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Abstract: It is known that, in quantum theory, measurements may suppress Hamiltonian dynamics
of a system. A famous example is the ‘Quantum Zeno Effect’. This is the phenomena that, if one
performs the measurements M times asking whether the system is in the same state as the one at the
initial time until the fixed measurement time t, then survival probability tends to 1 by taking the limit
M→ ∞. This is the case for fixed measurement time t. It is known that, if one takes measurement time
infinite at appropriate scaling, the ‘Quantum Zeno Effect’ does not occur and the effect of Hamiltonian
dynamics emerges. In the present paper, we consider the long time repeated measurements and
the dynamics of quantum many body systems in the scaling where the effect of measurements and
dynamics are balanced. We show that the stochastic process, called the symmetric simple exclusion
process (SSEP), is obtained from the repeated and long time measurements of configuration of
particles in finite lattice fermion systems. The emerging stochastic process is independent of potential
and interaction of the underlying Hamiltonian of the system.

Keywords: quantum measurement; quantum Zeno effect; lattice fermion system; stochastic process;
symmetric simple exclusion process

1. Introduction

It is known that, in quantum theory, measurements suppress Hamiltonian dynamics of a system.
A famous example is the ‘Quantum Zeno Effect’ [1]. This phenomena states that, for fixed finite time t,
if one performs repeated measurements in small intervals (taking limit to 0), then the dynamics of the
system freezes. More precisely, suppose the system is initially in the (pure) state ψ0 and evolves by
the Hamiltonian H. For fixed time t, one repeats the 2-outcome measurements in the interval t/M
asking if the system is in the state ‘ψ0’ or not, which is described by the PVM {|ψ0〉〈ψ0|, 1− |ψ0〉〈ψ0|}:
repeat the following processes until t,

dynamics : ψ 7→ e−i t
M Hψ

measurement : ′′ψ′′0 or not?.

The probability getting the outcome ‘ψ0’ in all the measurements tends to 1 in the limit M→ ∞
(small interval limit). That is, the dynamics of the system is frozen by the continuous measurement.
This is the ‘Quantum Zeno Effect’.

However, this is the case of finite measurement time t. It is known that, if one takes measurement
time infinite at appropriate scaling, the ‘Quantum Zeno Effect’ does not occur and the effect of
the Hamiltonian dynamics emerges [2]. In this paper, we will consider the case that suppression
by repeated measurements and Hamiltonian dynamics are balanced. In the setting of ‘Quantum
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Zeno Effect’, one usually considers the 2-outcome measurement {|ψ0〉〈ψ0|, 1 − |ψ0〉〈ψ0|} asking
whether the system is in the state ‘ψ0’ or not. If one deals with more complicated outcome space such
as configuration of particles, physically meaningful stochastic processes may be obtained.

Here, we consider the measurement of configuration of particles in finite lattice fermion systems.
We deal with the Hamiltonian consisting of hopping term, potential term, and 2-body interaction
term. For fixed τ, one repeats the measurement of configuration until τM in the interval 1/M. That is,
the number of measurements is [τM2], the maximum integer which does not exceed τM2. Taking the
limit M → ∞, we obtain a stochastic process with a new time τ. This process corresponds to the
symmetric simple exclusive process (SSEP) and is independent of potential and interaction terms of
the Hamiltonian. It is known that the diffusion equation is obtained from the SSEP by the appropriate
scaling limit called hydrodynamic limit [3,4]. By the diffusion equation, the diffusion of particles
is proportional to

√
τ. If the measurements are not performed, generally the transport property of

quantum many body systems should be influenced by the potential [5–8]. For example, if the potential
is random, the system shows the localization (Anderson localization) [9–11] and if the potential is
periodic the system shows the ballistic transport [12]. Thus, our result suggests that the effect of
repeated measurements promotes the diffusion for the random potentials and suppresses the transport
of particles for the periodic potentials.

