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Abstract: The Banach Gelfand Triple (S0, L2, S′0)(Rd) consists of
(
S0(Rd), ‖ · ‖S0

)
, a very specific

Segal algebra as algebra of test functions, the Hilbert space
(

L2(Rd), ‖ · ‖2
)

and the dual space
S′0(Rd), whose elements are also called “mild distributions”. Together they provide a universal tool
for Fourier Analysis in its many manifestations. It is indispensable for a proper formulation of
Gabor Analysis, but also useful for a distributional description of the classical (generalized) Fourier
transform (with Plancherel’s Theorem and the Fourier Inversion Theorem as core statements) or
the foundations of Abstract Harmonic Analysis, as it is not difficult to formulate this theory in the
context of locally compact Abelian (LCA) groups. A new approach presented recently allows to
introduce

(
S0(Rd), ‖ · ‖S0

)
and hence (S′0(Rd), ‖ · ‖S′0

), the space of “mild distributions”, without the
use of the Lebesgue integral or the theory of tempered distributions. The present notes will describe
an alternative, even more elementary approach to the same objects, based on the idea of completion
(in an appropriate sense). By drawing the analogy to the real number system, viewed as infinite
decimals, we hope that this approach is also more interesting for engineers. Of course it is very
much inspired by the Lighthill approach to the theory of tempered distributions. The main topic of
this article is thus an outline of the sequential approach in this concrete setting and the clarification
of the fact that it is just another way of describing the Banach Gelfand Triple. The objects of the
extended domain for the Short-Time Fourier Transform are (equivalence classes) of so-called mild
Cauchy sequences (in short ECmiCS). Representatives are sequences of bounded, continuous functions,
which correspond in a natural way to mild distributions as introduced in earlier papers via duality
theory. Our key result shows how standard functional analytic arguments combined with concrete
properties of the Segal algebra

(
S0(Rd), ‖ · ‖S0

)
can be used to establish this natural identification.

Keywords: tempered distribution; sequential approach; mild distribution; Banach Gelfand Triple;
Feichtinger’s algebra; Fourier transform; w*-convergence; Short-Time Fourier Transform

1. Introduction

It is the purpose of this article to present the vector space of “mild distributions” as the natural
object of all “signals which have a bounded spectrogram” (or STFT: Short-Time Fourier Transform).
We will do this in an elementary way, inspired by the classical sequential approach to distributions,
in the spirit of Lighthill ([1]) or Bracewell ([2], Chap.5), which is also popular among engineers.

The basic principle will be the idea of completion, which allows to enlarge an object by adding
elements which make it “more complete”. This is a well-known concept familiar from the introduction
of the real number system: The field Q of rational numbers is great when it comes to multiplication
and even addition can be realized in a purely algebraic way, but unfortunately it shows some
incompleteness, since obviously there is no rational number q such that q2 = 2.

In order to enlarge Q and create a complete field, to be named the real number system R, one
has several options, including Dedekind’s section, or the very concrete idea of introducing the infinite
decimal expressions, endowed with appropriate computational rules, which turns R into a field which
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is complete with respect to the Euclidean distance, i.e., where every Cauchy sequence is convergent.
Just recall:

Definition 1. A sequence (qn)n≥1 in Q is called a Cauchy-sequence whenever relative distances of elements of
the sequence tend to zero whenever the labels of two elements are both large enough. In symbols:

∀ε > 0 ∃n0 ∈ N such that m, n ≥ n0 ⇒ |qn − qm| < ε.

Note that it is of course enough to allow rational numbers ε ∈ Q or only the choice ε = 1/n for
some n ∈ N.

It is a standard fact that the field Q is not complete (with respect to the metric d(q, q′) = |q− q′|,
because one can find a Cauchy sequence with limn→∞q2

n = 2, but without finding a limit q0 ∈ Q
(which then would be a rational number with q2

0 = 2, which easily leads to a contradiction).
So instead of looking at Q itself one adds (as a replacement to the non-existent limits) the collection

of Cauchy-sequences representing the same (not yet existent) limit, in order to get a complete metric
space, i.e., a larger object that contains Q as a dense subspace, and such that within that larger object
every Cauchy sequence has a limit. Since many different Cauchy-sequences “represent the same real
number” one has to choose either a fixed representation (known as the representation of real numbers
as infinite decimals), or one introduces equivalence classes of rational numbers, based on the following
equivalence relation:

Definition 2. Two Cauchy-sequences (qn)n≥1 and (pk)k≥1 are called equivalent if one can mix them in an
arbitrary fashion and still have a Cauchy sequence, or in other words, if for ε > 0 there exists n1 ∈ N such that

n, k ≥ n1 ⇒ |qn − pk| < ε.

