 2D1/2 vision approaches was implemented to tackle this challenge. This
design is supported by simulations based on image, position, and a hybrid scheme for visual servo
controllers. Practical implementation is operated using navigation guided by running up image-based
visual servo control algorithms embedded in a Raspberry Pi that uses a control criterion based on
error evolution to compute the difference between a target and sensed image. Images are collected by
a camera installed on a mobile robotic platform manually and automatically operated and controlled
using the Raspberry Pi. An Android application to watch the images by video streaming is shown
here, using a smartphone and a video related to the implemented robot’s operation. This kind of robot
might be used to complete field reactive tasks in the settings mentioned above, since the detection
and control approaches allow self-contained guidance.

Keywords: visual servo control; Raspberry Pi; robotics; Lego Mindstorms

1. Introduction

Robots are one of the most promising devices to be potentially used in industry, agri-
culture [1,2], medicine [3], education [4,5] and some other fields. These can be programmed,
configured, and optimized to perform tasks with high accuracy and great flexibility due
to their kinematical degrees of freedom and versatility of adapting tools such as sensors,
cameras, and other periphery devices. For instance, robots reach up to places inaccessible
to humans, perceiving their surroundings, and collecting information to make decisions by
themselves through decision support systems based on artificial intelligence techniques
to adapt their movements depending on the requirements. Robots can perceive their sur-
roundings by using several types of sensors, such as cameras, which allows the robot to
have human-like perception.
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Different configurations of integrated robots applying mobile or fixed cameras or
sensors are reported in literature [3,6,7]. These are well-known as visual servoing, which is
used to obtain the necessary data of the surroundings from a camera through images locally
or remotely collected, by using various kinds of controllers such as task function [8–10],
predictive control [11,12], rational systems and LMIs (Linear Matrix Inequalities) [13],
applying Kalman filters [6], etc. The main goal of visual servo control is to allow the robotic
system operation under surrounding changes, detected through the images recorded by a
camera to perform tasks according to the decision of a controller. Usually, controllers can
be carried out in two ways: the first uses a central station to process images and compute
and transmit the controller’s decision to the robot; and the second, the robot performs all
tasks. For the last one, the robot’s devices should have an adequate processing capability
to process the image and run up as quickly as possible the control algorithms.

Applications use image processing, robotics, and control theory jointly to command
the motion of a robot depending on the visual information extracted from the images
captured by one or several cameras. Currently, there are many problems of great interest
to the scientific community such as different image features extraction of more complex
geometries, enhancement of velocity of algorithms, convergence problem in control, and
others [14].

Regarding the state of the art, robotic and visual control converges in recent reported
topics are related to omnidirectional platforms designed to cooperative robotic systems [15]
to make a task. As an example, elements like Raspberry Pi with an integrated camera
for image processing and future extraction [16], both operating in the same programing
environment were used as mechanism of a manipulative robot. Moreover, an eye-in-hand
manipulative robot using optimal controller allows to minimize the force and torque in the
joint engines of the robotic systems to assess the performance of the controller [17].

Following the state of the art in robotic systems and its relationship with controllers,
in this research work a novel robotic system integrated with technologies with different
operating systems is presented, such as the LEGO Educational Kit and the Raspberry
Pi to assess visual control algorithms. In addition, an Android application is added for
human-machine interaction that allows to visualize the robot’s perspective, thus allowing
manual or automatic control of the robot for safe operation in case of being executed in a
hostile environment.

This work shows the design of robotic systems either using IBVSs (Image-Based Visual
Servo) (see a previous work reported by some authors in [18], PBVSs (Position-Based Visual
Servo), or hybrid HBVS (Hybrid-Based Visual Servo) scheme (image and position-based).
A camera mounted on the robot can roll over its axis minimizing the non-holonomy of
the robotic system [19]. Algorithms are implemented by running up embedded servo-
algorithms in open-source platforms. In this case, a Single Board Computer (SBC) known
as Raspberry Pi is used. This paper shows a robot assembled as a three degree of freedom
(3 DOF) structure using LEGO™ Mindstorms robotic kit, adding a platform to hold a
camera. Two of the 3 DOF were used for the platform movement in the XY plane, and the
third-degree to enable the platform’s rotation. This proposed robot was implemented as
an IBVS and assisted with an Android smartphone for remote operation. One of the main
challenges reported in the literature consists of using Mindstorms in other applications
beyond educative programs since there are no limitations and impediments [4,20]. These
can be jointly configured with other operative systems like Raspbian, Linux, and mobile
Android to support open-source codes and other sensors [21,22]. This work is a proposal
to explore this challenge focused on algorithms for feature extraction using IBVS, PBVS,
and hybrid schemes implemented with an open-source operative system, as the first step
of prototypes design to be used in broader applications in real environments.

