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Abstract: A compact electrohydraulic actuator (C-EHA) is an innovative hydraulic system with a
wide range of applications, particularly in automation, robotics, and aerospace. The actuator provides
the benefits of hydraulics without the expense and space requirements of full-sized hydraulic systems
and in a much cleaner manner. However, this actuator is associated with some disadvantages, such as
a high level of nonlinearity, uncertainty, and a lack of studies. The development of a robust controller
requires a thorough understanding of the system behavior as well as an accurate dynamic model of
the system; however, finding an accurate dynamic model of a system is not always straightforward,
and it is considered a significant challenge for engineers, particularly for a C-EHA because the critical
parameters inside cannot be accessed. Our research aims to evaluate and confirm the ability of genetic
programming (GP) to model a nonlinear system for a C-EHA. In our paper, we present and develop a
GP model for the C-EHA system. Furthermore, our study presents a dynamic model of the system
for comparison with the GP model. As a result, by using this actuator in the 1-DOF arm system
and conducting experiments, we confirmed that the GP model has a better performance with less
positional error compared with the proposed dynamic model. The model can be used to conduct
further studies, such as designing controllers or system simulations.

Keywords: genetic programming; dynamic model; compact electrohydraulic actuator (C-EHA);
artificial intelligence

1. Introduction

Hydraulic actuators are among the most common in heavy industries. These actuation
systems can provide a high amount of force while consuming a minimum amount of energy.
However, most of these actuation systems are composed of a number of components that
may impose limitations on the system. As a result, these types of actuators might be very
difficult to use in applications where space, cleanliness, and weight are limited, such as
in robotics and aerospace. A compact electrohydraulic actuator (C-EHA), which offers
a number of advantages over conventional hydraulic actuators, has been developed to
overcome this issue. Figure 1 shows a commercial type of this actuator. These actuators
are significantly smaller and lighter compared with conventional hydraulic actuators, can
run on battery power, are isolated, very clean, plug-and-play, and can be integrated into a
wide range of systems. These characteristics distinguish this actuator and open up a broad
variety of applications for it, particularly in positioning systems and robotics applications
where high force is required in a limited space. Despite this product being well developed
and already commercially available, engineers continue to improve the control system’s
performance because these actuators are associated with a high level of non-linearity and
uncertainty. Having an accurate model of the system could help improve tracking accuracy
and enhance control performance, especially for model-based controllers [1].

The dynamic modeling approach is considered the most popular method of deter-
mining the system’s model. Modeling the system using physical rules offers its own set of
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benefits and provides engineers with a unique perspective on the system’s features. How-
ever, this strategy requires an extensive understanding of the system, which may not always
be feasible when dealing with highly complex nonlinear systems, specifically hydraulic
systems [2]. A variety of linear and nonlinear controllers have been well developed over
the past few decades to more precisely control the conventional type of electrohydraulic
actuators [3–6]. Most of these systems monitor and measure critical internal parameters,
such as oil pressure and flow rate, during the actuator’s operation. These parameters can
be utilized to considerably increase the controller’s precision and performance. Moreover,
a standard controlled valve has been used to control most of these actuators’ cylinder
rods. However, no such components to control the output of an C-EHA exist, which are
also known as pump-controlled hydraulic or electrohydrostatic systems, or self-contained
electrohydraulic cylinder drives (Figure 2). Because these actuators rely solely on the pump
motor’s speed as input, it is difficult to determine an accurate dynamic model for the control
system because oil pressure and flow rate are not accessible to measure in C-EHA systems.

Figure 1. Commercial C-EHA made by Parker Hannifin company (Cleveland, OH, USA). (EHA
648365, SN:1320504338, 24VDC, max speed: 0.08 m/s, max payload: 2669 Nf/600 lbf).

Figure 2. 3D model of C-EHA and main components.