One then goes on and shows that this is indeed an equivalence relation on the vector space of
Cauchy sequences (with natural element-wise operations), and that one can transfer all the structure
(like addition, multiplication, inverse elements, absolute part) to this larger object, just called R.

It is also important to note that every element q ∈ Q defines an equivalence class, via the constant
sequence: qn = q, ∀n ≥ 1. One has positive elements in R and the absolute value is again well defined.
Moreover, using the standard diagonalization trick one can show that every Cauchy-sequence in
this new object (it is a rather tricky object seen in this way) has in fact a limit within R, and hence
every positive r ∈ R has roots of a (unique positive) square root, i.e., symbols like

√
2 make sense.

In fact, this achievement of a (more or less unique) completion of (Q, | · |) is a beautiful cornerstones of
mathematical analysis.

Of course this is nothing but a wordy description (one of various possible) of the field of real
numbers R, with the same operations as in Q, just by natural extension.

If one takes a somewhat wider perspective one realizes that the decimal system is a very special
system. One might use other number systems, or continued fractions, but as a striking insight (usually
explained in real analysis courses) any of the completions obtained gives the same object, resp. provides
just an alternative description of R, the natural completion of Q (with Euclidean metric).

The most abstract version of the underlying abstract principle allows to embed any metric space
isometrically into a complete metric space, as a dense subspace. In other words, one can create a
situation, which is perfectly analogue to the situation of the embedding Q ↪→ R: Clearly rational
numbers, by definition expressed as quotients of the form p/q, with p, q ∈ N, q 6= 0, have to be
identified with decimal expressions, in the usual way, as we have learnt in school. Once we have
understood that 3/4 is the same as 0.75 we do not care whether 3/4 · 6/5 = 18/20 = 9/10 has been
computed within the rational numbers or as 0.75 · 1.2 = 0.75 + 0.15 = 0.9. Moreover, Q is dense in R,
because obviously for any ε > 0 there exists some k ∈ N such that (1/10)k < ε and hence the finite
decimal expression for x ∈ R which keeps the first k digits of x will provide an ε-approximation to x.
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Generally, the method of completion consists of several steps:

1. First one considers all possible Cauchy-sequences;
2. Then one forms equivalence classes of Cauchy-sequences, which are the objects of the new space;
3. The distance of the new elements can be defined in a natural way, as the limit of the distances in the

all possible Cauchy-Sequences (CS) generating the equivalence classes, and of course this does
not depend on the representative of the class;

4. Any element of the original space defines a constant sequence which is a CS, for trivial reasons.
The claimed natural embedding mapping assigns simply every element in the given space the
corresponding constant equivalence class;

5. Then one verifies that this natural embedding of the original metric space into the new one is
isometric, so that henceforth the copy with the new object arising from the original objects can
be identified with the elements of the original space. (For the case of Q ↪→ R we recognize the
rational numbers among all the infinite decimal expressons as those which are periodic, for a
suitably chosen period.)

6. If further structure is available, i.e., if we have a normed space or a normed algebra, the resulting
complete object is then a Banach space or a Banach algebra.

2. The Short-Time Fourier Transform STFT

First we introduce the Short-Time Fourier Transform (STFT), or Sliding Window Fourier Transform
for continuous functions f and compactly supported window g, using simply Riemann integrals. In
the traditional approach to Gabor Analysis (see [3]) one starts by assuming that the signal f to be
analyzed and the window g used for localization are in L2(Rd), but from a practical viewpoint the
non-symmetric assumption appears to be more natural.