This paper is organized into five sections. In the second section, a kinematic model of
the 3 DOF’s robot, and the image representation using matrix formulation, followed by the
equations to design controllers based on the IBVS, PBVS algorithms, and hybrid approach
are presented. The third section is related to the experimental setup of assembling the robot,
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the communication system between the Raspberry Pi, the Mindstorms control and power
station Lego EV3 brick, and the mobile interface designed in an Android smartphone. In
the fourth section, the simulation results of the IBVS and PBVS algorithms and a hybrid
scheme are presented, applied to the proposed 3 DOF robotic system in terms of the image
and position error evolution and the robot’s expected poses. Finally, the article shows
the results of the implementation using the servo control algorithm IBVS embedded on
the Raspberry Pi to recognize a target image remotely monitored by a video streaming
application running up in the interface of the Android smartphone.

2. Kinematical Degrees of Freedom Model, and Controller’s Design

In this section, the robotic system is kinematically modeled using position and rotation
equations, relating them to the images by using a matrix formulation. These equations are
used to design controllers based on application of IBSV, PBVS algorithms, and a hybrid
(HBVS) scheme.

2.1. Kinematic Model

This robot can be modeled using a Hilare-type approach implemented with one motor
that controls each robot side as shown in Figure 1. This robot kind has reliable performance,
low rotation radius, and is easily controllable and simple to assemble [20]. Furthermore, it
has three degrees of freedom (3 DOF), two of them make up the XY plane (two degrees
of freedom), where the pair (x,y) is the robot’s position in global coordinates used as a
reference for the linear displacement assuming linear speed. The other coordinate is related
with the z-axis, assigned to any rotation θ around itself.
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Using these coordinates, the robot kinematic can be depicted by Equations (1) and (2):
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Equation (1) is a rotation matrix that models linear speed, and robot rotation concern-
ing coordinates axes, and Equation (2) models the angular speed of the robot’s wheels,
so both equations can configure a real application. In Equation (1),

.
x and

.
y are the linear

speeds of the robot related to x and y coordinates, and
.
θ is the angular speed related to

the rotation movement around z. The term
.
θpl is the orientation related to the camera

movements mounted on top of a rotary platform, so this is the third degree of freedom.
The relationship between outputs and angular speeds (ωright, ωle f t, and ωpl) of the robot’s
wheels are given by Equation (2) [10,20,21]. These are the real inputs of the robotic system
modeled for the application implemented here where r is the wheels’ radius, L, distance
between wheels, ωright, right wheel angular speed, and ωle f t, left wheel angular speed.

On the other hand, a mobile robot model can be described in different reference frames.
These frames can be the world frame reference or the actuator frame reference. In this pro-
posed robot, the actuator or element that gives a surrounding perception is a camera. Then,
to pass from the world’s frame to the image’s frame, it is necessary to transform all frames
that pass through the world’s frame, mobile’s frame, and then to the platform’s frame, until
the camera’s frame that uses coordinates transformations. This kind of transformation is
obtained through the following expressions shown in Equations (3) and (4) [10,15]:
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where xc is the x component of the translational vector to pass from platform frame reference
to camera frame reference; xp, the x component of the translational vector to pass from
robot frame reference to platform frame reference; yc, the y component of the translational
vector to pass from platform frame reference to camera frame reference; and yp, is the y
component of the translational vector to pass from robot frame reference to platform frame
reference. Vxc , Vyc , and Vzc are the linear speeds expressed in the camera’s frame, and Ωxc ,
Ωyc , and Ωz are the angular speeds expressed in the camera’s frame.

In this case, a control signal should be applied to change the angular speed of the
wheels, then it is necessary to use Equation (2) instead of (1) for the coordinate’s transfor-
mation, to obtain an expression for the angular speed of the robot in the camera frame
reference [10,22]:
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To model the image in the camera, the next subsection will show the equations for the
image representation in this frame of reference.