This type of actuator has been the subject of several studies over the past decade with
the aim of improving their characteristics, modeling, and identification, or developing
higher-precision controllers. The following are some highlights from previous studies.
Hagen et al. listed various types of internal structures for valveless types of actuators [7].
Ling et al. conducted a study on identifying the system and improving the accuracy of
an EHA’s position-tracking system. The authors applied stimulus–response data and
implemented system identification processes without applying physics laws for model-
ing, resulting in a linear model for the nonlinear system [8]. Nie et al. developed an
extended-state-observer-based backstepping control system for underwater electrohydro-
static actuators [9]. Martin and Louis developed an electrohydrostatic actuator model;
however, they only made simulations and did not compare the results with the actual
actuator [10].
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The some of research in the area of electrohydrostatic actuators is focused on controlled-
valved actuators; valveless actuators have not received significant attention. Even though
there have been some significant achievements in these studies, finding an accurate model
of the system remains a challenge. As previously mentioned, measuring hydraulic actuator
internal parameters such as oil pressure or flow rate can significantly increase the accuracy
of the model and control. Due to the fact that these parameters are not accessible in this type
of isolated system, the only parameter that can be measured is the pump speed. Therefore,
developing an accurate model of the system is still considered a challenge for researchers.

Alternatively, artificial intelligence techniques can be utilized to facilitate the devel-
opment of new modeling techniques without requiring the accurate dynamical models
of various systems [11–13], specially an EHA [14,15]. Genetic programming (GP), an ex-
tension of genetic algorithms (GA), is a well-known solution for nonlinear problems. It is
an optimization method that can be applied to optimize complex systems with nonlinear
structures, as well as to present systems and their parameters [16]. GP provides a number
of benefits, such as the possibility of utilizing system pre-knowledge to prepare a better
initial candidate solution that could help to achieve better results [17]. GP has numerous
applications in engineering, and it can be applied to the design and identification of various
systems. For example, Santos utilized GP to identify a nonlinear model for an experimen-
tal ball-and-tube system [18]. Recently, Raibaudo and his team implemented GP on an
experimental setup to optimize unsteady feedback controllers. The GP method also has
additional applications in engineering and non-engineering fields (see [19–22]).

A primary objective of our research is to examine the effectiveness of using GP methods
to develop an accurate model for a case study of a commercial type of C-EHA (Figure 1).
We investigated a GP model that was proposed and reported in a previous paper, and
we evaluated the accuracy and performance of this method [23]. Our study develops an
appropriate dynamic mode for comparison. We applied the same input command to both
dynamic and GP models, as well to a real actuator system. We performed a comparison of
the position-tracking error data between the two models to check which has better accuracy.

An introduction to the C-EHA is provided in Section 2, followed by details on the
development of a proper dynamic model. Section 3 briefly describes the GP method and
the parameter settings developed in the previous paper, which we used in our study to
model the compact electrohydraulic actuator. The experiment and final results for both
the GP and dynamic models are presented and discussed in Section 4. The final section
concludes our study.

2. Dynamic Modeling
2.1. Compact Electrohydraulic Actuator (C-EHA)

C-EHAs have a broad range of applications, particularly in automation and robotics,
due to their unique features. In contrast to conventional actuators, this actuator does not
use an actuated valve to control the amount of oil and, consequently, pressure on the
piston sides. Instead, automatic valves, which control the flow of oil based on the rational
direction of the pump, are integrated with the system. C-EHA technology simply connects
two ports of a bi-directional gear pump to either side of a piston, along with a small oil
reservoir as a means of generating an initial pressure. As a result of a motor driving the
gear pump, the piston moves in either direction. Figure 3 shows that this actuator’s motor
rotates the gear pump in one direction to pressurize the hydraulic fluid and extend the
cylinder. Fluid is drawn from both the small reservoir inside the actuator and the cylinder’s
head side as the auto-valves open, resulting in the actuator rod’s extension. The motor runs
in the other direction during the retraction phase, reversing the operation and returning the
fluid to the piston’s opposite side. The leakage is assumed to be negligible because of the
system’s isolation and its inability to measure any internal leakage. The motion equation
for this actuator can be derived using the continuity equation shown in (1) following the
assumption that oil is not compressible [24,25].
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Q1 =
dV1

dt
+

V1

βe

dP1

dt

Q2 = −dV2

dt
− V2

βe

dP2

dt

(1)

where Qi, Pi, and Vi are the flow rate, cylinder pressure, and cylinder volume, respectively.
βe is defined as the effective bulk modulus of oil. The cylinder volume can be rewritten
as in (2), where V0 is the cylinder’s initial volume, xp is the piston position, and Ai is the
piston’s cross-section area.