Our signal space is Cb(Rd), the set of bounded, continuous, (real or ) complex-valued functions
on Rd. Since we do not request any decay or summability or decay conditions on f we assume further
that the window function g ∈ Cc(Rd), is a continuous (real-valued) function with compact support (i.e.,
for some R > 0 one has g(x) = 0 for |x| ≥ R), and is thus Riemann integrable, with

‖g‖1 :=
∫
Rd
|g(x)|dx < ∞.

Definition 3. Given f ∈ Cb(Rd) and g ∈ Cc(Rd) one defines the STFT of the signal/function f with respect
to the window g as the following function, whose argument are points of the 2d-dimensional phase space, namely
pairs (t, s), with t from the so-called time-domain and s from the frequency domain, t, s ∈ Rd.

Vg( f )(t, s) :=
∫
Rd

f (x)g(x− t)e−2πis·xdx. (1)

For the case d = 1 the absolute value |Vg f (t, s)| represents the frequency content of an audio-signal
at time t and at frequency s, comparable to a graphical score. A quite realistic idea of what it is can be
obtained by watching the web-page www.gaborator.com, where you can even upload your own piece
of music (in the standard WAV-format for audio files).

It is easy to show that the STFT of a bounded and continuous function is a bounded and continuous
function of two variables:

Lemma 1. Given f ∈ Cb(Rd) and g ∈ Cc(Rd). Then Vg( f ) ∈ Cb(Rd × R̂d) and

‖Vg( f )‖∞ ≤ ‖g‖1‖ f ‖∞. (2)

In other words, for any fixed g ∈ Cc(Rd) the mapping f 7→ Vg( f ) is a continuous embedding from
(Cb(Rd), ‖ · ‖Cb(Rd)) into (Cb(R2d), ‖ · ‖Cb(R2d)).

www.gaborator.com
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Proof. The obvious estimate of Vg( f )(t, s) comes from

|Vg( f )(t, s)| ≤
∫
Rd
| f (x− t)||g(x)|dx ≤ ‖ f ‖∞‖g‖1.

The (uniform) continuity in the time direction comes from

|Vg( f )(t′, s)−Vg( f )(t′, s)| ≤ ‖ f ‖∞‖g− Tt−t′g‖1 < ε

whenever |t− t′| < δ, due to the uniform continuity of g. Finally (also uniform) continuity in the
frequency direction comes in: Given ε > 0 one can find some δ > 0 such that |s− s′| < δ implies

|e2πis·x − e2πis′ ·x| = |1− e2πi(s−s′)·x| < ε

whenever x ∈ supp(g), which in turn implies

|Vg( f )(t, s)−Vg( f )(t, s′)| ≤ ‖ f ‖∞‖g‖1 · ε.

The injectivity of f 7→ Vg( f ) is an easy exercise.

It is our goal to show that in some sense the space S′0(Rd) of mild distributions on Rd can be
viewed as a kind of completion of Cb(Rd). Alternatively it can be viewed as the “largest natural vector
space of signals” which have a bounded spectrogram.

In the rest of this paper we will show how to extend the domain of the STFT to a larger space
of signals, which we call “mild distributions”, making use of (mild) Cauchy sequences, but also by
verifying that this approach provides the user with just an alternative approach to the Banach space
(S′0(Rd), ‖ · ‖S′0

), which has been introduced long ago and which has been used in a series of papers

over many years. It also constitutes the outer layer of the so-called Banach Gelfand Triple (S0, L2, S′0).

3. The Usual Approach to
(
S0(Rd),‖ · ‖S0

)
For mathematicians familiar with the theory of tempered distributions as it is taught in many

courses one can describe the Banach Gelfand Triple (S0, L2, S′0)(Rd), consisting of the Segal algebra(
S0(Rd), ‖ · ‖S0

)
, the Hilbert space

(
L2(Rd), ‖ · ‖2

)
and the dual space (S′0(Rd), ‖ · ‖S′0

) in the following

way, using the extended STFT, well defined for any σ ∈ S ′(Rd) (consistent with the classical
definition) via

Definition 4. Given any non-zero (real-valued) g ∈ S(Rd) we define

Vg(σ)(t, s) = σ(M−sTtg), t, s ∈ Rd.

