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Abstract: Adaptive mixing control (AMC) is a recently developed control scheme for
uncertain plants, where the control action coming from a bank of precomputed controller
is mixed based on the parameter estimates generated by an on-line parameter estimator.
Even if the stability of the control scheme, also in the presence of modeling errors and
disturbances, has been shown analytically, its transient performance might be sensitive to
the initial conditions of the parameter estimator. In particular, for some initial conditions,
transient oscillations may not be acceptable in practical applications. In order to account for
such a possible phenomenon and to improve the learning capability of the adaptive scheme,
in this paper a new mixing architecture is developed, involving the use of parallel parameter
estimators, or multi-estimators, each one working on a small subset of the uncertainty set.
A supervisory logic, using performance signals based on the past and present estimation
error, selects the parameter estimate to determine the mixing of the controllers. The stability
and robustness properties of the resulting approach, referred to as multi-estimator adaptive
mixing control (Multi-AMC), are analytically established. Besides, extensive simulations
demonstrate that the scheme improves the transient performance of the original AMC with
a single estimator. The control scheme and the analysis are carried out in a discrete-time
framework, for easier implementation of the method in digital control.

Keywords: robust adaptive control; multiple-model mixing control; hysteresis
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1. Introduction

It is well known that, in feedback control design, unknown values of the physical variables of the
plant dynamics may lead to a large parametric uncertainty that cannot be handled by a single fixed
LTI controller, e.g., H∞ and µ-synthesized controllers. The aim of adaptive control is to introduce
adaptation mechanisms in the control action in order to handle parametric uncertainties much larger than
those that robust control can handle. In the last decades the interest toward multiple model adaptive
control architectures has grown, due to the capability to combine tools from adaptive control and robust
non-adaptive control in order to handle plants with large parametric and other uncertainties [1–8]. The
multiple model architecture comprises a multicontroller consisting of a family of precomputed candidate
controllers and some logic that influences the control by selecting the candidate controllers based on
processed plant input/output data. The use of precomputed controllers allows the controller design
to be performed using well-established tools from LTI theory. Besides, the problem of stabilizability
encountered in adaptive control [9,10], where at some time instants the online calculation of finite
controller gains is not possible due to singularities, is completely avoided.

A recent adaptive control scheme involving the use of precalculated candidate controllers is adaptive
control with mixing (AMC), developed both for continuous-time [11] and discrete-time SISO plants [12].
By monitoring the plant’s input/output data, the supervisor determines the participation level of each
candidate controller based on real-time estimates of the unknown parameter vector, and “mixes”
the candidate control actions. In the mixing scheme the learning is entrusted to the adaptive law,
whose performance depends on the initial conditions. If the I/O data that the on-line adaptive law
processes provide little information about the unknown plant dynamics, or if the true parameter vector
is far from the initial estimated parameter vector, some undesirable transient can occur before the
regulation/tracking task is achieved. In order to account for such a possible phenomenon, a new AMC
architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each
one working on a small subset of the uncertainty set. Every parameter estimator differs from the others
for its initial condition θ(0), and for the subset in which the parameter estimate is projected. A hysteresis
switching logic orchestrates the decision of the best estimate among all parallel parameter estimates at
each time t.

The resulting AMC scheme, called Multi-estimator AMC, or Multi-AMC, is here established both
theoretically and via simulations, to face regulation and tracking problems, for discrete-time SISO
uncertain plants. The control scheme is developed in a discrete-time framework, for an easier
implementation of the algorithm in digital control. It is shown that the Multi-AMC enjoys the same
stability and robustness properties of AMC with one estimator: in the ideal case, when no disturbances
or unmodeled dynamics are present, the tracking error converges to zero. The Multi-AMC is also robust
with respect to unmodeled dynamics and bounded disturbances: in such a case, all the closed-loop
signals are bounded and the mean-square tracking error is of the order of magnitude of the modeling
error and the bounded disturbance. While improvements in transient performance with respect to the
single estimator case are difficult if at all possible to establish analytically, extensive simulations are
used to demonstrate consistent improvements in performance due to the proposed Multi-AMC scheme.
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The paper is organized as follows. The problem formulation is exposed in Section 2. Section 3 deals
with the multicontroller and the mixing strategy, and the parallel estimation architecture and switching
logic are presented in Section 4. The main theorem dealing with stability and stability robustness of the
multiple-estimator adaptive mixing control scheme is presented in Section 5. In Section 6 a numerical
example is used to show the effectiveness of the method, together with its faster learning and better
transients behavior compared with the use of a single on-line estimator.