V1 = V01 + A1xp

V2 = V02 − A2xp
(2)

Figure 3. Simplified C-EHA mechanism.

Consequently, by substituting (2) into (1), the continuity equation can be rewritten
as (3).

Ṗ1 = Q1
βe

V1
− A1 ẋp

βe

V1

Ṗ2 = −Q2
βe

V2
+ A2 ẋp

βe

V2

(3)

The difference in pressure between the piston’s two sides generates external force.
Equation (4) describes this external force in the presence of friction between the cylinder
and piston.

P1 A1 − P2 A2 = Fext + Ff riction (4)

As previously mentioned, the inside pressure value is unavailable for measurement.
Thus, we can consider the derivative of (4) as follows.

Ṗ1 A1 − Ṗ2 A2 = ˙Fext + ˙Ff riction (5)

The flow rates Q1 and Q2 are circulated by the internal gear pump, described as
follows, where cp is the pump’s volumetric capacity and ωp is the pump’s rotational speed.

Q1 = cpωp, Q2 = − A2

A1
Q1 (6)

The generated force’s final equation can be expressed as (7).

βecp

(
A2

1
V1

+
A2

2
V2

)
ẋp + βecp

(
A1

V1
−

A2
2

V1V2

)
ωp = Ḟext + Ḟf riction (7)
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Stribeck effects are applied to determine the C-EHA’s friction model. Figure 4 shows
the Stribeck effect for the viscus friction force as a function of velocity. Contact surfaces can
have different friction forces depending on their velocities. There are four major regions;
steady-state velocity, boundary lubrication, and partial fluid and full fluid lubrication. The
friction model and its derivatives can be defined by (8) and (9), respectively [26].

Ff riction =

(
Fk + (Fs − Fk)e

−
(

ẋp
ẋs

)2
)

sgn
(

ẋp
)
+ Fv ẋp (8)

Ḟf riction = −2(Fs − Fk)e
−
(

ẋp
ẋs

)2 ẋẍ
ẋ2

s
sgn(ẋp) + Fv ẍp (9)

where Fk, Fs, and Fv are the coefficients of kinetic, static, and viscous frictions, respectively,
and ẋp is the Stribeck velocity. We can determine these unknown parameters by performing
specific tests on the actuator. Section 4.1 provides a detailed explanation of this procedure.

Figure 4. Stribeck effect model.

2.2. Equation of Motion for Arm Manipulator

Figure 5a shows a one-DOF arm manipulator that we developed to provide the
experimental datasets. This arm is equipped with the commercial-type C-EHA made by the
Parker Hannifin Company with a maximum payload of 2669N (Figure 1).Both mounting
sides of the C-EHA can be easily adjusted in this setup. A strong bolt is also used to attach
the weight as an external load to the head of the arm. Weights of different sizes are provided,
which can be easily changed or even installed together using longer bolts. Section 4 shows
the results of a number of experiments we conducted to provide training and validation
datasets for the GP model and find friction parameters for the dynamic models. We used
these data to demonstrate the proposed models’ effectiveness and accuracy.

Here, we present the motion equation for the arm manipulator. We chose to ap-
ply the Lagrange method to this system to find the model. Based on the parameters
defined in Figure 5b, (10) and (11) present the system’s kinematic and potential energy
equations, respectively.

T =
1
2

(
m1L2 +

m2L2

3

)
θ̇2 (10)

U =
(

m1 +
m2

2

)
gL sin θ (11)

Lagrange’s method is described as follows

d
dt

(
∂T
∂θ̇

)
− ∂T

∂θ
+

∂U
∂θ

= τ (12)

where τ represents the applied torque at the rotational joint. The relation between the
external force and torque generated by the hydraulic actuator can be defined as follows:

τ = Fextl sin α (13)
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By substituting Equations (10)–(13) into Lagrange’s method, Equation (12), the motion
equation of the arm manipulator and its derivative, can be obtained, as expressed in
Equation (14) and Equation (15), respectively.(

m1L2 +
m2L2

3

)
θ̈ +

(
m1 +

m2

2

)
gL cos θ = Fextl sin α (14)