Here we use the standard notations familiar from time-frequency analysis, namely [Tzg](x) =
g(x− z) and [Msh](x) = e2πis·xh(x), where s · x = 〈s, x〉 = ∑d

k=1 skxk is the usual scalar product in Rd.
Then the basic facts concerning the triple (S0, L2, S′0)(Rd) can be summarized as follows

(see [3–5]):

Theorem 1. For fixed 0 6= g ∈ S(Rd) one has:

• For f ∈ L2(Rd) one has Vg( f ) ∈ L2(R2d) and

‖Vg( f )‖L2(R2d) = ‖g‖2‖ f ‖2 f , g ∈ L2(Rd).
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• A function f ∈ L2(Rd) belongs to S0(Rd) by definition, if Vg( f ) ∈ L1(R2d), and

‖ f ‖S0 :=
∫
Rd×R̂d

|Vg( f )(t, s)|dtds.

Any function f ∈ S0(Rd) is continuous, bounded and absolutely Riemann-integrable;
• A tempered distribution σ ∈ S ′(Rd) belongs to S′0(Rd) if and only if

‖Vg(σ)‖∞ = sup
(t,s)∈Rd×R̂d

|Vg(σ)(t, s)| < ∞.

Moreover, this expression defines an equivalent norm on (S′0(Rd), ‖ · ‖S′0
).

The (continuous) embedding of
(

Lp(Rd), ‖ · ‖p
)

(for any p ∈ [1, ∞]) into (S′0(Rd), ‖ · ‖S′0
) is

realized via
h 7→ σh( f ) :=

∫
Rd

f (x)h(x)dx, f ∈ S0(Rd). (3)

Aside from the norm convergence in (S′0(Rd), ‖ · ‖S′0
) (resp. uniform convergence of the

corresponding STFTs Vg(σn) it is important to discuss the so-called w∗-convergence of sequences.
Due to the separability of

(
S0(Rd), ‖ · ‖S0

)
it is enough to use sequences, while in general one should

use nets for a description of the w∗-topology!

Definition 5. A sequence (σn)n≥1 is w∗-convergent in S′0(Rd) to σ0 if and only if

lim
n→∞

σn( f ) = σ0( f ), ∀ f ∈ S0(Rd). (4)

As illustration let us give a few examples as they appear in (engineering) books on Fourier
Analysis, involving typically some “hand-waving” argument:

1. Dirac sequences, obtained by compression of an integrable function;

w∗- lim ρ→0 Stρ(g) =
(∫

R
g(x)dx

)
γ0,

where [Stρg](x) = ρ−dg(x/ρ).
2. Riemannian sums converging to the integral, e.g. for f ∈ S0(Rd):

lim
α→0
〈αd ∑

k∈Zd

δαk, f 〉 = lim
α→0

αd ∑
k∈Zd

f (αk) =
∫
Rd

f (x)dx = 〈1, f 〉.

3. For any f ∈ L1(Rd) the periodic versions of that function converge to the original function (this is
often used to motivate the form of the Fourier integral for non-periodic functions):

w∗- lim p→∞ ∑
k∈Zd

Tpk f = f .

4. Mild Cauchy Sequences

We will take the space Cb(Rd) as a starting point, a vector space of “decent signals”, where the
usual vector space operations (addition, linear combinations etc.) are well defined. It is a normed
vector space with respect to ordinary addition and scalar multiplication of continuous functions.
The expression

‖ f ‖∞ := sup
r∈Rd
| f (r)| (5)
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defines the natural norm on this space, turning
(
Cb(Rd), ‖ · ‖∞

)
into a Banach space, in fact, it is even

a Banach algebra with respect to pointwise multiplication, since

‖ f · g‖∞ ≤ ‖ f ‖∞ · ‖g‖∞, f , g ∈ Cb(Rd). (6)

Occasionally we will need
(
C0(Rd), ‖ · ‖∞

)
, the closed ideal of function in Cb(Rd) which vanish at

infinity, i.e., satisfy
lim
|x|→∞

| f (x)| = 0. (7)

The Riesz Representation Theorem justifies to simply identify the dual space of
(
C0(Rd), ‖ · ‖∞

)
with

the space (Mb(Rd), ‖ · ‖Mb) (of bounded, regular Borel measures). The continuity of such a functional
in the form

µ : f 7→
∫
Rd

f (x)dµ(x),

corresponds to the usual σ-additivity used in measure theory, and the functional norm is the same as
the total variation (see [6]).