2. Lattice Fermion System on the Circle

In this section, we recall the description of many body fermion systems on lattice.
Here, consider the one-dimensional finite lattice {1, 2, · · · , N}. Many body fermion systems on
this lattice are described by creation and annihilation operators a∗n, an (n = 1, 2, · · · , N) satisfying the
following canonical anti-commutation relations:

{an, am} = 0, {a∗n, am} = δnm1.

These operators act on the fermion Fock space (2N dimension) consisting of one-particle Hilbert
space CN . In this paper, we consider the following form of Hamiltonian

H =
N

∑
n=1

[
−1

2
(a∗nan+1 + a∗n+1an) + v(n)a∗nan + λa∗nana∗n+1an+1

]
,

where v : {1, · · · , N} → R is a real valued function called potential and λ ∈ R is a parameter
representing the strengthening of interaction. − 1

2 (a∗nan+1 + a∗n+1an), v(n)a∗nan and λa∗nana∗n+1an+1

represent hopping, potential, and interaction terms, respectively. We consider the periodic boundary
condition and identify aN+1 as a1.

Put A0
n = ana∗n, A1

n = a∗nan (n = 1, · · · , N). Then, from canonical anti-commutation
relations, it turns out that they are projections commuting each other. For a configuration of
particles x = (x1, x2, · · · , xN) ∈ {0, 1}N (0, 1 correspond to the absence and the existence of a particle,
respectively, and xn represents whether a particle is in the site n or not), put

P(x1,··· ,xN) =
N

∏
n=1

Axn
n .

Then, they are projections and satisfy

∑
x∈{0,1}N

Px = I.

That is, {Px}x∈{0,1}N is a PVM (projection-valued measure) representing the measurement of
configuration of particles. Since Px 6= 0 and the number of outcomes is equal to the dimension of the
Hilbert space, they are 1-rank projections. In this paper, we consider only projection measurement,
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that is, if one performs the measurement {Px}x∈{0,1}N on the system in the state ρ and obtains the
outcome x, then the state after the measurement is

PxρPx

TrρPx
.

3. SSEP from Repeated Measurement

First, let us consider the Hamiltonian without potential and interaction terms:

H = −1
2

N

∑
n=1

(a∗nan+1 + a∗n+1an),

aN+1 = a1 (periodic boundary condition). The system evolves by this Hamiltonian.
Suppose that we repeat the measurements of configuration on the system initially in the state ρ

(we identify the density operator ρ and the expectation value functional A 7→ TrρA, and use the same
symbol) until T with interval t. Put L ∈ N, s ∈ R, which satisfies T = Lt + s (L ∈ N, 0 ≤ s < t).
Then, the probability pt

T(x) of getting the outcome x by the configuration measurement at time T is

pt
T(x) = ∑

xL∈{0,1}N

· · · ∑
x1∈{0,1}N

ωxL (e
isH Pxe−isH)ωxL−1 (e

itH PxL e−itH) · · ·ωx1 (e
itH Px2 e−itH)ρ(eitH Px1 e−itH),

where ωx is the state which has the density operator Px. Put

pt
0(x) = ρ(eitH Pxe−itH)

and define a 2N × 2N matrix Ut with (x, y)-entry

ωy(eitH Pxe−itH).

Since

∑
x∈{0,1}N

ωy(eitH Pxe−itH) = ∑
y∈{0,1}N

ωy(eitH Pxe−itH) = 1,

Ut is a doubly stochastic matrix. With Ut, the probability distribution pt
T is expressed as

pt
T = Us(Ut)

L−1 pt
0.

Let us make the measurement interval t small and the measurement time T large. Fix τ > 0 and
let M be a positive integer. Put t = 1

M and T = τM and take the limit M→ ∞.
Here, we state our main result as a theorem.

Theorem 1. p
1
M
τM converges to a probability distribution qτ on {0, 1}N by the limit M→ ∞. This distribution

corresponds to that of symmetric simple exclusion process (SSEP) initially in the distribution {ρ(Px)}x∈{0,1}N .