2. Problem Formulation: Uncertain Plant

Consider the uncertain discrete-time LTI SISO plant

y = G(z, θ∗)(u+ d) (1)

G(z, θ∗) = G0(z, θ∗)(1 +M∆(z)) (2)

G0(z, θ∗) =
N0(z, θ∗)

D0(z, θ∗)
=

θ∗Tb αm(z)

zn + θ∗Ta αn−1(z)
(3)

where G0(z, θ∗) represents the nominal plant; the vector θ∗ := [θ∗Tb θ∗Ta ]T ∈ Rn+m+1 contains the
unknown parameters of G0(z, θ∗); αn−1(z) := [zn−1 zn−2 · · · z 1]; αm(z) := [zm zm−1 · · · z 1]; M∆(z)

is an unknown multiplicative perturbation; and d is a bounded input disturbance, i.e., |d(t)| ≤ d0,
∀t ∈ Z+.

Even if, for the sake of simplicity, only the case of input disturbance with multiplicative perturbation
is considered, the scheme can be easily applied and analyzed, with slight modifications in the stability
proof, to linear systems with jointly input and output bounded disturbances and additive/multiplicative
perturbations.

y + dy = (G0(z, θ∗) + A∆(z))(1 +M∆(z))(u+ du) (4)

We use the following plant assumptions:

P1. The degree n of D0(z, θ∗) is known.

P2. The plant is strictly proper, i.e., m ≤ n− 1.

P3. M∆(z) is proper, rational, and analytic in |z| ≥
√
δ0 for some known 0 < δ0 ≤ 1.

P4. θ∗ ∈ Ω for some known compact convex set Ω ⊂ Rn+m+1.

Assumption P1–P4 are standard in many adaptive control schemes, e.g., in adaptive pole-placement
control, and include both unstable and non-minimum phase plants.

In the tracking case, an internal model for the class of reference signals ym to be tracked is introduced:

Qm(z)ym(t) = 0 (5)

where Qm(z), known as the internal model of ym, is a known monic polynomial of degree q with all
roots in |z| ≤ 1 and with no repeated roots on the imaginary axis. The internal model Qm(z) is assumed
to satisfy

P5. Qm(z), N0(z) are coprime.
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in order to avoid marginally stable cancellations between the plant zeros and the poles of the controller
that will include the internal model.

The control objective is to choose the plant input u so that the plant output y (in the regulation case) or
the tracking error e1 := y−ym (in the tracking case) is regulated to zero. The problem that motivates the
use of the proposed control scheme is having an uncertainty set Ω so large that no single fixed controller
coming from a robust control synthesis is able to achieve the desired control objectives.

3. Multicontroller and Mixer

We handle the large parametric uncertainty by dividing the parameter set Ω into N smaller not
disjunctive subsets {Ωi ⊂ Rn+m+1}i∈I , where I denotes the index set {1, . . . , N}. The parameter
partition is developed such that each parameter subset Ωi is compact and Ω ⊂ ∪i∈IΩi. For each
subset Ωi a discrete-time LTI controller with rational transfer function Ci(z) is synthesized, using for
example robust control methods, in order to yield a stable closed-loop system that meets the performance
requirements in the subset Ωi.

Given the family ofN candidate controllers {Ci(z)}i∈I , a multicontroller C(z; β) is constructed. The
multicontroller is a dynamical system capable of generating each of the candidate control laws, as well
as a mix of candidate control laws. Construction of the multicontroller involves interpolation of the
candidate controllers over the parameter overlaps. Numerous controller interpolation approaches have
been proposed in the context of gain scheduling. These methods interpolate controller poles, zeros, and
gains [13]; solutions of the Riccati equations for an H∞ design [14]; state and observer gains [15];
controller output blending [5], i.e., u =

∑N
i=1 βiui, where ui is the output of the i-th controller. The

multicontroller depends on the mixing signal β = [β1, . . . , βN ]T , which determines the participation
level of the candidate controllers.

In order to solve the tracking problem, we include the internal modelQm(z) into the controller design.
For fixed values of β the multicontroller u = −C(z; β)(y − ym) has the transfer function:

C(z; β) =
P̂ (z; β)

L̂(z; β)Qm(z)
=
p0(β)zr+q−1 + p̄T (β)αr+q−2(z)

zr+q−1 + l̄T (β)αr+q−2(z)
(6)

The multicontroller depends on a mixing signal β = [β1, . . . , βN ]T ∈ RN that determines the
participation level of each of the candidate controllers, according to the parameter estimate provided
by the adaptive law. The mixer implements the mapping β : Ω 7→ Bθ, where Ω is the set where the
parameter estimate lies and Bθ is the set of admissible mixing values. The set of admissible mixing
values is designed in such a way that C(z; ei) = Ci(z), where ei ∈ RN is the i-th standard basis vector.
This can be achieved by defining the following set of all admissible mixing values in θ ∈ Ω

Bθ = {β ∈ RN :
∑
i∈I

βi(θ) = 1; βi ≥ 0; βi = 0 if θ /∈ Ωi} (7)

The following properties of β(·) and of the multicontroller are assumed

M1. β(·) is Lipschitz in Ω.