Since we are interested in extending the concept of an STFT in an elementary way from Cb(Rd) to
some larger space (yet to be defined). We first look at a variant of the concept of a Cauchy sequence
which appears to be appropriate in the current context.

Definition 6. Fix any non-zero g ∈ Cc(Rd) with ĝ ∈ L1(Rd). A sequence (hn)n≥1 in Cb(Rd) is called a mild
Cauchy sequence if the sequence ‖Vg(hn)‖∞ is bounded and(

Vg(hn)(s, t)
)

n≥1 (8)

is a Cauchy-sequence (with respect to n) for every pair (t, s) ∈ Rd × R̂d.

Since the field C of complex numbers is itself complete this is of course equivalent to the
assumption that the limit of such a sequence exists, i.e., for each (t, s) ∈ Rd × R̂d one has a
pointwise limit

∃H(s, t) = lim
n→∞

Vg(hn)(s, t) (9)

and of course H is then a bounded function with

‖H‖∞ ≤ sup
n≥1
‖Vg(hn)‖∞. (10)

Remark 1. One can show that the condition does not depend on the a particular choice of g. In fact, even a
slightly stronger claim is true: if condition (8) is valid for one nonzero function g1 ∈ S0(Rd) it is also true for
any other function g2 ∈ S0(Rd). This follows from the atomic characterization of

(
S0(Rd), ‖ · ‖S0

)
, a kind of

exchange principle, (see [4,5]).

We define equivalence of Cauchy-sequences in a rather obvious way:

Definition 7. Two mild Cauchy-sequences (h(1)n ) and (h(2)k ) are called mildly equivalent if they have the same
limit, i.e.,

lim
n→∞

Vg(h
(1)
n )(s, t) = lim

k→∞
Vg(h

(2)
k )(s, t), ∀(t, s) ∈ Rd × R̂d. (11)

We also define a norm on the vector space of equivalence classes of mild Cauchy-sequences
(short: ECmiCS):
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Definition 8. For a given ECmiCS F we define its norm:

‖F‖CS = inf{sup
n≥1
‖Vg(hn)‖∞}, (12)

where the infimum is taken over all representatives of the equivalence class F.

It is then not difficult (but lengthly) to verify that this is actually a norm on the vector space
of equivalence classes, and that

(
Cb(Rd), ‖ · ‖∞

)
is continuously embedded into this space. We will

observe later that Cb(Rd) is not dense in the new space with respect to this norm, but only in the natural
topology (corresponding to the w∗-convergence in S′0(Rd)). What is less obvious (but a valid claim) is
the completeness of this new space: every mild Cauchy sequence has a limit.

In order to establish appropriate terminology for discussion and later reference let us introduce
the acronym ECmiCS for an Equivalence Class if mild Cauchy Sequences. These ECmiCS constitute the
new (enlarged) vector space of objects, in fact a normed space with respect to the CS-norm. For the
rest of this note it will be convenient to use the symbol F for such an equivalence class, hence ‖F‖CS
describes the norm of an ECmiCS.

Using this terminology our observations reduce to the following statement:

Lemma 2. The space
(
Cb(Rd), ‖ · ‖∞

)
is continuously embedded into the space of ECmiCS, endowed with the

CS-norm.

One only has to check (and this is quite easy) that if h ∈ Cb(Rd) represents the zero ECmiCS that
it has to be the zero-function, but this is quite clear because it implies that

∫
Rd f (x)h(x)dx = 0 for any

f ∈ S0(Rd), again based on the atomic characterization of
(
S0(Rd), ‖ · ‖S0

)
.

What is perhaps more interesting is the fact that one can extend more or less all the usual
manipulations to this enlarged space, by just applying it to the individual mild Cauchy sequences, by
verifying that they are compatible with the introduced equivalence relation.

Above all we have translation, modulation, dilations, which can be easily transferred to the
extended space. The Fourier transform is a bit more tricky.

The decisive formula is (3.10) in [3], p. 40, also called fundamental formula of time-frequency
analysis there.

