
����������
�������

Citation: León Araujo, H.; Gulfo

Agudelo, J.; Crawford Vidal, R.;

Ardila Uribe, J.; Remolina, J.F.;

Serpa-Imbett, C.; López, A.M.; Patiño

Guevara, D. Autonomous Mobile

Robot Implemented in LEGO EV3

Integrated with Raspberry Pi to Use

Android-Based Vision Control

Algorithms for Human-Machine

Interaction. Machines 2022, 10, 193.

https://doi.org/10.3390/machines

10030193

Academic Editors: Antonios

Gasteratos and S. M. Mizanoor

Rahman

Received: 30 November 2021

Accepted: 1 March 2022

Published: 7 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Communication

Autonomous Mobile Robot Implemented in LEGO EV3
Integrated with Raspberry Pi to Use Android-Based Vision
Control Algorithms for Human-Machine Interaction †

Hernando León Araujo 1, Jesús Gulfo Agudelo 1, Richard Crawford Vidal 1, Jorge Ardila Uribe 1,
John Freddy Remolina 1 , Claudia Serpa-Imbett 1 , Ana Milena López 1,* and Diego Patiño Guevara 2

1 ITEM/Grupo de Investigación en Tecnologías Emergentes, School of Engineering and Architecture,
Universidad Pontificia Bolivariana Seccional Montería, Carrera 6 No. 97A-99, Montería 230001, Colombia;
hernando.leona@upb.edu.co (H.L.A.); jesdega95@gmail.com (J.G.A.); rcrawford09.rc@gmail.com (R.C.V.);
jorge.ardila@upb.edu.co (J.A.U.); john.remolina@upb.edu.co (J.F.R.); claudia.serpa@upb.edu.co (C.S.-I.)

2 Electronics Department, Pontificia Universidad Javeriana, Carrera 7 No. 40-62 Edificio 42,
Bogotá 110111, Colombia; patino-d@javeriana.edu.co

* Correspondence: anam.lopezl@upb.edu.co; Tel.: +57-4-786-01-46
† This paper is an extended version of our paper published in López, A.M.L.; Ardila J. Visual servo control law

design using 2D vision approach, for a 3 DOF robotic system built with LEGO EV3 and a Raspberry Pi. In
Proceedings of the 2016 21st Symposium on Signal Processing, Images and Artificial Vision (STSIVA),
Bucaramanga, Colombia, 31 August–2 September 2016; pp. 1–7.

Abstract: Robotic applications, such as educational programs, are well-known. Nonetheless, there
are challenges to be implemented in other settings, e.g., mine detection, agriculture support, and
tasks for industry 4.0. The main challenge consists of robotic operations supported by autonomous
decision using sensed-based features extraction. A prototype of a robot assembled using mechanical
parts of a LEGO MINDSTORMS Robotic Kit EV3 and a Raspberry Pi controlled through servo
algorithms of 2D and 2D1/2 vision approaches was implemented to tackle this challenge. This
design is supported by simulations based on image, position, and a hybrid scheme for visual servo
controllers. Practical implementation is operated using navigation guided by running up image-based
visual servo control algorithms embedded in a Raspberry Pi that uses a control criterion based on
error evolution to compute the difference between a target and sensed image. Images are collected by
a camera installed on a mobile robotic platform manually and automatically operated and controlled
using the Raspberry Pi. An Android application to watch the images by video streaming is shown
here, using a smartphone and a video related to the implemented robot’s operation. This kind of robot
might be used to complete field reactive tasks in the settings mentioned above, since the detection
and control approaches allow self-contained guidance.

Keywords: visual servo control; Raspberry Pi; robotics; Lego Mindstorms

1. Introduction

Robots are one of the most promising devices to be potentially used in industry, agri-
culture [1,2], medicine [3], education [4,5] and some other fields. These can be programmed,
configured, and optimized to perform tasks with high accuracy and great flexibility due
to their kinematical degrees of freedom and versatility of adapting tools such as sensors,
cameras, and other periphery devices. For instance, robots reach up to places inaccessible
to humans, perceiving their surroundings, and collecting information to make decisions by
themselves through decision support systems based on artificial intelligence techniques
to adapt their movements depending on the requirements. Robots can perceive their sur-
roundings by using several types of sensors, such as cameras, which allows the robot to
have human-like perception.

Machines 2022, 10, 193. https://doi.org/10.3390/machines10030193 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10030193
https://doi.org/10.3390/machines10030193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-1095-0611
https://orcid.org/0000-0002-1420-0084
https://orcid.org/0000-0002-0118-8434
https://doi.org/10.3390/machines10030193
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10030193?type=check_update&version=1

Machines 2022, 10, 193 2 of 20

Different configurations of integrated robots applying mobile or fixed cameras or
sensors are reported in literature [3,6,7]. These are well-known as visual servoing, which is
used to obtain the necessary data of the surroundings from a camera through images locally
or remotely collected, by using various kinds of controllers such as task function [8–10],
predictive control [11,12], rational systems and LMIs (Linear Matrix Inequalities) [13],
applying Kalman filters [6], etc. The main goal of visual servo control is to allow the robotic
system operation under surrounding changes, detected through the images recorded by a
camera to perform tasks according to the decision of a controller. Usually, controllers can
be carried out in two ways: the first uses a central station to process images and compute
and transmit the controller’s decision to the robot; and the second, the robot performs all
tasks. For the last one, the robot’s devices should have an adequate processing capability
to process the image and run up as quickly as possible the control algorithms.

Applications use image processing, robotics, and control theory jointly to command
the motion of a robot depending on the visual information extracted from the images
captured by one or several cameras. Currently, there are many problems of great interest
to the scientific community such as different image features extraction of more complex
geometries, enhancement of velocity of algorithms, convergence problem in control, and
others [14].

Regarding the state of the art, robotic and visual control converges in recent reported
topics are related to omnidirectional platforms designed to cooperative robotic systems [15]
to make a task. As an example, elements like Raspberry Pi with an integrated camera
for image processing and future extraction [16], both operating in the same programing
environment were used as mechanism of a manipulative robot. Moreover, an eye-in-hand
manipulative robot using optimal controller allows to minimize the force and torque in the
joint engines of the robotic systems to assess the performance of the controller [17].

Following the state of the art in robotic systems and its relationship with controllers,
in this research work a novel robotic system integrated with technologies with different
operating systems is presented, such as the LEGO Educational Kit and the Raspberry
Pi to assess visual control algorithms. In addition, an Android application is added for
human-machine interaction that allows to visualize the robot’s perspective, thus allowing
manual or automatic control of the robot for safe operation in case of being executed in a
hostile environment.

This work shows the design of robotic systems either using IBVSs (Image-Based Visual
Servo) (see a previous work reported by some authors in [18], PBVSs (Position-Based Visual
Servo), or hybrid HBVS (Hybrid-Based Visual Servo) scheme (image and position-based).
A camera mounted on the robot can roll over its axis minimizing the non-holonomy of
the robotic system [19]. Algorithms are implemented by running up embedded servo-
algorithms in open-source platforms. In this case, a Single Board Computer (SBC) known
as Raspberry Pi is used. This paper shows a robot assembled as a three degree of freedom
(3 DOF) structure using LEGO™ Mindstorms robotic kit, adding a platform to hold a
camera. Two of the 3 DOF were used for the platform movement in the XY plane, and the
third-degree to enable the platform’s rotation. This proposed robot was implemented as
an IBVS and assisted with an Android smartphone for remote operation. One of the main
challenges reported in the literature consists of using Mindstorms in other applications
beyond educative programs since there are no limitations and impediments [4,20]. These
can be jointly configured with other operative systems like Raspbian, Linux, and mobile
Android to support open-source codes and other sensors [21,22]. This work is a proposal
to explore this challenge focused on algorithms for feature extraction using IBVS, PBVS,
and hybrid schemes implemented with an open-source operative system, as the first step
of prototypes design to be used in broader applications in real environments.