In the following, we provide the proof of this result step by step.
For a ∈ R, let us denote [a] the maximum integer which does not exceed a. Then, L = [τM2].

Us (0 ≤ s < 1
M ) on the right-hand side of

p
1
M
τM = Us

(
U 1

M

)[τM2]−1
p

1
M
0

converges to the identity operator and p
1
M
0 (x) to p0

0(x) = ρ(Px) as the limit M→ ∞. Let us focus on
the factor (

U 1
M

)[τM2]−1
.
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Expanding ωy(eitH Pxe−itH) in terms of t, we have

ωy(eitH Pxe−itH) = δxy + itωy([H, Px])−
t2

2
ωy([H, [H, Px]]) + O(t3),

where [A, B] = AB− BA. Since [Px, Py] = 0, the second term is 0:

ωy([H, Px]) = Tr(PxPy H − PyPx H) = 0.

Defining a 2N × 2N matrix X as

(X)xy = −1
2

ωy([H, [H, Px]]),

then we get

lim
M→∞

(
U 1

M

)[τM2]−1
= eτX . (1)

In order to prove this fact, we prepare a lemma.

Lemma 1. Let V be a Banach space and X be a bounded operator on V. In addition, suppose {YK}K∈N is
a sequence of bounded operators on V such that K‖YK‖ → 0 (K → ∞) (‖YK‖ is a operator norm of YK).
Then, we obtain

lim
K→∞

(
1 +

X
K

+ YK

)K
= eX ,

in the operator norm.

Proof. The proof consists of two parts. First, we show the relation which is well-known for the case
that X is a number,

lim
K→∞

(
1 +

X
K

)K
= eX .

Recall that (
1 +

X
K

)K
=

K

∑
n=0

(
K
n

)
Xn

Kn =
K

∑
n=0

Xn

n!
K(K− 1) · · · (K− n + 1)

Kn ,

eX =
∞

∑
n=0

Xn

n!
.

For ε > 0, there exists a positive integer K0 ∈ N such that
∞

∑
n=K0+1

‖X‖n

n!
<

ε

3
. For K > K0 by

the inequality∥∥∥∥∥
(

1 +
X
K

)K
− eX

∥∥∥∥∥ ≤
∥∥∥∥∥ K0

∑
n=0

Xn

n!
K(K− 1) · · · (K− n + 1)

Kn −
K0

∑
n=0

Xn

n!

∥∥∥∥∥
+

∥∥∥∥∥ K

∑
n=K0+1

Xn

n!
K(K− 1) · · · (K− n + 1)

Kn

∥∥∥∥∥+
∥∥∥∥∥ ∞

∑
n=K0+1

Xn

n!

∥∥∥∥∥
≤

∥∥∥∥∥ K0

∑
n=0

Xn

n!
K(K− 1) · · · (K− n + 1)

Kn −
K0

∑
n=0

Xn

n!

∥∥∥∥∥+ 2
∞

∑
n=K0+1

‖X‖n

n!
,

for sufficiently large K, the first term of the right-hand side is smaller than ε
3 and the right-hand side is

bounded from above by ε.
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Next, we will show that

lim
K→∞

[(
1 +

X
K

)K
−
(

1 +
X
K

+ YK

)K
]
= 0.

By expanding
(

1 + X
K + YK

)K
, we get

∥∥∥∥∥
(

1 +
X
K

)K
−
(

1 +
X
K

+ YK

)K
∥∥∥∥∥ ≤ K

∑
n=1

∥∥∥∥1 +
X
K

∥∥∥∥K−n
‖YK‖n K(K− 1) · · · (K− n + 1)

n!
.

The right-hand side is bounded above by(
1 +
‖X‖

K

)K K

∑
n=1

(K‖YK‖)n

n!
≤
(

1 +
‖X‖

K

)K
(eK‖YK‖ − 1).

Since K‖YK‖ → 0 and
(

1 + ‖X‖
K

)K
→ e‖X‖ as K → ∞, the right-hand side of the inequality tends

to 0 as K → ∞.