Vĝ( f̂ )(ω,−t) = e2πit·ω Vg( f )(t, ω), t, ω ∈ Rd. (13)

For the standard choice g = g0 (Gaussian window) this implies that the STFT of f̂ is (up to some
harmless phase factors) just the (absolute value of the) original STFT of f , rotated by 90 degrees in
phase space, thus implying the isometric invariance of

(
S0(Rd), ‖ · ‖S0

)
under the Fourier transform.

Since at this point we do not have a Fourier transform for h ∈ Cb(Rd) we cannot use of this formula yet.

5. The Functional Analytic Viewpoint

In this section we will demonstrate that the approach chosen in the section above is in fact
equivalent to the one used in various publications on the subject so far, or the approach to the subject
possible in the context of tempered distributions. Of course, it is necessary to make use of result
from standard linear functional analysis in order to carry out these identifications in a mathematically
correct way.

Let us first recall in some more detail the characterization of (S′0(Rd), ‖ · ‖S′0
) (as e.g., introduced

in [7]) as a subspace of tempered distributions S ′(Rd):

Lemma 3. The space S′0(Rd) coincides with the space of all tempered distributions with a bounded STFT (with
respect to any non-zero Schwartz function g):

Vg(σ)(t, s) = σ(M−sTtg), t, s ∈ Rd.
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Proof. First of all let us remind of the fact that S(Rd) is dense in
(
S0(Rd), ‖ · ‖S0

)
. Hence S′0(Rd) is a

subspace of S ′(Rd) (continuous embedded).
Since the set (M−sTtg)t,s∈Rd is uniformly bounded, in

(
S0(Rd), ‖ · ‖S0

)
due to the fact that

‖M−sTtg‖S0 = ‖ f ‖S0 , it is necessary for σ to extend to a linear functional on
(
S0(Rd), ‖ · ‖S0

)
that

sup
(t,s)∈Rd×R̂d

|Vg(σ)(t, s)| ≤ ‖σ‖S′0
‖ f ‖S0 . (14)

Conversely assume that σ ∈ S′0 is given. Then one has, thanks to the atomic representation of general
elements of

(
S0(Rd), ‖ · ‖S0

)
as

f =
∞

∑
n=−∞

cn M−sn Ttn g with
∞

∑
n=−∞

|cn| ≤ C‖ f ‖S0 , (15)

for some constant C > 0 the following estimate for any f ∈ S(Rd) ⊂ S0(Rd):

|σ( f )| ≤
∞

∑
n=−∞

|cn|σ(M−sn Ttn g)

and further

|σ( f )| ≤
∞

∑
n=−∞

|cn||Vg(σ)(tn, sn)| ≤ C‖ f ‖S0‖Vg(σ)‖∞.

Thus we have established the equivalence of ‖Vg(σ)‖∞ and the standard dual norm on (S′0(Rd), ‖ · ‖S′0
),

given by ‖σ‖S′0
:= sup‖ f ‖S0≤1 |σ( f )|.

Since the following result will immediately provide a number of properties of our “completion”
of Cb(Rd) we want to give it next, in order to avoid elementary, but cumbersome arguments (in the
spirit of sequential approaches to generalized functions, as promoted by Lighthill [1]).

This is one of our main results:

Theorem 2. There is a natural identification of (S′0(Rd), ‖ · ‖S′0
) with ECmiCS, the normed space of equivalence

classes of mild Cauchy sequences in Cb(Rd), with equivalence of norms.

Proof. Given any equivalence class of mild Cauchy-sequence F and ε > 0 let us choose as mild CS
( fn)n≥1 in Cb(Rd) with

sup
n≥1
‖Vg( fn)‖∞ ≤ ‖F‖CS + ε.

Then the sequence ( fn)n≥1 can be viewed as a bounded sequence (σn)n≥1 in (S′0(Rd), ‖ · ‖S′0
), via

σn( f ) =
∫
Rd

f (x) fn(x)dx, f ∈ S0(Rd).

In fact,
sup
n≥1
‖σn‖S′0

≤ ‖F‖CS + ε ≤ 2‖F‖CS.