(
m1L2 +

m2L2

3

)
θ(3) −

(
m1 +

m2

2

)
gL sin θ · θ̇ = Ḟextl sin α (15)

By substituting Equation (7) in Equation (15), the final motion equation for the arm
manipulator can be summarized as in Equation (16)

θ(3) =
H2

H1
sin θ · θ̇ − H3

H1
T1 ẋp −

H3

H1
Ḟf riction +

H3

H1
T2ωp (16)

where

H1 = m1L2 +
m2L2

3
, H2 =

(
m1 +

m2
2

)
gL , H3 = l sin α

T1 = βe

(
A2

1
V1

+
A2

2
V2

)
, T2 = βecp

(
A1
V1

−
A2

2
V1V2

)

(a) (b)
Figure 5. One-DOF arm manipulator developed as experiment setup: (a) experimental setup,
(b) schematic diagram.

3. Genetic Programming and Its Application for Hydraulic Actuator Problem

Genetic programming is considered an extension of genetic algorithms. Generally,
genetic programming refers to an automated method of generating computer programs
that carefully solve specific problems by the principle of natural selection. GP was created
using evolutionary algorithms and was first developed by Barricelli to simulate evolu-
tion [27]. Later, Rechenberg used GP in the early 1970s to solve more complex engineering
problems through evolution strategies. Nicholas Cramer made the first “tree-based” genetic
programming declaration [28]; furthermore, John Koza played a key role in the develop-
ment of GP and its application to a number of different situations [29]. The flowchart in
Figure 6a illustrates a general GP procedure. The initial populations are made based on
pre-knowledge of the system and basic algebra operations. A fitness function is used to
evaluate each candidate solution based on the available training-set data, which is obtained
from experiments. As each candidate solution undergoes GP operations, their fitness
values impact their chances of survival. Good candidate solutions can be improved with
each successive generation and, ultimately, the best result can be achieved after many
generations. The final model’s validation can be conducted using the validation-set data
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obtained from the experiments. In our study, we used previously proposed GP model
structures and parameters, which are briefly discussed as follows [23].

(a) (b)

Figure 6. Genetic programming (GP) structure: (a) flow chart, (b) tree structure example.

3.1. Encoding and Initial Population

Figure 6 shows all the individuals are encoded as a tree structure in a mathematical
model. Terminal (basic algebra operations and subfunctions) and root nodes (constant
numbers and inputs) exist in every structure. GP individuals do not have a fixed length,
and they may change from generation to generation. Randomly selecting initial candidates
allows GP to generate a wide range of candidate solutions [16]. However, C-EHA requires
only one input command to increase the GP model’s accuracy, with the motor pump’s
current speed as an input also being considered . Additionally, the arm’s current position is
also added to the model as an input to obtain the arm’s absolute position. Considering these
three inputs and one output as the next arm position, the GP model is considered a multi-
input–single-output model (MISO). Considering the available functions and conditions, we
assume that each node can have a maximum of two branches and a minimum of none. The
candidate’s final value can then be calculated by using the input values and substituting
them into the roots.

3.2. Function Library

Generally, function libraries can be imagined as pools containing functions and termi-
nal sets for making initial population or mutation branches. The terminal set consists of
statements, operations, basic algebra, and sub-functions while the root set is composed of
the system inputs and constant numbers. Any prior knowledge of the system should also
be considered for the initial population. Therefore, in addition to the basic algebraic and
sinusoidal functions, the hyperbolic tangent function is also selected as part of the function
library because it has similar properties to the friction model.

3.3. Fitness Function

Fitness functions are a type of objective function that measures how well a solution
candidate performs in comparison with the actual data available. Several well-known
fitness functions exist for GA and GP depending on the conditions [30]. We define fit-
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ness function in our study as the sum of squared errors between the model output and
experimental data.