C1. The elements p0(·), p̄(·), and l̄(·) are Lipschitz in RN .
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C2. For all θ∗ ∈ Ω, let β∗ := β(θ∗); then C(z; β∗) internally stabilizes the plant G0(z; θ∗).

Property M1, together with C1, will ensure that if the parameter estimate is tuned slowly then the
closed-loop system will vary slowly. Well-known stability results for slow time-varying systems can be
used in order to prove the stability of the adaptive scheme. Property C2 ensures that the multicontroller
is a certainty equivalence stabilizing controller. As in gain scheduling, interpolation methods may
not satisfy the point-wise stability requirement C2 (cf. the counter example of [15]) and should be
previously verified. In [11,16] the stability preserving interpolation method of [15] is used to construct
a multicontroller ensuring property C2.

4. Multiple Parallel Estimators and Switching Logic

The adaptive mixing law approach replaces θ∗ with its estimate θ. The convergence properties
guaranteed by typical robust on-line parameter estimator (bounded energy of the estimation error in
the ideal case, and small estimation error in a mean square sense in the noisy case) are sufficient to
guarantee signal boundedness of the AMC scheme presented in [11,12]. The transient performance
however depends on several design parameters, the most important one being the initial condition of the
estimated parameters. If the initial parameter estimate deviates considerably from the actual one, the
transient behavior will be affected, as initially the wrong controllers will be switched on. On the other
hand, these transients create a level of excitation that aids adaptation, leading to more accurate parameter
estimates. One way to deal with initial parameter estimate conditions and improve performance is to use
multiple parameter estimators with different initial conditions and choose the output of those that give
the best estimate. In particular, every parameter estimator differs from others for its initial condition
θ(0) and for the subset in which the parameter estimate is projected. Using a gradient law with dynamic
normalization signal and parameter projection [9], the parallel parameter estimators have the form, i ∈ I

θi(t) = Pr
Ωi

(θi(t− 1) + Γεi(t)φ(t)) (8)

εi(t) =
ζ(k)− θTi (t− 1)φ(t)

m2
s(t)

(9)

m2
s(t) = 1 + φT (t)φ(t) + nd(t) (10)

nd(t+ 1) = δ0nd(t) + |u(t)|2 + |y(t)|2 (11)

where θi(0) ∈ Ωi, δ0 is the known stability margin of the multiplicative perturbation, Pr stands for the
projection operator that forces the estimated parameters to stay within the specified convex set, εi is the
normalized estimation error, Γ > 0 is the adaptive gain. If necessary, different adaptive gains can be
chosen for each estimator. The quantities

ζ(t) =
zn

Λp(z)
y(t) (12)

φ(t) =

[
αTm(z)

Λp(z)
u(t) −

αTn−1(z)

Λp(z)
y(t)

]T
(13)

are, respectively, the observation and the regressor vector of the parametric model of the nominal plant
(3). Λp is a Schur stable polynomial of degree n. It results that the parameter uncertainty subset Ωi
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is both the subset in which the estimate of the i-th estimator is projected and the set in which the
mixing function βi, associated to the i-th controller, is not zero. In order to select the best estimate
among the N estimated parameters vectors θ1, · · · , θN , we consider, for each parameter estimator, the
performance signals

Ji(t) =
t∑

τ=0

|εims(τ)|2 (14)

When unmodeled dynamics and disturbances are present, the performance signals (14) must be
substituted by

Ji(t) = max
0<q≤t

1

q

q∑
τ=0

|εims(τ)|2 (15)

A supervisory logic compares the N performance signals {Ji(t)}i∈I , and selects, at each time t, the
estimate θσ(t) := θσ(t) of index σ via the following hysteresis switching logic:

σ(t) = l(σ(t− 1),J (t)), σ(0) = i0 ∈ I (16)

l(i,J (t)) =

{
i, if Ji(t) < Jψ(J (t))(t) + h

ψ(J (t)), otherwise
(17)

where ψ(J ) stands for the least integer j ∈ I such that Jj ≤ Ji, ∀i ∈ I, and h, a (typically small)
positive real, is the hysteresis constant.