2.2. IBVS Interaction Matrix

Until now, an expression has been obtained that represents a change in the world’s
frame into the camera’s frame as shown in Equation (4), nonetheless, it is necessary
to find an expression that represents the changes in the camera’s frame into the image
(object) frame.

The object image representations are often modeled by the pinhole lens approach as
shown in Figure 2. With this approach, the lens is considered an ideal pinhole. The pinhole
is located at the lens focal center, and placed behind the image plane to simplify the model.
Light passes through this pinhole intersecting the image plane. Thus, P is a point in the
world with coordinates x,y,z; and p denotes the projection of P onto the image plane with
coordinates (u,v,λ).
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Here, the Jacobian Image Li(s), also called interaction matrix, is used to represent the
relative changes in the image into the camera reference frame. Assuming that the image
geometry can be modeled using perspective projection and the camera lens is a pinhole
type, the following expression can be used [10,20,21]:

Li(s) =

 −
λ

zc
0

u
zc

0 − λ

zc

v
zc

uv
λ

λ2 + v2

λ
v

v
λ2 + v2

λ
−uv

λ
−u

 (5)

where λ is the focal lens distance, and the pair (u,v) are the pixel location. s is a set of visual
features extracted from the object.

2.3. PBVS Interaction Matrix

PBVS is aimed to regulate the error between current camera pose and goal pose with

respect to the objective. Pose is defined as
[

X(t)T

UθT

]
, where X(t) ε R3x1 is the translational
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distance expressed in world frame reference and Uθ ε R3x1 is the rotation angle around the
axis defined by the unitary vector U, where U represents the orientation vector where the
robot is rotating. The interaction matrix is given by [23–25]:

Lp(s) =
[
−I3 [X(t)]x
03x3 LUθ

]
(6)

where [X(t)]x is the skew matrix of X(t) and Lθu is given by:

LUθ = I3 −
θ

2
[U]x +

(
1− sincθ

sinc2 θ
2

)
[U]2x (7)

The kinematic screw describes the changes of the kinematic chain concerning time,
also known as Jacobian robot. At this point, it is possible to represent how the image
changes depending on the robot movements in the world frame. The following subsection
uses the kinematic screw and the interaction matrix to impose an error performance.

2.4. IBVS Servocontrollers

The Image–Based Visual Servo Control (IBVS) scheme uses a set of points that represent
visual features of the objective obtained by the camera (real image). The image features (m)
are often measured in pixel units and represent a set of image points in image coordinates.
The objective image (s∗) can be static or dynamic. In this research work, it is assumed to be
fixed to the world’s frame.

The control scheme is obtained from an error function, and it is computed from the
real image and the objective. Thus, the basic equation for an IBVS control scheme is:

ei(t) = C(s(t)− s∗(t)) (8)

where C is the combination matrix, s(t), a set of visual points in the image plane, and
s∗(t), the visual goal feature points. To ensure the convergence of e(t) to zero, a decreasing
behavior on the error is imposed:

.
ei(t) = −βei(t) (9)

where, β is a positive gain scalar (β > 0) representing the time constant of the error conver-
gence. Then, by deriving Equation (8) and equalizing with (9) the relationship between
β and the error ei(t) is obtained:

.
s(t) = −βei(t) (10)

As s(t) represents the visual features, we have an expression to represent changes
in the image frame into other frameworks, thus, the chain rule over (10) is allowed to
apply as [21]:

.
s(t) =

∂s(t)
∂r

∂r(t)
∂p

.
p (11)

where r is the robot frame and
.
p :

[
v ω ωpl

]T
is the control signal. ∂s(t)

∂r represents the
image changes into the first robot frame, or the interaction matrix L(s) described in the last
subsection; and ∂r(t)

∂p represents the robot changes regarding a known input variable or the
Jacobian robot Jr(p).