The Proof of Equation (1). The proof consists of the following two steps:

• Show lim
M→∞

(
U 1

M

)τM2

= eτX by using Lemma 1 for the case K = M2.

• Show lim
M→∞

∥∥∥∥(U 1
M

)[τM2]−1
−
(

U 1
M

)τM2∥∥∥∥ = 0.

Since
U 1

M
= I +

X
M2 + · · · ,

in order to apply Lemma 1 for the case K = M2, we have to show

M2
∥∥∥∥U 1

M
− I − X

M2

∥∥∥∥→ 0 (M→ ∞).

Putting δ(A) = [H, A], then by the inequality ‖δ(A)‖ ≤ 2‖H‖‖A‖, we have∣∣∣∣ωy(eitH Pxe−itH)− δxy +
t2

2
ωy([H, [H, Px]])

∣∣∣∣ =

∣∣∣∣∣ ∞

∑
n=3

ωy

(
tnδn

n!
(Px)

)∣∣∣∣∣
≤ |t|3

∞

∑
n=3

(2‖H‖)n

n!

≤ |t|3e2‖H‖

for |t| < 1. Thus,

M2
∥∥∥∥U 1

M
− I − X

M2

∥∥∥∥ ≤ 2N

M
e2‖H‖ → 0 (M→ ∞),

and, by Lemma 1, we obtain

lim
M→∞

(
U 1

M

)τM2

=

(
lim

M→∞

(
U 1

M

)M2)τ

= eτX .
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Next, we estimate the difference between
(

U 1
M

)[τM2]−1
and

(
U 1

M

)τM2

.

Denote YM = U 1
M
− I − X

M2 . Then,

∥∥∥∥∥
(

I +
X

M2 + YM

)[τM2]−1
−
(

I +
X

M2 + YM

)τM2∥∥∥∥∥
≤

(
1 +
‖X‖
M2 + ‖YM‖

)[τM2]−1
∥∥∥∥∥I −

(
I +

X
M2 + YM

)1+τM2−[τM2]
∥∥∥∥∥ .

The first factor of the right-hand side tends to eτ‖X‖ as M→ ∞. Let us consider the second factor:∥∥∥∥∥I −
(

I +
X

M2 + YM

)1+τM2−[τM2]
∥∥∥∥∥ ≤

∥∥∥∥ X
M2 + YM

∥∥∥∥
+

∥∥∥∥I +
X

M2 + YM

∥∥∥∥
∥∥∥∥∥I −

(
I +

X
M2 + YM

)τM2−[τM2]
∥∥∥∥∥ .

Setting AM = 1
M2 X + YM and a = τM2 − [τM2], then 0 ≤ a < 1. In addition, since ‖AM‖ → 0 as

M→ ∞, ‖AM‖ < 1 for large M. By

(I + AM)a =
∞

∑
n=0

(
a
n

)
An

M,

we have

‖I − (I + AM)a‖ ≤
∞

∑
n=1

∣∣∣∣∣
(

a
n

)∣∣∣∣∣ ‖AM‖n,

where (
a
n

)
=

a(a− 1) · · · (a− n + 1)
n!

.

Since 0 ≤ a < 1, (−1)n

(
a
n

)
≤ 0. Thus, we obtain

∞

∑
n=1

∣∣∣∣∣
(

a
n

)∣∣∣∣∣ ‖AM‖n = −
∞

∑
n=0

(
a
n

)
(−‖AM‖)n + 1 = 1− (1− ‖AM‖)a ≤ ‖AM‖

and this goes to 0 as M→ ∞. Combining the above discussions, we get the conclusion

lim
M→∞

(
U 1

M

)[τM2]−1
= lim

M→∞

(
U 1

M

)τM2

= eτX .