3.4. Operations

Similar to the GA method, the GP method uses three major operations to create the
main components of the GP: selection, crossover, and mutation [31]. The selection process,
such as roulette-wheel, tournament, ranking, and elitist selection, is the process in which
candidates from one generation are selected according to the selection method and fitness
values to generate new candidates for the next generation. Crossover refers to the process
of combining two individuals (parents) to create new individuals (offspring). A mutation is
a genetic operation that changes one part of an individual by using a randomly generated
sub-tree. In each generation, after the selection operation, both crossover and mutation
operations are usually partially applied to the candidates during the evaluation based on
their probability factors. These factors might vary depending on the optimization. In our
proposed GP model, in accordance with elitist selection theory, 25 percent of the population
with the highest fitness values are directly passed down to the next generation in order
to avoid the effects of crossover and mutation. The remainder of the population is then
subjected to crossover and mutation with rates of 80% and 3%, respectively. We used the
roulette-wheel method to select candidates for crossover and mutation operations. These
operations may result in a longer or shorter tree structures because of the random selection
of nodes for crossover and mutation. However, long structures pose some challenges to
GP. Consequently, we defined a 20-node limit for individuals to avoid creating long tree
structures. An operation that produces offspring with a length greater than the limitation is
not acceptable, and the selected node should be changed again until the new tree structure
length is less than the limitation.

3.5. Termination

Using termination rules, a genetic algorithm determines whether to continue searching
for a better answer or to stop searching. The termination criterion is checked after each
generation to determine whether the answer meets the criterion. Based on the problem
conditions, there are many ways to define the criteria for termination. The most well-
known criteria are generation number, fitness threshold, and fitness convergence [32]. We
used all three criteria simultaneously in our study to determine termination during the
GP generations.

4. Experiment, Result, and Discussion

Our research requires various experiments to be designed and performed in order to
produce data sets. Three major experiment setups are designed and conducted as follows.

4.1. Friction Parameter Identification

To find the unknown friction coefficients expressed in Equation (8) and check how
much the friction term can affect the system response, it is essential to obtain the relation
between the friction force and actuator speed. The first step in conducting such a test is
to activate the manual release valve in the C-EHA to make a passive motion of the piston
while the actuator is not in operation mode. Next, the system should be moved at a constant
speed by applying controlled external force. We measured and recorded the external force
and piston velocity for post-processing. The external load represents the amount of friction
inside the actuator because it is not in operation. Figure 7 shows the results of a number of
tests conducted at various speeds. We obtained the arm manipulator’s estimated friction
parameters using Matlab curve-fitting toolbox and listed them in Table 1 along with other
geometric parameters. Figure 7 shows the range of inner-friction force (60N) is relatively
smaller than the actuator maximum payload when it is in operation (2669N). Friction terms
can be neglected depending on the system and the model’s purpose. Nevertheless, we did
not ignore them in our study.
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Figure 7. Stribeck effect model found by experimental data.

Table 1. Parameters of C-EHA used in this study.

Parameter Symbol Unit Value

Extra mass m1 kg 46.7
Mass of arm m2 kg 1.64
Length of arm up to weight L m 0.488
Length of arm up to actuator head pin l m 0.225
Cross-section area of piston with rod A1 m2 6.319 × 10−4

Cross-section area of piston without rod A2 m2 8.042 × 10−4

Initial length of hydraulic actuator x0 m 0.3055
Volumetric capacity of the pump cp m3/rad 1.050 × 10−7

Effective bulk modulus of the oil βe Pa 1.747 × 109

Kinetic friction coefficient Fk N 1.87
Static friction coefficient Fs N 13.15
Viscous friction coefficient Fv Ns/m 741.36
Stribeck velocity ẋs m/s 0.0028

4.2. GP Dataset

The GP method requires two sets of data for training and validation purposes. We
conducted a large number of tests on the real system while measuring and recording
inputs and outputs using a computer to create these datasets. The piston’s speed in
this actuator is controlled exclusively by the pump speed, which is directly related to
the motor input voltage. We conducted five sets of 80-s tests for GP training, as well as
three sets for validation. A variety of frequencies and amplitudes are incorporated into
input commands for creating datasets to ensure that all of the various actuator modes are
stimulated (Figure 8).
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Figure 8. Random input commands to generate validation data sets: (a) Test Set 1, (b) Test Set 2, and
(c) Test Set 3.

4.3. Dynamic Model Validation

We implemented the same validation tests utilized for the GP model to validate our
proposed dynamic system model. Furthermore, the results can be used to compare the
performance of the two methods. However, the motor speed rather than motor voltage is
required for dynamic models. We attached a proximity sensor to the motor side prior to
conducting tests to determine motor speed (Figure 9). We conducted additional tests to
provide a relationship between the motor voltage and speed. Figure 10 shows that this
relation can be considered linear.