This paper is organized into five sections. In the second section, a kinematic model of
the 3 DOF’s robot, and the image representation using matrix formulation, followed by the
equations to design controllers based on the IBVS, PBVS algorithms, and hybrid approach
are presented. The third section is related to the experimental setup of assembling the robot,

Machines 2022, 10, 193 3 of 20

the communication system between the Raspberry Pi, the Mindstorms control and power
station Lego EV3 brick, and the mobile interface designed in an Android smartphone. In
the fourth section, the simulation results of the IBVS and PBVS algorithms and a hybrid
scheme are presented, applied to the proposed 3 DOF robotic system in terms of the image
and position error evolution and the robot’s expected poses. Finally, the article shows
the results of the implementation using the servo control algorithm IBVS embedded on
the Raspberry Pi to recognize a target image remotely monitored by a video streaming
application running up in the interface of the Android smartphone.

2. Kinematical Degrees of Freedom Model, and Controller’s Design

In this section, the robotic system is kinematically modeled using position and rotation
equations, relating them to the images by using a matrix formulation. These equations are
used to design controllers based on application of IBSV, PBVS algorithms, and a hybrid
(HBVS) scheme.

2.1. Kinematic Model

This robot can be modeled using a Hilare-type approach implemented with one motor
that controls each robot side as shown in Figure 1. This robot kind has reliable performance,
low rotation radius, and is easily controllable and simple to assemble [20]. Furthermore, it
has three degrees of freedom (3 DOF), two of them make up the XY plane (two degrees
of freedom), where the pair (x,y) is the robot’s position in global coordinates used as a
reference for the linear displacement assuming linear speed. The other coordinate is related
with the z-axis, assigned to any rotation θ around itself.

Machines 2022, 9, x FOR PEER REVIEW 3 of 21

the equations to design controllers based on the IBVS, PBVS algorithms, and hybrid ap-
proach are presented. The third section is related to the experimental setup of assembling
the robot, the communication system between the Raspberry Pi, the Mindstorms control
and power station Lego EV3 brick, and the mobile interface designed in an Android
smartphone. In the fourth section, the simulation results of the IBVS and PBVS algorithms
and a hybrid scheme are presented, applied to the proposed 3 DOF robotic system in
terms of the image and position error evolution and the robot’s expected poses. Finally,
the article shows the results of the implementation using the servo control algorithm IBVS
embedded on the Raspberry Pi to recognize a target image remotely monitored by a video
streaming application running up in the interface of the Android smartphone.

2. Kinematical Degrees of Freedom Model, and Controller’s Design
In this section, the robotic system is kinematically modeled using position and rota-

tion equations, relating them to the images by using a matrix formulation. These equations
are used to design controllers based on application of IBSV, PBVS algorithms, and a hy-
brid (HBVS) scheme.

2.1. Kinematic Model
This robot can be modeled using a Hilare-type approach implemented with one mo-

tor that controls each robot side as shown in Figure 1. This robot kind has reliable perfor-
mance, low rotation radius, and is easily controllable and simple to assemble [20]. Fur-
thermore, it has three degrees of freedom (3 DOF), two of them make up the XY plane
(two degrees of freedom), where the pair (x,y) is the robot’s position in global coordinates
used as a reference for the linear displacement assuming linear speed. The other coordi-
nate is related with the z-axis, assigned to any rotation θ around itself.

Figure 1. Hilare-type robot of three degrees of freedom (3 DOF), using the kinematic model.

Using these coordinates, the robot kinematic can be depicted by Equations (1) and
(2):

⎣⎢⎢
⎡ 𝑥𝑦𝜃𝜃 ⎦⎥⎥

⎤ = cos 𝜃sin 𝜃00 0010 0001
𝑣𝜔𝜔 (1)

Figure 1. Hilare-type robot of three degrees of freedom (3 DOF), using the kinematic model.

Using these coordinates, the robot kinematic can be depicted by Equations (1) and (2):
.
x
.
y
.
θ

.
θpl

 =

cos θ
sin θ

0
0

0
0
1
0

0
0
0
1

 v

ω
ωpl

 (1)

Machines 2022, 10, 193 4 of 20

.
x
.
y
.
θ

.
θpl

 =

r
2

cos θ
r
2

cos θ 0
r
2

sin θ
r
2

sin θ 0

r/L −r/L 0
0 0 1

 ωright

ωle f t
ωpl

 (2)

Equation (1) is a rotation matrix that models linear speed, and robot rotation concern-
ing coordinates axes, and Equation (2) models the angular speed of the robot’s wheels,
so both equations can configure a real application. In Equation (1),

.
x and

.
y are the linear

speeds of the robot related to x and y coordinates, and
.
θ is the angular speed related to

the rotation movement around z. The term
.
θpl is the orientation related to the camera

movements mounted on top of a rotary platform, so this is the third degree of freedom.
The relationship between outputs and angular speeds (ωright, ωle f t, and ωpl) of the robot’s
wheels are given by Equation (2) [10,20,21]. These are the real inputs of the robotic system
modeled for the application implemented here where r is the wheels’ radius, L, distance
between wheels, ωright, right wheel angular speed, and ωle f t, left wheel angular speed.

On the other hand, a mobile robot model can be described in different reference frames.
These frames can be the world frame reference or the actuator frame reference. In this pro-
posed robot, the actuator or element that gives a surrounding perception is a camera. Then,
to pass from the world’s frame to the image’s frame, it is necessary to transform all frames
that pass through the world’s frame, mobile’s frame, and then to the platform’s frame, until
the camera’s frame that uses coordinates transformations. This kind of transformation is
obtained through the following expressions shown in Equations (3) and (4) [10,15]:

Vxc

Vyc

Vzc

Ωxc

Ωyc

Ωzc

 =

0 0 0
− sin θpl xc + xp cos θpl xc
cos θpl −yc + yp sin θpl −yc

0 −1 −1
0 0 0
0 0 0

 v

ω
ωpl

 (3)

where xc is the x component of the translational vector to pass from platform frame reference
to camera frame reference; xp, the x component of the translational vector to pass from
robot frame reference to platform frame reference; yc, the y component of the translational
vector to pass from platform frame reference to camera frame reference; and yp, is the y
component of the translational vector to pass from robot frame reference to platform frame
reference. Vxc , Vyc , and Vzc are the linear speeds expressed in the camera’s frame, and Ωxc ,
Ωyc , and Ωz are the angular speeds expressed in the camera’s frame.

In this case, a control signal should be applied to change the angular speed of the
wheels, then it is necessary to use Equation (2) instead of (1) for the coordinate’s transfor-
mation, to obtain an expression for the angular speed of the robot in the camera frame
reference [10,22]:

Vxc

Vyc

Vzc

Ωxc

Ωyc

Ωzc

 =

0 0 0
r
(

xc + xp cos θpl

)
L

−
r
(

sin θpl

)
2

r
(

sin θpl

)
2

−
r
(

xc + xp cos θpl

)
L

xc

1
r
(

cos θpl

)
2

+
r
(

yc + yp sin θpl

)
L

r
(

cos θpl

)
2

+
r
(

yc + yp sin θpl

)
L

−yc

1

− r
L

r
L

−1
1

0 0 0
0 0 0

 ωright
ωle f t
ωpl

 (4)

Machines 2022, 10, 193 5 of 20

To model the image in the camera, the next subsection will show the equations for the
image representation in this frame of reference.

2.2. IBVS Interaction Matrix

Until now, an expression has been obtained that represents a change in the world’s
frame into the camera’s frame as shown in Equation (4), nonetheless, it is necessary
to find an expression that represents the changes in the camera’s frame into the image
(object) frame.