Finally, Equation (11) can be rewritten in terms of interaction matrix, well-known as
L(s) or Jacobian, and Jacobian robot Jr(p) as shown:

.
s(t) = L(s)Jr(p)

.
p (12)
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Based on the equality from (10) and (8) the control law is obtained as:

− βei(t) = L(s)Jr(p)
.
p (13)

.
p = −βei(t)(L(s)Jr(p))+ (14)

where (L(s)Jr(p))+ is the pseudo-inverse of L(s)Jr(p).
To ensure stability in the sense of Lyapunov, it is proposed as a candidate, the Lya-

punov function or quadratic function of the error:

V(ei) =
1
2
‖ei(t)‖2 (15)

Since the proposed Lyapunov function depends on the quadratic norm of the error,
then it can be demonstrated that ∀e(t), V(ei) ≥ 0 so, the function is positively defined.
Now, it is necessary that

.
V(ei) ≤ 0, then by deriving Equation (15) and replacing on (12)

the following expression can be obtained:

.
V(ei) = −βei(t)

T(L(s)Jr(p))(L(s)Jr(p))+ei(t) (16)

to ensure that
.

V(e) ≤ 0, the following expression must be positive, semi-defined as

(L(s)Jr(p))(L(s)Jr(p))+ ≥ 0 (17)

This condition is rarely achieved when dim(s) > 6. The Jacobian image is overdeter-
mined. It will have a nonempty null space, and local minima will exist. However, when
L(s) is full rank at the goal s∗, there is a neighborhood of s∗ in which (L(s)Jr(p))(L(s)Jr(p))+

is positive semi-defined, and thus IBVS is globally stable in the sense of Lyapunov [9,26].

2.5. PBVS Servocontroller

The PBVS control scheme (Position–Based Visual Servo Control) uses the robot relative
pose. For this controller, an estimated pose is computed by the camera and feature extractor.
Thus, sp(t) represents the actual orientation of the robot and s∗p(t) represents the desired
orientation of the robot with respect to the objective; the error equation is:

ep(t) = sp(t)− s∗p(t) (18)

In this case s∗p(t) is fixed but can be a variable function. To ensure the convergence of
ep(t) to zero ( ep(t)→ 0) a behavior is imposed as follows:

.
ep(t) = −λpep(t) (19)

where λp is a positive gain scalar
(
λp > 0

)
and represents the error time constant. Then,

Equation (18) is derived:
.
ep(t) =

.
sp(t). (20)

Equations (19) and (20) are equal:

.
sp(t) = −λpep(t) (21)

sp(t) can be calculated using the chain rule on the Equation (21), as follows:

.
s(t) =

∂sp(t)
∂r

∂r(t)
∂p

.
p (22)

where r is the robot,
.
p =

[
v ω ωpl

]T
the control signal, ∂sp(t)

∂r = Lp(s) the interaction matrix,

and ∂r(t)
∂p = Jr(p), the Jacobian robot.
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Finally, Equation (22) can be rewritten as shown:

.
sp(t) = Lp(s)Jr(p)

.
p (23)

Equaling the Equations (21) and (23), the following expression is obtained:

.
p = −λp

(
Lp(s)Jr(p)

)+ep(t) (24)

where
(

Lp(s)Jr(p)
)+ is the pseudo-inverse of Lp(s)Jr(p).

To ensure stability in the sense of Lyapunov, it is proposed as a candidate, the Lya-
punov function or quadratic function of the error [27]:

V
(
ep
)
=

1
2

eT
p (t)Dep(t) (25)

where D is 6 × 6 a weight matrix that ensures that the proposed Lyapunov function is
positive

(
V
(
ep
)
≥ 0

)
. The following necessary condition

.
V
(
ep
)
≤ 0 must be fulfilled. This

was developed in detail in [11,12,27], with the conclusion that the derivative of candidate
Lyapunov function is negatively defined

( .
V
(
ep
)
≤ 0

)
. By analyzing Equation (7), it is

nonsingular when θ 6= 2kπ. In other cases, the system is asymptotically stable in the sense
of Lyapunov.