By the atomic decomposition formula (15) this sequence is uniformly bounded in S′0(Rd).
Therefore it is enough to show that (σn( f ))n≥1 is a Cauchy-sequence for any f ∈ S(Rd) (the existence
of the limit follows then automatically). Given ε > 0 and f ∈ S0(Rd) let us choose a finite sum of the
form h = ∑K

n=1 cn Msn Ttn g
σr(Msn Ttn g) = Vg(σr)(tn, sn). (16)

with
‖ f − h‖S0 < ε/(10‖F‖CS),
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and of course ∑n≥1 |cn| ≤ C‖ f ‖S0 .
Given the finite sequence (tn, sn)K

n=1 in Rd × R̂d the pointwise Cauchy-condition implies that we
can find an index n1 ∈ N such that one has for r1, r2 ≥ n1

|Vg( fr1)(tn, sn)−Vg( fr2)(tn, sn)| < ε · (2C‖ f ‖S0)
−1, for1 ≤ n ≤ K. (17)

Consequently one has

|σr1(h)− σr2(h)| ≤
K

∑
n=1
|cn||Vg( fr1)(tn, sn)−Vg( fr2)(tn, sn)| ≤ ε/2. (18)

This implies for r1, r2 ≥ n1

|σr1( f )− σr2( f )| ≤ |σr1( f − h)|+ ε/2 + |σr2(h− f )| ≤ (19)

≤ 2 sup
n≥1
‖σn‖S0‖ f − h‖S0 + ε/2 (20)

≤ 2/5ε + ε/2 < ε. (21)

This shows that there exists some σ with Vg(σ) being the poitnwise limit of the mild distributions
(σn) and thus

‖σ‖S′0
= sup |Vg(σ)(t, s)| ≤ ‖F‖CS + ε,

but since this claim is valid for any ε > 0 we have

‖σ‖S′0
≤ ‖F‖CS.

It remains to mention (details are left to the interested reader) that the assignment F 7→ σ is
in fact well defined, i.e., it is in fact a mapping from the equivalence class F, not depending on the
representative used. But this follows from the uniqueness of the STFT: Given σ1, σ2 ∈ S′0(Rd) with
Vg(σ1) = Vg(σ2) one has of course σ1 = σ2.

Since any dual of a normed space is a complete, normed space, i.e., a Banach space, we have as an
immediate consequence of the isomorphism just stated:

Corollary 1. The space of equivalence classes of mild Cauchy sequences in Cb(Rd) with its natural norm is
a Banach space. The embedding of

(
Cb(Rd), ‖ · ‖∞

)
into this space via constant sequences, i.e., by f 7→ ( fn),

with fn = f for all n ≥ 1, is continuous, with dense range (in the w∗-sense).

Proof. Obviously the completeness of (S′0(Rd), ‖ · ‖S′0
) transfers to the “mild completion” of Cb(Rd).

A direct proof would be possible, by elementary means, but it would be a bit cumbersome (and less
informative). The density follows from the w∗-density of S0(Rd) in S′0(Rd), combined with the inclusion

S0(Rd) ↪→ Cb(Rd) ↪→ S′0(Rd).

Remark 2. Of course it would be possible to provide a direct proof, by means of absolutely convergent series,
but this argument would much longer, but of course more elementary in terms of tools.

Now we have to take care of the converse: Every element σ ∈ S′0 defines an equivalence class of
distributions, in such a way that this assignment is the inverse to the embedding just discussed.
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For this purpose we will use the regularization properties which arise from the convolution
relations and pointwise multiplication of Wiener amalgam spaces, which provide the following facts
(see e.g., [8,9]):

Proposition 1. The following inclusions are valid for the Wiener amalgam spaces relevant for the treatment of
S0(Rd) = W(FL1, `1)(Rd) and its dual space:

1. W(FL1, `1)(Rd) ∗W(FL∞, `∞)(Rd) ⊂W(FL1, `∞)(Rd);
2. W(FL1, `∞)(Rd) ·W(FL1, `1)(Rd) ⊂W(FL1, `1)(Rd);
3. W(FL1, `1)(Rd) ·W(FL∞, `∞)(Rd) ⊂W(FL∞, `1)(Rd).

In fact, the Wiener amalgam space W(FL1, `∞)(Rd) coincides (with equivalence of norms) with the space of
pointwise multipliers of

(
S0(Rd), ‖ · ‖S0

)
.