The object image representations are often modeled by the pinhole lens approach as
shown in Figure 2. With this approach, the lens is considered an ideal pinhole. The pinhole
is located at the lens focal center, and placed behind the image plane to simplify the model.
Light passes through this pinhole intersecting the image plane. Thus, P is a point in the
world with coordinates x,y,z; and p denotes the projection of P onto the image plane with
coordinates (u,v,λ).

Machines 2022, 9, x FOR PEER REVIEW 5 of 21

To model the image in the camera, the next subsection will show the equations for
the image representation in this frame of reference.

2.2. IBVS Interaction Matrix
Until now, an expression has been obtained that represents a change in the world’s

frame into the camera’s frame as shown in Equation (4), nonetheless, it is necessary to find
an expression that represents the changes in the camera’s frame into the image (object)
frame.

The object image representations are often modeled by the pinhole lens approach as
shown in Figure 2. With this approach, the lens is considered an ideal pinhole. The pinhole
is located at the lens focal center, and placed behind the image plane to simplify the model.
Light passes through this pinhole intersecting the image plane. Thus, P is a point in the
world with coordinates x,y,z; and p denotes the projection of P onto the image plane with
coordinates (u,v,λ).

Figure 2. Pinhole camera object representation. Adapted from [16].

Here, the Jacobian Image Li(s), also called interaction matrix, is used to represent the
relative changes in the image into the camera reference frame. Assuming that the image
geometry can be modeled using perspective projection and the camera lens is a pinhole
type, the following expression can be used [10,20,21]:

𝐿 (𝑠) = ⎣⎢⎢⎢
⎡− 𝜆𝑧 0 𝑢𝑧0 − 𝜆𝑧 𝑣𝑧 𝑢𝑣𝜆 𝜆 + 𝑣𝜆 𝑣𝑣 𝜆 + 𝑣𝜆 − 𝑢𝑣𝜆 −𝑢⎦⎥⎥⎥

⎤
 (5)

where 𝜆 is the focal lens distance, and the pair (u,v) are the pixel location. s is a set of
visual features extracted from the object.

Figure 2. Pinhole camera object representation. Adapted from [16].

Here, the Jacobian Image Li(s), also called interaction matrix, is used to represent the
relative changes in the image into the camera reference frame. Assuming that the image
geometry can be modeled using perspective projection and the camera lens is a pinhole
type, the following expression can be used [10,20,21]:

Li(s) =

 −
λ

zc
0

u
zc

0 − λ

zc

v
zc

uv
λ

λ2 + v2

λ
v

v
λ2 + v2

λ
−uv

λ
−u

 (5)

where λ is the focal lens distance, and the pair (u,v) are the pixel location. s is a set of visual
features extracted from the object.

2.3. PBVS Interaction Matrix

PBVS is aimed to regulate the error between current camera pose and goal pose with

respect to the objective. Pose is defined as
[

X(t)T

UθT

]
, where X(t) ε R3x1 is the translational

Machines 2022, 10, 193 6 of 20

distance expressed in world frame reference and Uθ ε R3x1 is the rotation angle around the
axis defined by the unitary vector U, where U represents the orientation vector where the
robot is rotating. The interaction matrix is given by [23–25]:

Lp(s) =
[
−I3 [X(t)]x
03x3 LUθ

]
(6)

where [X(t)]x is the skew matrix of X(t) and Lθu is given by:

LUθ = I3 −
θ

2
[U]x +

(
1− sincθ

sinc2 θ
2

)
[U]2x (7)

The kinematic screw describes the changes of the kinematic chain concerning time,
also known as Jacobian robot. At this point, it is possible to represent how the image
changes depending on the robot movements in the world frame. The following subsection
uses the kinematic screw and the interaction matrix to impose an error performance.

2.4. IBVS Servocontrollers

The Image–Based Visual Servo Control (IBVS) scheme uses a set of points that represent
visual features of the objective obtained by the camera (real image). The image features (m)
are often measured in pixel units and represent a set of image points in image coordinates.
The objective image (s∗) can be static or dynamic. In this research work, it is assumed to be
fixed to the world’s frame.

The control scheme is obtained from an error function, and it is computed from the
real image and the objective. Thus, the basic equation for an IBVS control scheme is:

ei(t) = C(s(t)− s∗(t)) (8)

where C is the combination matrix, s(t), a set of visual points in the image plane, and
s∗(t), the visual goal feature points. To ensure the convergence of e(t) to zero, a decreasing
behavior on the error is imposed:

.
ei(t) = −βei(t) (9)

where, β is a positive gain scalar (β > 0) representing the time constant of the error conver-
gence. Then, by deriving Equation (8) and equalizing with (9) the relationship between
β and the error ei(t) is obtained:

.
s(t) = −βei(t) (10)

As s(t) represents the visual features, we have an expression to represent changes
in the image frame into other frameworks, thus, the chain rule over (10) is allowed to
apply as [21]:

.
s(t) =

∂s(t)
∂r

∂r(t)
∂p

.
p (11)

where r is the robot frame and
.
p :

[
v ω ωpl

]T
is the control signal. ∂s(t)

∂r represents the
image changes into the first robot frame, or the interaction matrix L(s) described in the last
subsection; and ∂r(t)

∂p represents the robot changes regarding a known input variable or the
Jacobian robot Jr(p).

Finally, Equation (11) can be rewritten in terms of interaction matrix, well-known as
L(s) or Jacobian, and Jacobian robot Jr(p) as shown:

.
s(t) = L(s)Jr(p)

.
p (12)

Machines 2022, 10, 193 7 of 20

Based on the equality from (10) and (8) the control law is obtained as:

− βei(t) = L(s)Jr(p)
.
p (13)

.
p = −βei(t)(L(s)Jr(p))+ (14)

where (L(s)Jr(p))+ is the pseudo-inverse of L(s)Jr(p).
To ensure stability in the sense of Lyapunov, it is proposed as a candidate, the Lya-

punov function or quadratic function of the error:

V(ei) =
1
2
‖ei(t)‖2 (15)

Since the proposed Lyapunov function depends on the quadratic norm of the error,
then it can be demonstrated that ∀e(t), V(ei) ≥ 0 so, the function is positively defined.
Now, it is necessary that

.
V(ei) ≤ 0, then by deriving Equation (15) and replacing on (12)

the following expression can be obtained:

.
V(ei) = −βei(t)

T(L(s)Jr(p))(L(s)Jr(p))+ei(t) (16)

to ensure that
.

V(e) ≤ 0, the following expression must be positive, semi-defined as

(L(s)Jr(p))(L(s)Jr(p))+ ≥ 0 (17)

This condition is rarely achieved when dim(s) > 6. The Jacobian image is overdeter-
mined. It will have a nonempty null space, and local minima will exist. However, when
L(s) is full rank at the goal s∗, there is a neighborhood of s∗ in which (L(s)Jr(p))(L(s)Jr(p))+

is positive semi-defined, and thus IBVS is globally stable in the sense of Lyapunov [9,26].

2.5. PBVS Servocontroller

The PBVS control scheme (Position–Based Visual Servo Control) uses the robot relative
pose. For this controller, an estimated pose is computed by the camera and feature extractor.
Thus, sp(t) represents the actual orientation of the robot and s∗p(t) represents the desired
orientation of the robot with respect to the objective; the error equation is:

ep(t) = sp(t)− s∗p(t) (18)

In this case s∗p(t) is fixed but can be a variable function. To ensure the convergence of
ep(t) to zero (ep(t)→ 0) a behavior is imposed as follows:

.
ep(t) = −λpep(t) (19)

where λp is a positive gain scalar
(
λp > 0

)
and represents the error time constant. Then,

Equation (18) is derived:
.
ep(t) =

.
sp(t). (20)

Equations (19) and (20) are equal:

.
sp(t) = −λpep(t) (21)

sp(t) can be calculated using the chain rule on the Equation (21), as follows:

.
s(t) =

∂sp(t)
∂r

∂r(t)
∂p

.
p (22)

where r is the robot,
.
p =

[
v ω ωpl

]T
the control signal, ∂sp(t)

∂r = Lp(s) the interaction matrix,

and ∂r(t)
∂p = Jr(p), the Jacobian robot.