2.6. HBVS Servocontroller

In this section, a control strategy is proposed that switches between controllers IBVS
and PBVS to obtain better control and performance on the system. The switching rules
between these controllers and their stability as a system are shown. It is important to
highlight that those two stable systems in an inappropriate switching mode could generate
an unstable system. The block diagram of Figure 3 shows a diagram representing the
control strategy proposed, based on a structure of the Hybrid Control System between the
IBVS and PBVS.
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The switching between the two types of controllers could be under arbitrary switching
or based on commutation rules. In this research study, the stability under switching based
on the state of the error is proposed. A switching strategy to simultaneously achieve
stability in the pose space and image space as a set of simple switching rules is presented
as follows:

• IBVS to PBVS

Vp
(
ep
)
≥
(

1
2

)
β2

p (26)
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• PBVS to IBVS

Vi(ei) ≥
(

1
2

)
β2

i (27)

where βp: is the maximum acceptable pose error; βi: is the maximum acceptable
feature point error.

Based on [25,28], it is possible to establish the stability of a hybrid switched control
system. In this, two different Lyapunov functions will be used, Vi(ei) and Vp

(
ep
)

as it
was defined in (15) and (25) respectively. Let us consider a set of switching times by
t = t0, t1, . . . , tn. Since we have two different controllers, it is possible to separate these
set of times as follows: ti = t0, t2, t4, . . . , tn is the set of times at which the system changes
from IBVS to PBVS and tp = t1, t3, t5, . . . , tn−1 is the set of times at which the system
changes from PBVS to IBVS.

For our system, the conditions to ensure stability from [28] are:

• Condition 1. Vp(0) = Vi(0) = 0.
• Condition 2. Vi(ei) > 0 f or ‖ei‖ 6= 0 and Vp

(
ep
)
> 0 f or ‖ep‖ 6= 0.

• Condition 3.
.

Vi(ei(t)) ≤ 0 f or t2k < t < t2k+1, f or k = 0, 1, . . .
• Condition 4. Vi(ei(tk)) ≤ Vi(ei(tm)) f or all tk, tm ε ti s.t. tm < tk.

• Condition 5.
.

Vp
(
ep(t)

)
≤ 0 f or t2k−1 < t < t2k, f or k = 1, 2, . . .

• Condition 6. Vp
(
ep(tk)

)
≤ Vp

(
ep(tm)

)
f or all tk, tm ε tp s.t. tm < tk.

The conditions detailed above were tested in [22,25]. In this paper, the aim of switching
between these two systems is to ensure that the systems avoid the local minimum pre-
sented when IBVS is uniquely performing. It is important to highlight that in this scheme
discontinuities may occur due to the switching between both controls with different types
of references (image features and pose).

3. Experimental Setup

A communication system between a Raspberry Pi and a mobile interface of a smart-
phone was integrated on the assembled robot to perform an experimental setup to im-
plement the IBVS control. This proposed 3 DOF robot is operated with an IBVS control
scheme based on image detection installed on the operative system of the Raspberry Pi
into an SD card, selecting Raspbian mode to support a balanced system. After that, it just
remains plugged together with the peripherals: mouse and keyboard, HDMI output for
video, and cable. Some software were installed such as OpenCV, SimpleCV libraries, and
other libraries required for image processing and control implementation (NumPy, SciPy,
and Setuptools), and SSH library for communication with Lego EV3 system [29,30].

3.1. Design of the Communication System between Raspberry Pi and Smartphone

The communication system structure is sketched in Figure 4. First, the configuration
to make possible the communication between SSH and LEGO EV3 (Computer Kit LEGO
robotics) was defined in order to configure the set of Raspberry Pi to operate as an access
point, and in this way, not depend on an external Wi-Fi network. Second, the network
Raspberry was created to maintain a fixed IP, assigning this to the smartphone with the
Android operating system via the DHCP service.

3.2. Design of Mobile Interface Using a Smartphone

To design and implement the mobile interface (henceforth, mobile app), two sockets
to communicate the phone with the Raspberry Pi were used. One of them, to receive data
from the phone to the Raspberry Pi, and the other, to send control data. This application
was configured in two control modes. First, the automatic mode, where the entire control
process is performed by the Raspberry Pi, and second, the manual mode, in which a user
operates the robot. Both modes are interchangeable using an eye-shaped button located at
the top of the application.
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access points, connections, and communication protocols.