The next Hysteresis Switching Logic (HSL) lemma, whose proof can be found in [17], establishes the
limiting behavior of the switching system arising from (16) and (17).

Let S denote the class of all possible switching sequences σ(·). Consider the assumptions:

A1. For each σ(·) ∈ S and i ∈ I, Ji(t) admits a limit (which may be infinite) as t→∞;

A2. For each σ(·) ∈ S , there exist integers µ ∈ I such that Jµ(·) is bounded.

HSL Lemma [17] Let σ be the switching sequence resulting from (16) and (17). Then, if A1 and A2 hold,
there is a finite time t∗ ∈ Z+, after which no more switching occurs. Moreover, Jσ(t∗)(·) is bounded.

The HSL Lemma is used to establish the following Theorem:

Theorem 1 Consider the parallel robust adaptive laws given by (8)–(11) and hysteresis switching logic
(16) and (17) with performance signals (14) and (15). Then, the resulting multiple estimator resulting
from the interconnection of the parallel adaptive laws with the hysteresis switching logic satisfies

E1. εσ(t), εσ(t)ms, ∆θσ(t) ∈ l2 if M∆, d = 0.

E2. εσ(t), εσ(t)ms, ∆θσ(t) ∈ S
(
η2

m2
s

)
∩ l∞ if M∆, d 6= 0.

where l2 is the set of signals with bounded energy, l∞ is the set of bounded signals, ∆θ(t) = θ(t) −
θ(t − 1) and η(t) = N0(z)M∆(z)

Λp(z)
u(t) + N0(z)(1+M∆(z))

Λp(z)
d(t) is the modeling error due to the presence of

bounded disturbances and unmodeled dynamics, and S
(
η2

m2
s

)
represents the set of signals of the order

of magnitude of the normalized modeling error in the mean square sense

S(µ) =

{
v :

1

T

t+T−1∑
τ=t

|v(τ)|2 ≤ c0µ+
c1

T
, ∀t ≥ 0, T > 0

}
(18)

for a given constant µ, where c0, c1 ≥ 0 are some finite constants independent of µ.
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Proof- See the Appendix.

5. Stability and Stability Robustness of Multiple-Estimator Adaptive Mixing Control

The structure of the Multi-AMC is shown in Figure 1. The novelty of the new architecture is the
combination of the controller mixing with multiple parameter estimators. The supervisor comprises
of various subsystems: the parallel on-line parameter estimators generate real-time estimates θi(t),
i = 1, . . . , N of the unknown parameter vector θ∗. The switching logic, using performance signals
based on the past and present estimation error, orchestrates the decision of the best estimate among all
parallel parameter estimates at each time t. Finally, the mixer determines the participation level of each
candidate controller based on the selected estimate θ(t).

Figure 1. Multi-AMC architecture.

The stability and stability robustness properties of the Multi-AMC scheme are described by the
following Theorem.

Theorem 2 Let the unknown plant given by (1)–(3) satisfy the plant assumptions P1–P5. Consider the
adaptive mixing controller with the multicontroller given by (6) and satisfying assumptions C1–C2; the
mixer (7) satisfying M1; the parallel robust adaptive laws given by (8)–(11) and hysteresis switching
logic (16) and (17). Then the following results hold:

1. If M∆, d = 0, then all the closed-loop signals are bounded, i.e., φ, u, y ∈ l∞; furthermore
e1(t) := y(t)− ym(t)→ 0 as k →∞.

2. If M∆, d 6= 0, then there exists µ∗ > 0 such that, if cΞ2
1 < µ∗ where Ξ1 =

∥∥∥N0M∆

Λp

∥∥∥
2δ0

, ‖·‖2δ is the

system norm defined as ‖H‖2δ := 1√
2π

{∫∞
−∞

∣∣∣H(
√
δejω)

∣∣∣2 dω

}1/2

, and c > 0 a finite constant,

then the adaptive mixing control scheme guarantees φ, u, y, e1 ∈ l∞ and

1

T

t+T−1∑
t

|e1(τ)|2 ≤ c0µ
2 +

c1

T
, ∀t, T ≥ 0 (19)

where µ2 = c(Ξ2
1 + Ξ2

2), and Ξ2 =
∥∥∥N0(1+M∆)

Λp

∥∥∥
2δ0
d0.
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Proof - Due to the modularity of the proposed approach, the proof can be lead by following analogous
steps of the stability proof of the AMC scheme with a single estimator, which can be found in [12].