Machines 2022, 10, 193 8 of 20

Finally, Equation (22) can be rewritten as shown:

.
sp(t) = Lp(s)Jr(p)

.
p (23)

Equaling the Equations (21) and (23), the following expression is obtained:

.
p = −λp

(
Lp(s)Jr(p)

)+ep(t) (24)

where
(

Lp(s)Jr(p)
)+ is the pseudo-inverse of Lp(s)Jr(p).

To ensure stability in the sense of Lyapunov, it is proposed as a candidate, the Lya-
punov function or quadratic function of the error [27]:

V
(
ep
)
=

1
2

eT
p (t)Dep(t) (25)

where D is 6 × 6 a weight matrix that ensures that the proposed Lyapunov function is
positive

(
V
(
ep
)
≥ 0

)
. The following necessary condition

.
V
(
ep
)
≤ 0 must be fulfilled. This

was developed in detail in [11,12,27], with the conclusion that the derivative of candidate
Lyapunov function is negatively defined

(.
V
(
ep
)
≤ 0

)
. By analyzing Equation (7), it is

nonsingular when θ 6= 2kπ. In other cases, the system is asymptotically stable in the sense
of Lyapunov.

2.6. HBVS Servocontroller

In this section, a control strategy is proposed that switches between controllers IBVS
and PBVS to obtain better control and performance on the system. The switching rules
between these controllers and their stability as a system are shown. It is important to
highlight that those two stable systems in an inappropriate switching mode could generate
an unstable system. The block diagram of Figure 3 shows a diagram representing the
control strategy proposed, based on a structure of the Hybrid Control System between the
IBVS and PBVS.

Machines 2022, 9, x FOR PEER REVIEW 8 of 21

𝑠 (𝑡) = 𝐿 (𝑠)𝐽 (𝑝) 𝑝 (23)

Equaling the Equations (21) and (23), the following expression is obtained: 𝑝 = −λ 𝐿 (𝑠)𝐽 (𝑝) 𝑒 (𝑡) (24)

where 𝐿 (𝑠)𝐽 (𝑝) is the pseudo-inverse of 𝐿 (𝑠)𝐽 (𝑝).
To ensure stability in the sense of Lyapunov, it is proposed as a candidate, the Lya-

punov function or quadratic function of the error [27]: 𝑉 𝑒 = 12 𝑒 (𝑡)𝑫𝑒 (𝑡) (25)

where D is 6 × 6 a weight matrix that ensures that the proposed Lyapunov function is
positive 𝑉 𝑒 ≥ 0 . The following necessary condition 𝑉 𝑒 ≤ 0 must be fulfilled.
This was developed in detail in [11,12,27], with the conclusion that the derivative of can-
didate Lyapunov function is negatively defined 𝑉 𝑒 ≤ 0 . By analyzing Equation (7),
it is nonsingular when 𝜃 ≠ 2𝑘𝜋. In other cases, the system is asymptotically stable in the
sense of Lyapunov.

2.6. HBVS Servocontroller
In this section, a control strategy is proposed that switches between controllers IBVS

and PBVS to obtain better control and performance on the system. The switching rules
between these controllers and their stability as a system are shown. It is important to high-
light that those two stable systems in an inappropriate switching mode could generate an
unstable system. The block diagram of Figure 3 shows a diagram representing the control
strategy proposed, based on a structure of the Hybrid Control System between the IBVS
and PBVS.

Figure 3. Proposal for a Hybrid Control System structure.

The switching between the two types of controllers could be under arbitrary switch-
ing or based on commutation rules. In this research study, the stability under switching
based on the state of the error is proposed. A switching strategy to simultaneously achieve
stability in the pose space and image space as a set of simple switching rules is presented
as follows:
• IBVS to PBVS 𝑉 𝑒 ≥ 12 𝜷𝒑𝟐 (26)

• PBVS to IBVS

Figure 3. Proposal for a Hybrid Control System structure.

The switching between the two types of controllers could be under arbitrary switching
or based on commutation rules. In this research study, the stability under switching based
on the state of the error is proposed. A switching strategy to simultaneously achieve
stability in the pose space and image space as a set of simple switching rules is presented
as follows:

• IBVS to PBVS

Vp
(
ep
)
≥
(

1
2

)
β2

p (26)

Machines 2022, 10, 193 9 of 20

• PBVS to IBVS

Vi(ei) ≥
(

1
2

)
β2

i (27)

where βp: is the maximum acceptable pose error; βi: is the maximum acceptable
feature point error.

Based on [25,28], it is possible to establish the stability of a hybrid switched control
system. In this, two different Lyapunov functions will be used, Vi(ei) and Vp

(
ep
)

as it
was defined in (15) and (25) respectively. Let us consider a set of switching times by
t = t0, t1, . . . , tn. Since we have two different controllers, it is possible to separate these
set of times as follows: ti = t0, t2, t4, . . . , tn is the set of times at which the system changes
from IBVS to PBVS and tp = t1, t3, t5, . . . , tn−1 is the set of times at which the system
changes from PBVS to IBVS.

For our system, the conditions to ensure stability from [28] are:

• Condition 1. Vp(0) = Vi(0) = 0.
• Condition 2. Vi(ei) > 0 f or ‖ei‖ 6= 0 and Vp

(
ep
)
> 0 f or ‖ep‖ 6= 0.

• Condition 3.
.

Vi(ei(t)) ≤ 0 f or t2k < t < t2k+1, f or k = 0, 1, . . .
• Condition 4. Vi(ei(tk)) ≤ Vi(ei(tm)) f or all tk, tm ε ti s.t. tm < tk.

• Condition 5.
.

Vp
(
ep(t)

)
≤ 0 f or t2k−1 < t < t2k, f or k = 1, 2, . . .

• Condition 6. Vp
(
ep(tk)

)
≤ Vp

(
ep(tm)

)
f or all tk, tm ε tp s.t. tm < tk.

The conditions detailed above were tested in [22,25]. In this paper, the aim of switching
between these two systems is to ensure that the systems avoid the local minimum pre-
sented when IBVS is uniquely performing. It is important to highlight that in this scheme
discontinuities may occur due to the switching between both controls with different types
of references (image features and pose).

3. Experimental Setup

A communication system between a Raspberry Pi and a mobile interface of a smart-
phone was integrated on the assembled robot to perform an experimental setup to im-
plement the IBVS control. This proposed 3 DOF robot is operated with an IBVS control
scheme based on image detection installed on the operative system of the Raspberry Pi
into an SD card, selecting Raspbian mode to support a balanced system. After that, it just
remains plugged together with the peripherals: mouse and keyboard, HDMI output for
video, and cable. Some software were installed such as OpenCV, SimpleCV libraries, and
other libraries required for image processing and control implementation (NumPy, SciPy,
and Setuptools), and SSH library for communication with Lego EV3 system [29,30].

3.1. Design of the Communication System between Raspberry Pi and Smartphone

The communication system structure is sketched in Figure 4. First, the configuration
to make possible the communication between SSH and LEGO EV3 (Computer Kit LEGO
robotics) was defined in order to configure the set of Raspberry Pi to operate as an access
point, and in this way, not depend on an external Wi-Fi network. Second, the network
Raspberry was created to maintain a fixed IP, assigning this to the smartphone with the
Android operating system via the DHCP service.

3.2. Design of Mobile Interface Using a Smartphone

To design and implement the mobile interface (henceforth, mobile app), two sockets
to communicate the phone with the Raspberry Pi were used. One of them, to receive data
from the phone to the Raspberry Pi, and the other, to send control data. This application
was configured in two control modes. First, the automatic mode, where the entire control
process is performed by the Raspberry Pi, and second, the manual mode, in which a user
operates the robot. Both modes are interchangeable using an eye-shaped button located at
the top of the application.