Using the above discussions, we obtain the limit

qτ(x) ≡
(

eXτ p0
0

)
(x) = lim

M→∞
p

1
M
τM(x)

and it turns out that this is the solution of the following equations:

d
dτ

qτ = Xqτ ,
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q0(x) = ρ(Px).

qτ represents the distribution of the configuration after the large time repeated measurement. The next
question is: from what this stochastic process is this distribution obtained? Let us evaluate the detail
of X. Recall that the (x, y)-entry of X is − 1

2 ωy([H, [H, Px]]). First, in order to obtain [H, Px], let us
calculate [a∗nan+1, Px] and [a∗n+1an, Px]:

[a∗nan+1, Px] = δxn0δxn+11a∗nan+1

N

∏
m 6=n,n+1

Axm
m

−δxn1δxn+10

N

∏
m 6=n,n+1

Axm
m a∗nan+1

= (δxn0δxn+11 − δxn1δxn+10)a∗nan+1Pn,n+1
x ,

where Pn,n+1
x = ∏N

m 6=n,n+1 Axm
m . Similarly, we have

[a∗n+1an, Px] = (δxn1δxn+10 − δxn0δxn+11)a∗n+1anPn,n+1
x .

Combining the above equations, we obtain

[H, Px] = −
1
2

N

∑
n=1

[
(δxn0δxn+11 − δxn1δxn+10)a∗nan+1Pn,n+1

x + (δxn1δxn+10 − δxn0δxn+11)a∗n+1anPn,n+1
x

]
.

By the simple calculation, we have

ωy([a∗nan+1, [a∗mam+1, Px]]) = 0,

ωy([a∗nan+1, [a∗m+1am, Px]]) = δnm(A1
n A0

n+1Pn,n+1
x − A0

n A1
n+1Pn,n+1

x ),

ωy([a∗n+1an, [a∗mam+1, Px]]) = δnm(A0
n A1

n+1Pn,n+1
x − A1

n A0
n+1Pn,n+1

x ),

ωy([a∗n+1an, [a∗m+1am, Px]]) = 0.

Thus, finally we get

−1
2

ωy([H, [H, Px]]) = −1
8

N

∑
n=1

[(δxn0δxn+11 − δxn1δxn+10)ωy(A0
n A1

n+1Pn,n+1
x − A1

n A0
n+1Pn,n+1

x )

+(δxn1δxn+10 − δxn0δxn+11)ωy(A1
n A0

n+1Pn,n+1
x − A0

n A1
n+1Pn,n+1

x )]

= −1
4

N

∑
n=1

[(δxn0δxn+11 − δxn1δxn+10)ωy(A0
n A1

n+1Pn,n+1
x )

+(δxn1δxn+10 − δxn0δxn+11)ωy(A1
n A0

n+1Pn,n+1
x )].

When one considers the time evolution of the observables instead of distribution (Heisenberg
picture), the generator is the transpose XT of X. The action of XT to the observable f : {0, 1}N → R is

(XT f )(y) = −1
2 ∑

x∈{0,1}N

ωy([H, [H, Px]]) f (x)

= −1
4

N

∑
n=1

(
1{yn=1,yn+1=0}( f (yn↔n+1)− f (y)) + 1{yn=0,yn+1=1}( f (yn↔n+1)− f (y))

)
,

where for y ∈ {0, 1}N , yn↔n+1 represents the configuration that exchanges the values at n and n + 1.
1{yn=1,yn+1=0} is 1 if the condition in {} is satisfied and 0 otherwise.
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The stochastic process with such a generator is called the symmetric simple exclusion process
(SSEP). Theorem 1 is proved for the case that Hamiltonian does not include potential and
interaction terms.

Before considering the case with potential and interaction terms, we would like to mention the
importance of SSEP in (non-equilibrium) statistical physics. SSEP is a special case of a more general
model, the asymmetric simple exclusion process (ASEP) [13,14], which is a solvable model of interacting
particle systems. Its dynamics and stationary state are well investigated. Moreover, as mentioned
in the Introduction, it is known that the diffusion equation, ∂

∂t ρ(t, x) = D ∂2

∂x2 ρ(t, x), is obtained from
SSEP by the hydrodynamic limit [3,4].