Remark 1 The stability and robustness results are conceptually similar to those in robust adaptive
control [9,10,18]. The advantage of AMC in comparison with conventional robust adaptive control is
that for the proposed scheme the stabilizability of the estimated plant is no longer an issue in calculating
on-line the controller parameters. In addition, it allows well developed results from robust control to
be incorporated in the design. In fact, thanks to the modularity of the design, the analysis of the
overall system relies on certain properties of its individual parts. Furthermore, the Multi-AMC can
handle controllers that are not directly parameterized by the unknown plant parameters, e.g., H∞ or
µ-synthesized robust controllers, extending the class of feedback adaptive control systems.

Remark 2 Equation (19) is a mean square condition: it does not guarantee that the tracking error will
be bounded from above by the modeling error bound at all times. As in conventional adaptive control, a
phenomenon known as “bursting” [19], where the tracking error assumes large values over short intervals
of time, cannot be excluded by the mean square bound. One way to get rid of bursting is to use a dead
zone to switch-off adaptation when convergence to steady state values is achieved [20].

6. Numerical Example

Despite the results of Theorem 2, establishing analytically that the Multi-AMC scheme will guarantee
better transient performance than other adaptive schemes is difficult if at all possible. Transient
performance can be just numerically demonstrated via extensive simulations. This section is devoted
to simulation testing of the proposed Multi-AMC scheme.

The numerical example used for simulations is a two carts system, shown in Figure 2, composed of
two masses M [kg] moving on a horizontal plane with known dynamic friction coefficient b[Ns/m]. The
two carts are coupled with a spring, producing an elastic force proportional to its deformation through
an unknown stiffness constant θ∗[N/m]. In the simulations reported hereafter we consider M = 1 and
b = 0. Though apparently academic, this numerical example has been widely studied, since the two carts
structure appears in many vibration suppression problems and in control of flexible structures.

Figure 2. The two-carts benchmark example.

The measurement y[m] available is the second cart displacement. The control u[N ] is applied to the
first cart through a control channel with a time delay of τ [s], which represents the unmodeled dynamics.
The control objective is to control the position of the second cart applying a force to the first cart. The
plant input is corrupted with an additive zero mean white actuator noise d[N ], parallel to the track, with
variance σ2 = 10−2, and chopped between ±3σ in order to obtain a bounded noise. The reference ym
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to be tracked is a square-wave of amplitude between 0 and 1 and with period 60 s. The continuous-time
model is discretized using Euler’s approximation of the derivative with sampling time Ts = 0.1s as
in [21]. The nominal discrete-time plant is given by:

G0(z, θ∗) =
θ∗NU

0 (z)

DK
0 (z) + θ∗DU

0 (z)
(20)

where NU
0 (z) = T 4

s z
3, DK

0 (z) = (z−1)2((bTs+M)z−M)2, DU
0 (z) = 2T 2

s z(z−1)((bTs+M)z−M).
The unknown constant stiffness θ∗ is restricted to the compact set

Ω = {θ : 0.04 ≤ θ ≤ 3.5} (21)

We consider the family of N = 7 candidate controllers {Ci(z) = Si(z)/Ri(z), i ∈ 1, . . . , 7},
designed on nominal models with stiffness θ∗ = 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, respectively. The
controller synthesis has been performed using a weighted H∞ mixed-sensitivity criterion [22], as
described in [23], and discretizing the resulting controllers with sampling time Ts = 0.1s.

The coefficients of Si(z) =
∑4

n=1 sinz
4−n and Ri(z) = z3 +

∑3
n=1 rinz

3−n are reported in Table 1,
together with their corresponding stability intervals Θi, which is the sets of plants with stiffness θ∗ that
are stabilized by the controller Ci, i.e.,

Θi = {θ| G0(z, θ) is stabilized by Ci(z )} (22)

Table 1. Controller coefficients.

si1 si2 si3 si4 ri1 ri2 ri3 Θi

C1 146.257 −428.616 419.360 −136.999 −2.464 2.038 −0.563 [0.04, 0.12)

C2 79.779 −233.668 228.558 −74.668 −2.457 2.026 −0.559 (0.07, 0.23)

C3 43.739 −128.102 125.361 −40.997 −2.446 2.010 −0.553 (0.16, 0.42)

C4 31.680 −92.798 90.877 −29.757 −2.435 1.994 −0.547 (0.23, 0.603)

C5 22.632 −66.341 65.092 −21.380 −2.411 1.958 −0.533 (0.37, 0.95)

C6 19.309 −56.746 56.013 −18.571 −2.323 1.830 −0.485 (0.65, 2.05)

C7 17.744 −54.669 57.372 −20.436 −1.865 1.187 −0.252 (1.07, 3.5]