The automatic mode will operate only to monitor the robot, so it was decided to
activate a streaming video interface running up as an Android app that communicates to
the robot’s camera visualizing and monitoring the surroundings. The app also allows to
visualize variables such as the angular speed of each motor of the right engine (ωright), the
left engine (ωle f t), and the engine that moves the camera’s platform (ωpl) (See Figure 5a).
In contrast, the manual mode (see Figure 5b), allows access to up to six buttons to manually
control the robot. Four of those buttons are used to control stock movements of the robot:
forward, backward, right, and left, and the other two buttons are used to control the
movement (right and left) of the camera platform. Both modes allow streaming video from
the camera. The Mobile app code is found in the Supplementary Materials section.
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3.3. Assembling the Robot

The robot was assembled using:

• A Kit ™ LEGO Mindstorms robotics for the entire platform, including engines and
LEGO EV3 ™ CPU.

• A Single Board Computer Raspberry Pi Model B, with a Pi Camera connected to it via
ribbon cable.

• A USB Wi-Fi Dongle TP-LINK TL-WN725N v2.
• An external battery of 5600 mAh.

The final design of the robotic system with the adaptation of the Raspberry Pi and the
camera can be seen in Figure 6.
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Some simulations were running up to operate this robot using the controllers as shown
in the next section.

4. Simulation Results

The concept of Epipolar Geometry is a key topic for simulating visual servo-control
systems. This geometry is related to stereoscopic vision. Thus, if one or two cameras
are in a 3D scene, there are several geometric relationships between 3D points and their
projections on 2D images. These relationships are obtained based on the assumption that
the cameras can be approximated by the pinhole model. The Epipolar Geometry Toolbox
developed in [31] at the University of Siena was used for the simulation.

Simulations for IBVS, PBVS, and Hybrid controllers are run up using these parameters
and the codes reported in [32]:

Xc = 0 cm; Yc = 2 cm; Xp = 5 cm; Yp = 5 cm.

where Xc is the distance from the X-axis from the camera to the platform; Yc, the distance
from the camera to the platform; Xp, from the X-axis of the platform to the center of the
robot; and Yp, from the Y-axis of the platform to the center of the robot.

Figures 7 and 8 show the simulation results of the error of a visual servo control over
a robotics system of 3 DOF. Once the previous results were obtained, the next steps were to
compute the Jacobian robot, i.e., the 6 × 3 matrix in Equations (3) and (7), and the control
law given by (12), (23) considering the real measurements of surrounding by using the
parameters mentioned above. Furthermore, the switching rules are followed for the hybrid
controller (see Section 2.5).
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and (c) HBVS control algorithms.

4.1. Image Error Evolution

Figure 7 shows the simulation of the image error evolution as a time function applying
the IBVS (Image Based Visual Servo), PBVS (Position Based Visual Servo)„ and the hybrid
scheme controllers. For the IBVS control, it can be observed that a minimum error is
reached after 1.3 s (see the local minimun), and after there is a negligible increase, similarly,
a minimum error is reached after 5 s for PBVS control. Regarding hybrid controller (HBVS),
the simulation of image error evolution depends on the time when HBVS is applied. It can
be observed that a minimum error is reached after 2.1 s.

The main difference between IBVS and PBVS controls consists of the reference to
estimate the error norm. For instance, in IBVS control sensed images, features are extracted
and compared using the image plane. In PBVS control image features are also extracted,
and this information is used to compute relative position from the object to be compared
with the goal relative position. PBVS error is greater than IBVS because they have different
units: PBVS error is computed in length units of centimeters, but IBVS error is computed
in pixels.

4.2. Control Signal Response

Figure 8 shows the control signals in terms of linear and angular speeds (see
Equations (3) and (4)) once one of the IBVS, PBVS, or HBVS algorithms was run up.

The main idea is to use Equation (4) parameters which are the real kinematic of the
robot. It can be observed that the control signals respond quickly (see inset Figures) in less
than 0.05 s for IBVS, and 0.1 s for PBVS and HBVS.

4.3. Evolution of Image Frame

Figure 9 shows the image evolution of the robot camera (in pixels) in the three
cases IBVS, PBVS, and HBVS. For this, a square will be shaped by using the four red
points shown in this figure. This will be shown for the IBVS in the next section of the
experimental results.

4.4. Initial and Final Pose in 3D

Figure 10 shows the simulation results after applying the IBVS, PBVS, and HBVS
controllers, and inverse kinematic (see Equation (4)) to obtain the robot poses.
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5. Experimental Results
5.1. Color Image Processing

The fact of how the camera would recognize a square object filled with a specific color
was researched in order to characterize the image processed. Several tests were performed
with a red square over a black background as shown in Figure 11.
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Figure 11. The robot’s objective is implemented as a red square.