Machines 2022, 10, 193 10 of 20Machines 2022, 9, x FOR PEER REVIEW 10 of 21

Figure 4. Communication system implemented in the experiment with specifications of interfaces,
access points, connections, and communication protocols.

3.2. Design of Mobile Interface Using a Smartphone
To design and implement the mobile interface (henceforth, mobile app), two sockets

to communicate the phone with the Raspberry Pi were used. One of them, to receive data
from the phone to the Raspberry Pi, and the other, to send control data. This application
was configured in two control modes. First, the automatic mode, where the entire control
process is performed by the Raspberry Pi, and second, the manual mode, in which a user
operates the robot. Both modes are interchangeable using an eye-shaped button located
at the top of the application.

The automatic mode will operate only to monitor the robot, so it was decided to ac-
tivate a streaming video interface running up as an Android app that communicates to
the robot’s camera visualizing and monitoring the surroundings. The app also allows to
visualize variables such as the angular speed of each motor of the right engine (𝜔),
the left engine (𝜔), and the engine that moves the camera’s platform (𝜔) (See Figure
5a). In contrast, the manual mode (see Figure 5b), allows access to up to six buttons to
manually control the robot. Four of those buttons are used to control stock movements of
the robot: forward, backward, right, and left, and the other two buttons are used to control
the movement (right and left) of the camera platform. Both modes allow streaming video
from the camera. The Mobile app code is found in the Supplementary Materials section.

Figure 4. Communication system implemented in the experiment with specifications of interfaces,
access points, connections, and communication protocols.

The automatic mode will operate only to monitor the robot, so it was decided to
activate a streaming video interface running up as an Android app that communicates to
the robot’s camera visualizing and monitoring the surroundings. The app also allows to
visualize variables such as the angular speed of each motor of the right engine (ωright), the
left engine (ωle f t), and the engine that moves the camera’s platform (ωpl) (See Figure 5a).
In contrast, the manual mode (see Figure 5b), allows access to up to six buttons to manually
control the robot. Four of those buttons are used to control stock movements of the robot:
forward, backward, right, and left, and the other two buttons are used to control the
movement (right and left) of the camera platform. Both modes allow streaming video from
the camera. The Mobile app code is found in the Supplementary Materials section.

Machines 2022, 9, x FOR PEER REVIEW 11 of 21

(a) (b)

Figure 5. Smartphone app in (a) the automatic mode, and (b) manual mode.

3.3. Assembling the Robot
The robot was assembled using:

• A Kit ™ LEGO Mindstorms robotics for the entire platform, including engines and
LEGO EV3 ™ CPU.

• A Single Board Computer Raspberry Pi Model B, with a Pi Camera connected to it
via ribbon cable.

• A USB Wi-Fi Dongle TP-LINK TL-WN725N v2.
• An external battery of 5600 mAh.

The final design of the robotic system with the adaptation of the Raspberry Pi and
the camera can be seen in Figure 6.

Figure 6. Implemented Robotic system using the Raspberry Pi and Kit™ LEGO Mindstorms robotic.

Some simulations were running up to operate this robot using the controllers as
shown in the next section.

Figure 5. Smartphone app in (a) the automatic mode, and (b) manual mode.

Machines 2022, 10, 193 11 of 20

3.3. Assembling the Robot

The robot was assembled using:

• A Kit ™ LEGO Mindstorms robotics for the entire platform, including engines and
LEGO EV3 ™ CPU.

• A Single Board Computer Raspberry Pi Model B, with a Pi Camera connected to it via
ribbon cable.

• A USB Wi-Fi Dongle TP-LINK TL-WN725N v2.
• An external battery of 5600 mAh.

The final design of the robotic system with the adaptation of the Raspberry Pi and the
camera can be seen in Figure 6.

Machines 2022, 9, x FOR PEER REVIEW 11 of 21

(a) (b)

Figure 5. Smartphone app in (a) the automatic mode, and (b) manual mode.

3.3. Assembling the Robot
The robot was assembled using:

• A Kit ™ LEGO Mindstorms robotics for the entire platform, including engines and
LEGO EV3 ™ CPU.

• A Single Board Computer Raspberry Pi Model B, with a Pi Camera connected to it
via ribbon cable.

• A USB Wi-Fi Dongle TP-LINK TL-WN725N v2.
• An external battery of 5600 mAh.

The final design of the robotic system with the adaptation of the Raspberry Pi and
the camera can be seen in Figure 6.

Figure 6. Implemented Robotic system using the Raspberry Pi and Kit™ LEGO Mindstorms robotic.

Some simulations were running up to operate this robot using the controllers as
shown in the next section.

Figure 6. Implemented Robotic system using the Raspberry Pi and Kit™ LEGO Mindstorms robotic.

Some simulations were running up to operate this robot using the controllers as shown
in the next section.

4. Simulation Results

The concept of Epipolar Geometry is a key topic for simulating visual servo-control
systems. This geometry is related to stereoscopic vision. Thus, if one or two cameras
are in a 3D scene, there are several geometric relationships between 3D points and their
projections on 2D images. These relationships are obtained based on the assumption that
the cameras can be approximated by the pinhole model. The Epipolar Geometry Toolbox
developed in [31] at the University of Siena was used for the simulation.

Simulations for IBVS, PBVS, and Hybrid controllers are run up using these parameters
and the codes reported in [32]:

Xc = 0 cm; Yc = 2 cm; Xp = 5 cm; Yp = 5 cm.

where Xc is the distance from the X-axis from the camera to the platform; Yc, the distance
from the camera to the platform; Xp, from the X-axis of the platform to the center of the
robot; and Yp, from the Y-axis of the platform to the center of the robot.

Figures 7 and 8 show the simulation results of the error of a visual servo control over
a robotics system of 3 DOF. Once the previous results were obtained, the next steps were to
compute the Jacobian robot, i.e., the 6 × 3 matrix in Equations (3) and (7), and the control
law given by (12), (23) considering the real measurements of surrounding by using the
parameters mentioned above. Furthermore, the switching rules are followed for the hybrid
controller (see Section 2.5).

Machines 2022, 10, 193 12 of 20

Machines 2022, 9, x FOR PEER REVIEW 13 of 21

(a)

(b)

(c)

Figure 7. Cont.

Machines 2022, 10, 193 13 of 20

Machines 2022, 9, x FOR PEER REVIEW 14 of 21

(d)

Figure 7. (a) Simulation of the image error evolution applied to IBVS Control (minimum error at 1.3
s) (b) Simulation of the position error evolution applied to PBVS Control (minimum error at 5 s). (c)
Simulation of the error evolution applied to HBVS Control (minimum error at 2.1 s). (d) Results of
the superposition of IBVS and PBVS image errors resulting in HBVS Control.

The main difference between IBVS and PBVS controls consists of the reference to es-
timate the error norm. For instance, in IBVS control sensed images, features are extracted
and compared using the image plane. In PBVS control image features are also extracted,
and this information is used to compute relative position from the object to be compared
with the goal relative position. PBVS error is greater than IBVS because they have different
units: PBVS error is computed in length units of centimeters, but IBVS error is computed
in pixels.

4.2. Control Signal Response
Figure 8 shows the control signals in terms of linear and angular speeds (see Equa-

tions (3) and (4)) once one of the IBVS, PBVS, or HBVS algorithms was run up.

(a)

Figure 7. (a) Simulation of the image error evolution applied to IBVS Control (minimum error at
1.3 s) (b) Simulation of the position error evolution applied to PBVS Control (minimum error at 5 s).
(c) Simulation of the error evolution applied to HBVS Control (minimum error at 2.1 s). (d) Results of
the superposition of IBVS and PBVS image errors resulting in HBVS Control.