The mixer is constructed on the basis of the smooth bump function ψ(x) = e
− 1

1−x2 if |x| < 1, and
ψ(x) = 0 otherwise. Because of the scalar nature of the uncertainty set, consider the pre-normalized
weights, i = 1, . . . , 7

β̃i(θ) = ψ

(
θ − (Ui + Li)/2

(Ui − Li)/2

)
(23)

where Ui and Li are the upper and lower bound, respectively, of the subset Ωi = {θ : Li ≤ θ ≤ Ui}. The
mixing signal β(θ) is generated by normalizing β̃ = [β̃1 . . . β̃7]T , i.e., i ∈ 1, . . . , 7

βi(θ) =
β̃i(θ)∑7
j=1 β̃j(θ)

(24)
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The parameter subsets Ωi, i ∈ 1, . . . , 7, are:

Ω1 = [0.04, 0.09], Ω2 = [0.08, 0.19], Ω3 = [0.165, 0.29]

Ω4 = [0.25, 0.45], Ω5 = [0.39, 0.90]

Ω6 = [0.70, 1.70], Ω7 = [1.30, 3.5]

The subsets have been found by a trial and error procedure, taking into account the stability intervals
in Table 1. Note that the plant is harder to control as the uncertain stiffness is small. This is reflected
by the stability intervals of each controller, which are not equally distributed over the whole uncertainty
set: in particular, in the interval [1.30, 3.5] one controller is sufficient to control the plant, while in the
interval [0.04, 1.70] six controllers are needed. The mixing function β(θ) derived from the described
procedure is shown in Figure 3. The multicontroller has been constructed using output blending, i.e.,
u =

∑7
i=1 βiui, since this approach has been verified to satisfy assumption C2.

Figure 3. Mixing strategy: βi(θ), i = 1, . . . , 7.

0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

θ

β
i(θ

)

The design parameters of the robust adaptive laws and of the hysteresis logic have been chosen
as follows:

Γ = 0.5, δ0 = 0.99, Λp(z) = ((z − 0.85)/0.15)4 (25)

i0 = 7, h = 0.05 (26)

The initial condition for each estimator has been chosen as the middle point of the subset Ωi.
The Multi-AMC is compared with the AMC scheme that uses a single parameter estimator [11], with

the same design parameters as the parallel adaptive laws, and initial condition θ0 = (3.50 + 0.04)/

2 = 1.77, which is the center of the overall parameter interval Ω. For a comparison with a conventional
adaptive controller, a discrete-time pole-placement adaptive controller (APPC) is implemented, using the
same single adaptive law as in the single estimator based AMC scheme. The pole-placement is designed
to place the closed-loop poles at the roots of χ5(z) := D0(z, 0.5)R5(z) + N0(z, 0.5)S5(z), which is the
characteristic polynomial of the fifth nominal model in feedback with the fifth candidate controller.
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We compare the learning performance of the three approaches for the seven nominal values of the
uncertain parameter, θ∗ = 0.05, 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0. We do not consider stiffness values up to
θ∗ = 2.0, because one single controller is sufficient to take care of the uncertainty subset [1.70, 3.50].
Non-zero random initial conditions are assumed for the plant state (initial position and velocity of the
2 carts). For each nominal value of the uncertain parameter we run 20 Monte Carlo simulations: each
simulation has a time-length of 100s. The criteria used to evaluate the performance of each scheme are:

• The root mean square (RMS) tracking error over the first 50 seconds. This criterion is used to
evaluate transient and tracking error performance.

• The average time it takes for the scheme to converge to the final controller without any further
switching (used in the comparison of the single estimator based AMC with the Multi-AMC).

The results are given in Table 2 for the ideal case (d = 0, τ = 0) and in Table 3 for the noisy
case with unmodeled dynamics (τ = 0.1 s). A consistent tracking error RMS improvement of the
Multi-AMC scheme can be seen with respect to both the APPC scheme and the AMC with a single
estimator. The column next to the tracking error RMS values evaluates the percentage RMS improvement
of the Multi-AMC over the other two schemes. As expected, the RMS improvements are more drastic
when the initial parameter estimate is further away from the true unknown parameter. There is no
improvement between Multi-AMC and AMC in the case θ∗ = 2.0, because both approaches start with
an initial parameter estimate corresponding to the selection of the stabilizing candidate controller C7

without subsequent switching.
The second performance criterion, shown in the last two columns of Tables 2 and 3, is the mean time,

calculated among all the simulations, after which, for both AMC schemes, the weight βj associated to
the final selected controller Cj remains in the interval [0.95, 1]. Thanks to the discontinuous adaptation
orchestrated by the switching logic, the Multi-AMC convergence to the final controller is faster than the
AMC employing a single estimator, as demonstrated in the last column of Tables 2 and 3.