In the following, let us consider the Hamiltonian including the potential ∑N
n=1 v(n)a∗nan and the

interaction λ ∑N
n=1 a∗nana∗n+1an+1, and complete the proof of Theorem 1. Since these terms commute

with Px, they do not change [H, Px]. Let us consider the contribution to [H, [H, Px]]. Calculating the
terms which do not become 0, from the potential term, we have

[a∗nan, a∗nan+1Pn,n+1
x ] = a∗nan+1Pn,n+1

x ,

[a∗n+1an+1, a∗nan+1Pn,n+1
x ] = −a∗nan+1Pn,n+1

x ,

[a∗nan, a∗n+1anPn,n+1
x ] = −a∗n+1anPn,n+1

x ,

[a∗n+1an+1, a∗n+1anPn,n+1
x ] = a∗n+1anPn,n+1

x .

In addition, from the interaction term, we have

[a∗n+1an+1a∗n+2an+2, a∗nan+1Pn,n+1
x ] = −A1

n+2a∗nan+1Pn,n+1
x ,

[a∗n+1an+1a∗n+2an+2, a∗n+1anPn,n+1
x ] = A1

n+2, a∗n+1anPn,n+1
x ,

[a∗n−1an−1a∗nan, a∗nan+1Pn,n+1
x ] = A1

n−1a∗nan+1Pn,n+1
x ,

[a∗n−1an−1a∗nan, a∗n+1anPn,n+1
x ] = −A1

n−1a∗n+1anPn,n+1
x .

The expectation values of these terms with respect to the state ωy are 0. This is due to the relation
ωy(A) = TrPy APy and the fact that they are 0 if multiplied by Py from both sides. Therefore, even if
one considers the Hamiltonian including the potential and the interaction

H =
N

∑
n=1

[
−1

2
(a∗nan+1 + a∗n+1an) + v(n)a∗nan + λa∗nana∗n+1an+1

]
,

the stochastic process obtained by the large time repeated measurements of configuration is not
changed. This completes the proof of Theorem 1.

Of course, if the measurement is not performed, the property of the transport of particles is
influenced by the potential and the interaction. It is well known that, when the potential is periodic,
the system shows the ballistic transport (the current is independent of the system size) and, for random
potentials, the system shows the localization (Anderson localization). However, our result shows that,
by performing the long time repeated measurements, the transport of the particles is described by the
same stochastic process (SSEP) independent of the potential and the interaction. This fact concludes
that the effect of measurement sometimes suppresses the transport (comparing to the ballistic case)
and sometimes induces the transport (comparing to the localization case).

Independence of the potential implies that, even if the electric field is induced, the particles do
not flow in the specific direction. Since the stochastic process is symmetric, some particles move
against the electric field. This means that one can extract work from the system only by performing
the measurement.
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4. Discussion and Outlook

In this paper, we considered the large time repeated measurements of configuration of particles,
and showed that the classical stochastic process (SSEP) is obtained. From this stochastic process,
a diffusion equation emerges by the hydrodynamic limit. Although we dealt with only one-dimensional
periodic lattice, our result is easily extended to any dimension and the lattice with boundary or infinite
lattice. One of the key points of our result is that the effect of continuous measurement makes the way
of particle diffusion universal. Our result suggests that, in order to explain the universal behavior
of diffusion in macroscopic world as seen in the diffusion equation from the quantum mechanical
dynamics, disturbance from the environment would be necessary. However, projection measurement
is the very strong disturbance. How can we obtain the diffusion equation from more physically natural
dissipative quantum many body systems? This is our future work.

In the present paper, we only use the fact that the measurement is described by 1-rank PVM to

prove the former part of Theorem 1: p
1
M
τM converges to a distribution qτ which is described by the

equation d
dτ qτ = Xqτ . Thus, a part of our main result can be applied to general systems.
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