Machines 2022, 9, x FOR PEER REVIEW 14 of 21

The main difference between IBVS and PBVS controls consists of the reference to es-
timate the error norm. For instance, in IBVS control sensed images, features are extracted
and compared using the image plane. In PBVS control image features are also extracted,
and this information is used to compute relative position from the object to be compared
with the goal relative position. PBVS error is greater than IBVS because they have different
units: PBVS error is computed in length units of centimeters, but IBVS error is computed
in pixels.

4.2. Control Signal Response
Figure 8 shows the control signals in terms of linear and angular speeds (see Equa-

tions (3) and (4)) once one of the IBVS, PBVS, or HBVS algorithms was run up.

(a)

(b)

Figure 8. Cont.

Machines 2022, 10, 193 14 of 20Machines 2022, 9, x FOR PEER REVIEW 15 of 21

(c)

Figure 8. Simulation of the control signals: linear and angular speeds applying the (a) IBVS, (b)
PBVS, and (c) HBVS control algorithms.

The main idea is to use Equation (4) parameters which are the real kinematic of the
robot. It can be observed that the control signals respond quickly (see inset Figures) in less
than 0.05 s for IBVS, and 0.1 s for PBVS and HBVS.

4.3. Evolution of Image Frame
Figure 9 shows the image evolution of the robot camera (in pixels) in the three cases

IBVS, PBVS, and HBVS. For this, a square will be shaped by using the four red points
shown in this figure. This will be shown for the IBVS in the next section of the experi-
mental results.

(a)

Figure 8. Simulation of the control signals: linear and angular speeds applying the (a) IBVS, (b) PBVS,
and (c) HBVS control algorithms.

4.1. Image Error Evolution

Figure 7 shows the simulation of the image error evolution as a time function applying
the IBVS (Image Based Visual Servo), PBVS (Position Based Visual Servo)„ and the hybrid
scheme controllers. For the IBVS control, it can be observed that a minimum error is
reached after 1.3 s (see the local minimun), and after there is a negligible increase, similarly,
a minimum error is reached after 5 s for PBVS control. Regarding hybrid controller (HBVS),
the simulation of image error evolution depends on the time when HBVS is applied. It can
be observed that a minimum error is reached after 2.1 s.

The main difference between IBVS and PBVS controls consists of the reference to
estimate the error norm. For instance, in IBVS control sensed images, features are extracted
and compared using the image plane. In PBVS control image features are also extracted,
and this information is used to compute relative position from the object to be compared
with the goal relative position. PBVS error is greater than IBVS because they have different
units: PBVS error is computed in length units of centimeters, but IBVS error is computed
in pixels.

4.2. Control Signal Response

Figure 8 shows the control signals in terms of linear and angular speeds (see
Equations (3) and (4)) once one of the IBVS, PBVS, or HBVS algorithms was run up.

The main idea is to use Equation (4) parameters which are the real kinematic of the
robot. It can be observed that the control signals respond quickly (see inset Figures) in less
than 0.05 s for IBVS, and 0.1 s for PBVS and HBVS.

4.3. Evolution of Image Frame

Figure 9 shows the image evolution of the robot camera (in pixels) in the three
cases IBVS, PBVS, and HBVS. For this, a square will be shaped by using the four red
points shown in this figure. This will be shown for the IBVS in the next section of the
experimental results.

4.4. Initial and Final Pose in 3D

Figure 10 shows the simulation results after applying the IBVS, PBVS, and HBVS
controllers, and inverse kinematic (see Equation (4)) to obtain the robot poses.

Machines 2022, 10, 193 15 of 20

Machines 2022, 9, x FOR PEER REVIEW 15 of 21

(c)

Figure 8. Simulation of the control signals: linear and angular speeds applying the (a) IBVS, (b)
PBVS, and (c) HBVS control algorithms.

The main idea is to use Equation (4) parameters which are the real kinematic of the
robot. It can be observed that the control signals respond quickly (see inset Figures) in less
than 0.05 s for IBVS, and 0.1 s for PBVS and HBVS.

4.3. Evolution of Image Frame
Figure 9 shows the image evolution of the robot camera (in pixels) in the three cases

IBVS, PBVS, and HBVS. For this, a square will be shaped by using the four red points
shown in this figure. This will be shown for the IBVS in the next section of the experi-
mental results.

(a)

Machines 2022, 9, x FOR PEER REVIEW 16 of 21

(b)

(c)

Figure 9. (a) Simulation of the extracted features evolution based on image frame based on IBVS,
(b) PBVS, (c) HBVS.

4.4. Initial and Final Pose in 3D
Figure 10 shows the simulation results after applying the IBVS, PBVS, and HBVS

controllers, and inverse kinematic (see Equation (4)) to obtain the robot poses.

Figure 9. (a) Simulation of the extracted features evolution based on image frame based on IBVS,
(b) PBVS, (c) HBVS.

Machines 2022, 10, 193 16 of 20Machines 2022, 9, x FOR PEER REVIEW 17 of 21

(a)

(b)

(c)

Figure 10. Initial and final poses after applying (a) IBVS, (b) PBVS, and (c) HBVS control. Figure 10. Initial and final poses after applying (a) IBVS, (b) PBVS, and (c) HBVS control.

Machines 2022, 10, 193 17 of 20

5. Experimental Results
5.1. Color Image Processing

The fact of how the camera would recognize a square object filled with a specific color
was researched in order to characterize the image processed. Several tests were performed
with a red square over a black background as shown in Figure 11.

Machines 2022, 9, x FOR PEER REVIEW 18 of 21

5. Experimental Results
5.1. Color Image Processing

The fact of how the camera would recognize a square object filled with a specific color
was researched in order to characterize the image processed. Several tests were performed
with a red square over a black background as shown in Figure 11.

Figure 11. The robot’s objective is implemented as a red square.

This was the first image successfully processed and recognized. Following this pro-
cess, red characteristics from the image sensed by the camera were searched. The next step
was to invert the image and divide by 16, to get a better contrast for the image by making
the algorithm run-up at low resolution. Later, it was necessary to filter to search only those
who had a square shape using Algorithm 1 implemented on Python for the Raspberry Pi
[33]. As a result of this processing, four points related to the four corners of the square
were obtained (See the Supplementary Materials section to obtain the codes for image
processing and control algorithm):

Algorithm 1: Feature extraction
Input: Image collected by the camera.
Output: set of 4 points coordinates in the image frame, s_i(t).
1 Get the image collected by the camera.
2 Segment the red color.
3 Compare shape (Must be square-like shape).
4 Identify corners.
5 Set coordinates of the points as s_i(t).

5.2. Implementation of the Designed Controller
The control algorithm aims to calculate the control signals for engines, accomplishing

the method of the kinematic chain (Jacobian of the robot) and imposing a decreasing be-
havior to image error. For these calculations, robot Jacobian images as can be seen in Equa-
tion (5) represent the optical flow equations that relate to the changes occurring in the
image concerning the reference frame of the camera. The Jacobian of the robot, also known
as the kinematic chain, is used to apply inverse kinematics to compute the angular speed
values that will be applied to the robot engines.

The servo control algorithm (Algorithm 2) running up in Python for Raspberry Pi
starts by calculating the Jacobian images (objective and sensed) using Equation (5). It is
important to note that this equation describes the behavior of only one point in the image,
and then this computing must be realized for all the image features extracted from the
camera sensed image, similar to the four points extracted in Section 5.1. Implemented al-
gorithms can be found in the Supplementary Materials section for image processing and
control:

Figure 11. The robot’s objective is implemented as a red square.

This was the first image successfully processed and recognized. Following this process,
red characteristics from the image sensed by the camera were searched. The next step was
to invert the image and divide by 16, to get a better contrast for the image by making the
algorithm run-up at low resolution. Later, it was necessary to filter to search only those who
had a square shape using Algorithm 1 implemented on Python for the Raspberry Pi [33].
As a result of this processing, four points related to the four corners of the square were
obtained (See the Supplementary Materials section to obtain the codes for image processing
and control algorithm):

Algorithm 1: Feature extraction

Input: Image collected by the camera.
Output: set of 4 points coordinates in the image frame, s_i(t).
1 Get the image collected by the camera.
2 Segment the red color.
3 Compare shape (Must be square-like shape).
4 Identify corners.
5 Set coordinates of the points as s_i(t).