Table 2. Simulation results: tracking, ideal case, non-zero initial conditions.

θ∗ Tracking error RMS Multi-AMC RMS Improvement Convergence to final controller

Multi-AMC 2.395 7.5 sec.
AMC 0.05 6.567 63.5 % 22.0 sec.
APPC 20.393 88.3 %

Multi-AMC 1.852 7.1 sec.
AMC 0.1 4.331 57.2 % 16.5 sec.
APPC 15.488 88.0 %

Multi-AMC 1.411 7.2 sec.
AMC 0.2 3.120 54.8 % 12.7 sec.
APPC 11.721 88.0 %

Multi-AMC 0.989 5.9 sec.
AMC 0.3 1.815 45.5 % 11.3 sec.
APPC 6.816 85.5 %

Multi-AMC 0.641 3.7 sec.
AMC 0.5 1.045 38.7 % 9.5 sec.
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Table 2. Cont.

θ∗ Tracking error RMS Multi-AMC RMS Improvement Convergence to final controller

APPC 3.304 80.6 %

Multi-AMC 0.458 4.1 sec.
AMC 1.0 0.606 24.4 % 4.9 sec.
APPC 1.164 60.7 %

Multi-AMC 0.584 0 sec.
AMC 2.0 0.584 0 % 0 sec.
APPC 0.761 22.7 %

Table 3. Simulation results: tracking, noisy case, non-zero initial conditions.

θ∗ Tracking error RMS Multi-AMC RMS Improvement Convergence to final controller

Multi-AMC 1.881 7.0 sec.
AMC 0.05 4.390 57.2 % 22.9 sec.
APPC 15.215 87.6 %

Multi-AMC 1.746 7.0 sec.
AMC 0.1 3.927 55.5 % 13.8 sec.
APPC 14.047 87.6 %

Multi-AMC 1.669 7.2 sec.
AMC 0.2 3.192 47.7 % 12.8 sec.
APPC 11.939 86.0 %

Multi-AMC 1.340 5.1 sec.
AMC 0.3 2.083 35.7 % 12.7 sec.
APPC 7.739 82.7 %

Multi-AMC 0.744 4.6 sec.
AMC 0.5 1.014 26.6 % 10.3 sec.
APPC 3.890 80.9 %

Multi-AMC 0.508 4.2 sec.
AMC 1.0 0.619 17.9 % 4.8 sec.
APPC 1.415 64.1 %

Multi-AMC 0.586 0 sec.
AMC 2.0 0.586 0 % 0 sec.
APPC 0.803 27.0 %

Among all the performed simulations, two particular scenarios have been chosen to graphically show
and compare the behavior of the different adaptive schemes. One scenario does not involve noise or
unmodeled dynamics, with a value of the uncertain stiffness corresponding to θ∗ = 0.05. The other
scenario considers the noisy situation with unmodeled delay τ = 0.1 s, with uncertain stiffness θ∗ = 0.5.

Figures 4(a) and 5(a) show the output responses for the three adaptive schemes, for the two scenarios.
In Figures 4(b) and 5(b) the evolution of the parameter estimate is shown. Figures 6(a), 6(b), 7(a) and
7(b) show the AMC mixer weights. In both cases it is possible to see that the Multi-AMC scheme
exhibits a smaller transient when compared with both the APPC scheme and the single estimator AMC
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scheme. The Multi-AMC estimated parameter converges to the true value θ∗ much faster that the other
two schemes, which reflects a faster convergence of the mixing weights to a stabilizing controller.

Figure 4. Ideal case, θ∗ = 0.05: Multi-AMC (solid), AMC (dash-dotted), APPC
(dashed). (a) output response y(t): Multi-AMC (solid), AMC (dash-dotted), APPC (dashed);
(b) Parameter estimate θ(t): Multi-AMC (solid), AMC (dash-dotted), APPC (dashed).