(a) (b)
Figure 9. C-EHA motor encoder: (a) attached sensor, (a) working principle.

Figure 10. Relationship between motor controller input command and motor velocity.
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4.4. Results

We used the GP method to obtain a model of the system based on the training data set.
The following Equation (17) represents the best answer found by the GP method:

y = x1 + 0.0002027 × x3 + 0.002027 × tanh (cos (x2))− 0.002027 × tanh (x2 × (x1 + 8.97))

− 0.004659 × tanh (cos (cos (x2))) + 0.004659 × x2 × cos (cos (x3)) + 0.004659 × x2

+ 0.004659 × x2 × tanh (x1 + 8.97) + 0.0001014 × x1 × cos (2 × cos (x3)) + 0.00214

(17)

where, x1, x2, and x3 represent the current motor position, the voltage input, and the
motor velocity, respectively. In our study, each time step is 1 millisecond. This is followed
by applying the three different validation input command sets to the dynamic and GP
models, resulting in the arm angle and speed illustrated in Figures 11 and 12, respectively.
As can be seen in these figures, the GP model has slightly better accuracy in comparison to
the dynamic model. Position accuracy is of greater concern in most C-EHA applications
because C-EHA actuators operate at low speeds compared with other actuators. Therefore,
for ease of comparision, the position error between these two models and experimental data
presented in Figures 11 are calculated and presented in Figure 13. As can be seen in these
figures, the GP model has slightly better accuracy in comparison to the dynamic model.
This could be confirmed with the error bar presented in Figure 14. Moreover, the root mean
square error (RMSE) of each dataset for each model is calculated by following equation;

Ierror =
∑N

i=1

√
e2

i

N
(18)

where N = 1, 2, 3. The results in Table 2 confirm that the GP model has a slightly better
performance in comparison with the dynamic method.

Figure 11. Arm position obtained using experiment, GP model, and dynamic models for (a) first
validation input command set, (b) second validation input command set, and (c) third validation
input command set.
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Figure 12. Arm speed obtained using experiment, GP model, and dynamic models for (a) first
validation input command set, (b) second validation input command set, and (c) third validation
input command set.

Figure 13. Arm position error for two methods with respect to the experimental data, (a) first
validation dataset, (b) second validation dataset, (c) third validation dataset.
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Figure 14. Position error bar for (a) first validation input command set, (b) second validation input
command set, and (c) third validation input command set.

Table 2. Root mean square error of GP and dynamic models.

Set Dynamic Model GP Solution 1

Validation 1 1.355 0.735
Validation 2 1.048 0.556
Validation 3 1.217 0.715

5. Conclusions

We employed two different modeling methods in our study to obtain a compact
electrohydraulic actuator model and analyze its performance and accuracy. We developed
a one-DOF arm with a payload to provide experimental data where all input and output
can be measured and recorded by a computer. First, we created a dynamic actuator model
along with a friction model for the system. Because the critical parameters, such as pressure
or flow rate, are not accessible for measurements during the actuator’s operation, we need
to be consider some assumptions that could reduce the dynamic model’s accuracy. We
identified friction parameters through the specific experiment and curve fitting technique.
Figure 8 shows that the friction-force contribution to the system response is considerably
small regarding the payload rate; therefore, we consider it negligible. However, we decided
to include it in the final model to keep the accuracy of the dynamic model as high as
possible. We used the parameters of a previously developed GP model to obtain our model.
We obtained various sets of training and validation data by utilizing an experimental setup.
Finally, we employed both models to estimate the system’s response to the input command
using a variety of validation datasets, as shown in Figure 11. The error of these two models
is presented in Figures 12 and 13 and Table 2. Our final results confirm that the GP model
has a relatively effective performance, which could be used later for further simulations
or improving control accuracy. Although it may be difficult to represent these GP models
at a state–space level or to rewrite them as frequency responses, they can still be used for
system simulations or in reference model controllers. More work can be performed in this
field, and the exact practical applications of this model will be investigated in future works.
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