5.2. Implementation of the Designed Controller

The control algorithm aims to calculate the control signals for engines, accomplishing
the method of the kinematic chain (Jacobian of the robot) and imposing a decreasing
behavior to image error. For these calculations, robot Jacobian images as can be seen in
Equation (5) represent the optical flow equations that relate to the changes occurring in the
image concerning the reference frame of the camera. The Jacobian of the robot, also known
as the kinematic chain, is used to apply inverse kinematics to compute the angular speed
values that will be applied to the robot engines.

The servo control algorithm (Algorithm 2) running up in Python for Raspberry Pi
starts by calculating the Jacobian images (objective and sensed) using Equation (5). It
is important to note that this equation describes the behavior of only one point in the
image, and then this computing must be realized for all the image features extracted
from the camera sensed image, similar to the four points extracted in Section 5.1. Im-
plemented algorithms can be found in the Supplementary Materials section for image
processing and control:

Machines 2022, 10, 193 18 of 20

Algorithm 2: Control Signal Computing

Input: a set of 4 points coordinates in the image frame, s_i(t). Set of 4 goal points coordinates in
the image frame, s_iˆ*(t). Measurements of θ and θ_pl.
Output: Apply control signal to the robot,

.
p(t).

1 Measure θ and θ_pl.
2 Collect images from the camera.
3 Implement Algorithm 1.
4 Compute image Jacobian Li(s) from Equation (5).
5 Compute the error as is shown in Equation (8).
6 Compute

.
p(t) from Equation (14).

7 Apply
.
p(t) to the robot.

8 Go to 1.

Figure 12 shows an external viewpoint during the real implementation of the algorithm
of visual servo control for a 3 DOF robotics system. In the Supplementary Materials a video
of the operating robot can be found.

Machines 2022, 9, x FOR PEER REVIEW 19 of 21

Algorithm 2: Control Signal Computing
Input: a set of 4 points coordinates in the image frame, s_i(t). Set of 4 goal points coordi-
nates in the image frame, s_i^*(t). Measurements of θ and θ_pl.
Output: Apply control signal to the robot, 𝑝(t).
1 Measure θ and θ_pl.
2 Collect images from the camera.
3 Implement Algorithm 1.
4 Compute image Jacobian Li(s) from Equation (5).
5 Compute the error as is shown in Equation (8).
6 Compute 𝑝(t) from Equation (14).
7 Apply 𝑝(t) to the robot.
8 Go to 1.

Figure 12 shows an external viewpoint during the real implementation of the algo-
rithm of visual servo control for a 3 DOF robotics system. In the Supplementary Materials
a video of the operating robot can be found.

Figure 12. Robot in operation. Red square is the objective to be sensed by the camera.

6. Conclusions
In this research study, an image-based visual servo for an autonomous mobile robot

was modeled and implemented using LEGO EV3 and a Raspberry Pi. This proposed robot
operates in two schemes: automatic and manual, with satisfactory performance and rec-
ognizing processed image and accurate communication among the three devices: The
Raspberry Pi, Lego EV3, and smartphone. This robotic system was designed by running
up control IBVS, PBVS, and hybrid algorithms, applied to obtain the inverse kinematic of
the robot. The proposed robot is an economic proposal with feature recognition to be used
in other settings beyond basic educational programs. It is important to highlight that the
assisted video streaming application promotes autonomy using a simple device such as
an Android smartphone to easily operate and monitor any objective. For future works, it
is proposed to include restrictions on conditions and actuators for better system perfor-
mance under new parameters, the design of controls considering uncertainties generated
by the camera calibration, and the running up of algorithms for feature extractions of more
complex images (objectives). These improvements can be implemented by running up al-
gorithms for feature extraction and stereo vision.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/s1, . Code 1: Mobile app code, Code 2: Image processing and control algorithm
code, Video S1: Robot 3-DOF-IBVS.

Author Contributions: Conceptualization, D.P.G. and A.M.L.; methodology, D.P.G. and A.M.L.;
software, J.G.A. and H.L.A.; validation, H.L.A., J.A.U., J.F.R., R.C.V. and J.G.A.; formal analysis,
A.M.L.; resources, A.M.L.; data curation, H.L.A. and J.G.A.; writing—original draft preparation,

Figure 12. Robot in operation. Red square is the objective to be sensed by the camera.

6. Conclusions

In this research study, an image-based visual servo for an autonomous mobile robot
was modeled and implemented using LEGO EV3 and a Raspberry Pi. This proposed
robot operates in two schemes: automatic and manual, with satisfactory performance and
recognizing processed image and accurate communication among the three devices: The
Raspberry Pi, Lego EV3, and smartphone. This robotic system was designed by running
up control IBVS, PBVS, and hybrid algorithms, applied to obtain the inverse kinematic of
the robot. The proposed robot is an economic proposal with feature recognition to be used
in other settings beyond basic educational programs. It is important to highlight that the
assisted video streaming application promotes autonomy using a simple device such as an
Android smartphone to easily operate and monitor any objective. For future works, it is
proposed to include restrictions on conditions and actuators for better system performance
under new parameters, the design of controls considering uncertainties generated by
the camera calibration, and the running up of algorithms for feature extractions of more
complex images (objectives). These improvements can be implemented by running up
algorithms for feature extraction and stereo vision.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines10030193/s1, Code 1: Mobile app code, Code 2: Image
processing and control algorithm code, Video S1: Robot 3-DOF-IBVS.

Author Contributions: Conceptualization, D.P.G. and A.M.L.; methodology, D.P.G. and A.M.L.;
software, J.G.A. and H.L.A.; validation, H.L.A., J.A.U., J.F.R., R.C.V. and J.G.A.; formal analysis,
A.M.L.; resources, A.M.L.; data curation, H.L.A. and J.G.A.; writing—original draft preparation,
C.S.-I. and A.M.L.; writing—review and editing, C.S.-I. and A.M.L.; visualization, C.S.-I. and A.M.L.;

https://www.mdpi.com/article/10.3390/machines10030193/s1
https://www.mdpi.com/article/10.3390/machines10030193/s1

Machines 2022, 10, 193 19 of 20

supervision, A.M.L.; project administration, A.M.L.; funding acquisition, A.M.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Universidad Pontificia Bolivariana Montería, grant number
161-02/13-G019 and The APC was funded by Universidad Pontificia Bolivariana Montería. This
research work was financially supported with resources from Universidad Pontificia Bolivariana
Seccional Montería under Innova Project N◦ 161-02/13-G019, by the Thematic Project “Formulación
de una Ley de Control Visual Utilizando Técnicas de Control Predictivo Basado en Modelo para un Sistema
Robótico de 3 Grados de Libertad” [Formulation of a Visual Control Law Using Model-Based Predictive
Control Techniques for 3 Degrees of Freedom Robotic System].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bini, D.; Pamela, D.; Prince, S. Machine Vision and Machine Learning for Intelligent Agrobots: A review. In Proceedings of the

ICDCS 2020—2020 5th International Conference on Devices, Circuits and Systems, Coimbatore, India, 5–6 March 2020; Institute
of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; pp. 12–16.

2. Kala, H.S.; Hebbar, R.; Anjali Singh, S.; Amrutha, R.; Patil, A.R.; Kamble, D.; Vinod, P.V. AgRobots (a combination of image
processing and data analytics for precision pesticide use). In Proceedings of the 2018 International Conference on Design
Innovations for 3Cs Compute Communicate Control, ICDI3C 2018, Bangalore, India, 25–28 April 2018; Institute of Electrical and
Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 56–58.