This was the first image successfully processed and recognized. Following this process,
red characteristics from the image sensed by the camera were searched. The next step was
to invert the image and divide by 16, to get a better contrast for the image by making the
algorithm run-up at low resolution. Later, it was necessary to filter to search only those who
had a square shape using Algorithm 1 implemented on Python for the Raspberry Pi [33].
As a result of this processing, four points related to the four corners of the square were
obtained (See the Supplementary Materials section to obtain the codes for image processing
and control algorithm):

Algorithm 1: Feature extraction

Input: Image collected by the camera.
Output: set of 4 points coordinates in the image frame, s_i(t).
1 Get the image collected by the camera.
2 Segment the red color.
3 Compare shape (Must be square-like shape).
4 Identify corners.
5 Set coordinates of the points as s_i(t).

5.2. Implementation of the Designed Controller

The control algorithm aims to calculate the control signals for engines, accomplishing
the method of the kinematic chain (Jacobian of the robot) and imposing a decreasing
behavior to image error. For these calculations, robot Jacobian images as can be seen in
Equation (5) represent the optical flow equations that relate to the changes occurring in the
image concerning the reference frame of the camera. The Jacobian of the robot, also known
as the kinematic chain, is used to apply inverse kinematics to compute the angular speed
values that will be applied to the robot engines.

The servo control algorithm (Algorithm 2) running up in Python for Raspberry Pi
starts by calculating the Jacobian images (objective and sensed) using Equation (5). It
is important to note that this equation describes the behavior of only one point in the
image, and then this computing must be realized for all the image features extracted
from the camera sensed image, similar to the four points extracted in Section 5.1. Im-
plemented algorithms can be found in the Supplementary Materials section for image
processing and control:



Machines 2022, 10, 193 18 of 20

Algorithm 2: Control Signal Computing

Input: a set of 4 points coordinates in the image frame, s_i(t). Set of 4 goal points coordinates in
the image frame, s_iˆ*(t). Measurements of θ and θ_pl.
Output: Apply control signal to the robot,

.
p(t).

1 Measure θ and θ_pl.
2 Collect images from the camera.
3 Implement Algorithm 1.
4 Compute image Jacobian Li(s) from Equation (5).
5 Compute the error as is shown in Equation (8).
6 Compute

.
p(t) from Equation (14).

7 Apply
.
p(t) to the robot.

8 Go to 1.

Figure 12 shows an external viewpoint during the real implementation of the algorithm
of visual servo control for a 3 DOF robotics system. In the Supplementary Materials a video
of the operating robot can be found.
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6. Conclusions

In this research study, an image-based visual servo for an autonomous mobile robot
was modeled and implemented using LEGO EV3 and a Raspberry Pi. This proposed
robot operates in two schemes: automatic and manual, with satisfactory performance and
recognizing processed image and accurate communication among the three devices: The
Raspberry Pi, Lego EV3, and smartphone. This robotic system was designed by running
up control IBVS, PBVS, and hybrid algorithms, applied to obtain the inverse kinematic of
the robot. The proposed robot is an economic proposal with feature recognition to be used
in other settings beyond basic educational programs. It is important to highlight that the
assisted video streaming application promotes autonomy using a simple device such as an
Android smartphone to easily operate and monitor any objective. For future works, it is
proposed to include restrictions on conditions and actuators for better system performance
under new parameters, the design of controls considering uncertainties generated by
the camera calibration, and the running up of algorithms for feature extractions of more
complex images (objectives). These improvements can be implemented by running up
algorithms for feature extraction and stereo vision.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines10030193/s1, Code 1: Mobile app code, Code 2: Image
processing and control algorithm code, Video S1: Robot 3-DOF-IBVS.

Author Contributions: Conceptualization, D.P.G. and A.M.L.; methodology, D.P.G. and A.M.L.;
software, J.G.A. and H.L.A.; validation, H.L.A., J.A.U., J.F.R., R.C.V. and J.G.A.; formal analysis,
A.M.L.; resources, A.M.L.; data curation, H.L.A. and J.G.A.; writing—original draft preparation,
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