0 20 40 60 80 100
−50

−40

−30

−20

−10

0

10

20

30

40

50

y
m

(k
),

y
p
(k

)

time [s]

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

θ
(k

)

time [s]

(b)

Figure 5. Unmodeled dynamics, θ∗ = 0.5: Multi-AMC (solid), AMC (dash-dotted), APPC
(dashed). (a) output response y(t): Multi-AMC (solid), AMC (dash-dotted), APPC (dashed);
(b) Parameter estimate θ(t): Multi-AMC (solid), AMC (dash-dotted), APPC (dashed).
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In order to clarify how the proposed adaptive method acts in the cases in which the unknown
parameters belong to overlapping sets, one more scenario is shown, corresponding to θ∗ = 0, 18 with
input noise and unmodeled delay τ = 0.1 s (Figure 8(a)). Such scenario as well as other stiffness values
belonging to overlapping sets are not shown in Tables 2 and 3 both for the sake of compactness of the
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tables and because the transient results are similar to the results shown for the seven nominal values of
the uncertain parameter. In Figure 8(b) the evolution of the parameter estimate is shown. Figures 9(a)
and 9(b) show the AMC mixer weights. Since θ∗ = 0.18 belongs to both Ω2 and Ω3, both controllers C2

and C3 run together in the loop (β2, β3 6= 0), thus leading to a blended control signal.

Figure 6. Ideal case, θ∗ = 0.05: AMC controller weights β(t): Multi-AMC (solid), AMC
(dash-dotted). (a) β1(t), β2(t), β3(t), β4(t); (b) β5(t), β6(t), β7(t).
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Figure 7. Unmodeled dynamics, θ∗ = 0.5: AMC controller weights β(t): Multi-AMC
(solid), AMC (dash-dotted). (Note that, for both schemes, all the controller weights from β1

to β4 are zero for all t ≥ 0). (a) β1(t), β2(t), β3(t), β4(t); (b) β5(t), β6(t), β7(t).
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Figure 8. Unmodeled dynamics, θ∗ = 0.18: Multi-AMC (solid), AMC (dash-dotted), APPC
(dashed). (a) output response y(t): Multi-AMC (solid), AMC (dash-dotted), APPC (dashed);
(b) Parameter estimate θ(t): Multi-AMC (solid), AMC (dash-dotted), APPC (dashed).
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Figure 9. Unmodeled dynamics, θ∗ = 0.18: AMC controller weights β(t): Multi-AMC
(solid), AMC (dash-dotted). (a) β1(t), β2(t), β3(t), β4(t); (b) β5(t), β6(t), β7(t).
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7. Conclusions

A new multiple model adaptive mixing control scheme employing a bank of parallel parameter
estimators has been developed. The stability properties of the resulting architecture, namely
(Multi-AMC), are analyzed (convergence of the tracking error to zero for the nominal and noiseless case,
and bounded closed-loop states with tracking error of the order of the modeling error in the presence of
unmodeled dynamics and bounded disturbances). The control scheme and the stability results have
been carried out in discrete-time, for an easier implementation of the adaptive scheme in digital control.
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The proposed scheme achieves faster learning and better transient performance. A two carts system
was used to demonstrate, via Monte Carlo simulations, the effectiveness of the proposed Multi-AMC
in consistently improving the transient behavior when compared with standard adaptive pole placement
and a single estimator AMC scheme.

Appendix: Proof of Theorem 1

The conditions A1 and A2 of the HSL Lemma are satisfied in the ideal case with no unmodeled
dynamics and disturbances, using the performance signals (14). In fact, the functionals (14) are
monotone non-decreasing, so they have a limit (which may be infinite). Besides, since θ∗ ∈ Ωj for
some index j, there is always at least one estimator such that εjms ∈ l2, which implies Jj(t) is bounded.
Hence, there is a finite time t∗ ∈ Z+, after which no more switching occurs and, moreover, Jσ(t∗)(·) is
bounded. The conclusion is that, because of the final switching time and the boundedness of the final test
functional, it is possible to show that εσ(·), εσ(·)ms, ∆θσ(·) ∈ l2. From θ̃i := θ∗ − θi (thanks to parameter
projection) and φ/ms ∈ l∞, we have εσ(·), εσ(·)ms ∈ l∞, which is property E1.

When unmodeled dynamics and disturbances are present, in order to satisfy conditions A1–A2 of the
HSL Lemma, the performance signals (15) must be used in the switching logic. In this case, thanks to
the max operator, the functionals (15) are monotone non-decreasing, so they have a limit (which may be
infinite). Besides, since θ∗ ∈ Ωj for some index j, there is always at least one estimator such that εj ,
εjms ∈ S

(
η2

m2
s

)
. Note that the boundedness in the mean square sense of εjms implies the boundedness

of the functional Jj(t) in (15). Hence, there is always an index j such that Jj(t) is bounded. Using
the HSL Lemma it follows that there is a finite time t∗ ∈ Z+, after which no more switching occurs
and, moreover, Jσ(t∗)(·) is bounded. The conclusion is that εσ(·), ∆θσ(·) ∈ S

(
η2

m2
s

)
∩ l∞, which is

property E2.
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