3. Tortora, G.; Ranzani, T.; De Falco, I.; Dario, P.; Menciassi, A. A miniature robot for retraction tasks under vision assistance in
Minimally Invasive Surgery. Robotics 2014, 3, 70–82. [CrossRef]

4. Klassner, F. A case study of LEGO MindstormsTM suitability for Artificial Intelligence and robotics courses at the college level.
SIGCSE Bull. Assoc. Comput. Mach. Spec. Interes. Gr. Comput. Sci. Educ. 2002, 34, 8–12. [CrossRef]

5. Foresti, G.L.; Martinel, N.; Micheloni, C.; Marco, V. Advanced Artificial Vision and Mobile Devices for New Applications in
Learning, Entertainment and Cultural Heritage Domains. In Interdisciplinary Mechatronics; Wiley: Hoboken, NJ, USA, 2013;
pp. 451–481. ISBN 9781848214187.

6. Ghasemi, A.; Li, P.; Xie, W.F.; Tian, W. Enhanced switch image-based visual servoing dealing with featuresloss. Electronics 2019,
8, 903. [CrossRef]

7. Fue, K.; Porte, W.; Barnes, E.; Li, C.; Rains, G. Center-Articulated Hydrostatic Cotton Harvesting State Machine. Electronics 2020,
9, 1223. [CrossRef]

8. Hutchinson, S.; Hager, G.D.; Corke, P.I. A tutorial on visual servo control. IEEE Trans. Robot. Autom. 1996, 12, 651–670. [CrossRef]
9. Chaumette, F.; Rives, P.; Espiau, B. The task function approach applied to vision-based control. Adv. Robot. 1991, 2, 1392–1397.
10. Barriere, M.; Patino, D.; Parra, C. Notes about visual servoing control for a cart-like robot. IEEE Trans. Robot. 2009, 1–6.
11. Guillaume Allibert, E.C.; Chaumette, F. Predictive Control for Constrained Image-Based Visual Servoing. IEEE Trans. Robot. 2010,

26, 933–939. [CrossRef]
12. Courtial, G.A.E.; Toure, Y. Visual Predictive Control; Springer: Berlin/Heidelberg, Germany, 2006.
13. Danes, P.; Coutinho, D.; Durola, S. Multicriteria analysis of visual servos through rational systems, biquadratic lyapunov functions,

and LMIs. In Visual Servoing via Advanced Numerical Methods; Springer: London, UK, 2010; pp. 169–188.
14. Pomares, J. Visual servoing in robotics. Electronics 2019, 8, 1298. [CrossRef]
15. Lopez, A.M.L.; Uribe, J.E.A. Visual servo control law design using 2D vision approach, for a 3 DOF robotic system built with

LEGO EV3 and a Raspberry Pi. In Proceedings of the 2016 21st Symposium on Signal Processing, Images and Artificial Vision,
STSIVA 2016, Bucaramanga, Colombia, 30 August–2 September 2016.

16. Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; Wiley: Hoboken, NJ, USA, 2006; ISBN 0471649902.
17. Klassner, F.; Anderson, S.D. LEGO MindStorms: Not just for K-12 anymore. IEEE Robot. Autom. Mag. 2003, 10, 12–18. [CrossRef]
18. Rawashdeh, N.; Abu-Alrub, N. Gripper control design and simulation for openrov submarine robot. Actuators 2021, 10, 252.

[CrossRef]
19. Cañas, J.M.; Fernández-Conde, J.; Vega, J.; Ordóñez, J. Reconfigurable computing for reactive robotics using open-source fpgas.

Electronics 2022, 11, 8. [CrossRef]
20. Rizo, J. Sistema de Control Visual Para un Robot Móvil de Exteriores; Pontifica Universidad Javeriana: Bogotá, Colombia, 2006.
21. Chaumette, F.; Hutchinson, S. Visual servo control. I. Basic approaches. Robot. Autom. Mag. 2006, 13, 82–90. [CrossRef]
22. Lopez, A.M. Control Law Desig Using Linear Matrix Inequality Techniques for a Visual Feedback Loop; Pontificia Universidad Javeriana:

Bogotá, Colombia, 2013.

http://doi.org/10.3390/robotics3010070
http://doi.org/10.1145/563517.563345
http://doi.org/10.3390/electronics8080903
http://doi.org/10.3390/electronics9081226
http://doi.org/10.1109/70.538972
http://doi.org/10.1109/TRO.2010.2056590
http://doi.org/10.3390/electronics8111298
http://doi.org/10.1109/MRA.2003.1213611
http://doi.org/10.3390/act10100252
http://doi.org/10.3390/electronics11010008
http://doi.org/10.1109/MRA.2006.250573

Machines 2022, 10, 193 20 of 20

23. Chaumette, F.; Malis, E. 2 1/2 D visual servoing: A possible solution to improve image-based and position-based visual servoings.
In Proceedings of the 2000 ICRA Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia
Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA, 24–28 April 2000; pp. 630–635. [CrossRef]

24. Malis, E. 2-1/2-D Visual Servoing. IEEE Trans. Robot. 1999, 15, 238–250. [CrossRef]
25. Gans, N.R. Stable Visual Servoing Through Hybrid Switched-System Control. Robot. IEEE Trans. 2007, 23, 530–540. [CrossRef]
26. Malis, E. Stability Analysis of Invariant Visual Servoing and Robustness to Parametric Uncertainties; Springer: Berlin/Heidelberg,

Germany, 2003; pp. 265–280.
27. Chen, S.; Li, Y.; Zhang, J.; Wang, W. Active Sensor Planning for Multiview Vision Tasks; Springer: Berlin/Heidelberg, Germany, 2008;

ISBN 3540770712.
28. Branicky, M.S. Stability of hybrid systems: State of the art. In Proceedings of the 36th IEEE Conference on Decision and Control,

San Diego, CA, USA, 13–15 December 1997; Volume 1, pp. 120–125.
29. Foundation, R.P. Raspberry Pi OS. Available online: https://www.raspberrypi.com/news/latest-raspberry-pi-os-update-may-

2020/ (accessed on 1 February 2021).
30. Ylonen, T. The Secure Shell (SSH) Authentication Protocol; Cisco Systems, Inc.: San Jose, CA, USA, 2006.
31. Mariottini, G.L.; Prattichizzo, D. EGT: A Toolbox for Multiple View Geometry and Visual Servoing. IEEE Robot. Autom. Mag.

2005, 3, 12.
32. Folio, D. Stratégies de Commande References Multi-Capture et Gestion de la Perte du Signal Visual Pour la Mavigation d’un Robot Mobile;

University Paul Sabatier: Toulouse, France, 2007.
33. Demaagd, K.; Oliver, A.; Oostendorp, N. Practical Computer Vision with SimpleCV: The Simple Way to Make Technology See; O’Reilly

Media, Inc.: Sebastopol, CA, USA, 2012; ISBN 1449320368.

http://doi.org/10.1109/ROBOT.2000.844123
http://doi.org/10.1109/70.760345
http://doi.org/10.1109/TRO.2007.895067
https://www.raspberrypi.com/news/latest-raspberry-pi-os-update-may-2020/
https://www.raspberrypi.com/news/latest-raspberry-pi-os-update-may-2020/

	Introduction
	Kinematical Degrees of Freedom Model, and Controller’s Design
	Kinematic Model
	IBVS Interaction Matrix
	PBVS Interaction Matrix
	IBVS Servocontrollers
	PBVS Servocontroller
	HBVS Servocontroller

	Experimental Setup
	Design of the Communication System between Raspberry Pi and Smartphone
	Design of Mobile Interface Using a Smartphone
	Assembling the Robot

	Simulation Results
	Image Error Evolution
	Control Signal Response
	Evolution of Image Frame
	Initial and Final Pose in 3D

	Experimental Results
	Color Image Processing
	Implementation of the Designed Controller

	Conclusions
	References