Using the fact which has been the original definition (in [4], see also [3] where these spaces are
introduced as modulation spaces) that

S0(Rd) = W(FL1, `1)(Rd) and S′0(Rd) = W(FL∞, `∞)(Rd)

with equivalence of norms one easily combines these relations to obtain

[S′0(Rd) ∗ S0(Rd)] · S0(Rd) ⊂ S0(Rd) and [S′0(Rd) · S0(Rd)] ∗ S0(Rd), (22)

of course again combined with corresponding norm estimates, stating that there exists some C′ > 0
(depending on the choice of the norms) such as (for example)

‖(σ ∗ g) · h‖S0 ≤ C′‖σ‖S′0
‖g‖S0‖h‖S0 , ∀σ ∈ S′0 and ∀g, h ∈ S0. (23)

In order to create a mild Cauchy sequence representing σ ∈ S′0 it is thus enough to make use of
bounded approximate units from in S0(Rd), i.e., an Dirac sequence forming a bounded approximate
unit for convolution in

(
L1(Rd), ‖ · ‖1

)
(i.e. bounded with respect to the L1(Rd)-norm) consisting

entirely of elements from the dense subspace S0(Rd) ⊂
(

L1(Rd), ‖ · ‖1
)
, and another bounded

approximate unit for pointwise multiplication, now bounded with respect to the Fourier algebra(
FL1(Rd), ‖ · ‖FL1

)
.

Of course one can get one from the other. In particular, it is clear, that for a bounded sequence
(gn)n≥1 in

(
L1(Rd), ‖ · ‖1

)
with

‖gn ∗ g− g‖L1 → 0 for n→ ∞, ∀g ∈ L1(Rd), (24)

then (by the convolution theorem) hn = ĝn is a bounded sequence in
(
FL1(Rd), ‖ · ‖FL1

)
with

‖hn ∗ h− h‖FL1 → 0 for n→ ∞, ∀h ∈ FL1(Rd), (25)

and in fact vice versa.
The most convenient way to produce such a Dirac sequence is of course (area preserving)

compression of a function g ∈ S0(Rd) with
∫
Rd g(x)dx = ĝ(0) = 1, using the dilation operator

Stρ given by
[Stρ(g)](z) = ρ−dg(z/ρ), ρ > 0, z ∈ Rd,

satisfying (24) for ρn → 0, with

‖Stρ(g)‖L1 = ‖g‖L1 , g ∈ L1(Rd), ρ > 0.
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The Fourier transform of such a sequence is characterized by the “value-preserving” dilation operator
Dρ, given by

[Dρ(h)](z) = h(ρz), ρ > 0, z ∈ Rd,

with
‖Dρ(h)‖∞ = ‖h‖∞, h ∈ Cb(Rd), ρ > 0.

In other words, we have the intertwining relation

F(Stρ(g)) = Dρ(F(g)), g ∈ L1(Rd), ρ > 0. (26)

Whenever
∫
Rd g(x)dx = 1 for g ∈ L1(Rd) or equivalently h(0) = ĝ(0) = 1 for h ∈ FL1(Rd) the

corresponding families
(Stρn(g))n≥1 and (Dρn(h))n≥1

form such approximate units for any (fixed) sequence ρn → 0.

For our purpose it is most convenient to choose g = g0, given as g0(t) = e−π‖t‖2
= ∏d

j=1 e−πt2
j ,

the normalized Gauss function, which belongs to S(Rd) ⊂ S0(Rd) and is Fourier invariant, i.e., we
have g = g0 = ĝ0 = h and our assumptions are satisfied.

Putting all these observations together we get: For any sequence (ρn)n≥1 with limn→∞ρn = 0
the sequence

fn = (Stρng0 ∗ σ) ·Dρng0 (27)

or alternatively
f̃n = (Dρng0 · σ) ∗ Stρng0 (28)

describe (equivalent) mild Cauchy sequences, both representing the given σ ∈ S′0.
In fact, one has (for the case of ( fn)) for any (t, s) ∈ Rd × R̂d:

Vg( fn)(s, t) = 〈(Stρng0 ∗ σ) ·Dρng0, M−sTtg〉 = (29)

by the evenness of g0 and hence Stρng0, and writing for the right hand for fixed (t, s) ∈ Rd × R̂d simply
f = M−sTtg ∈ S0(Rd):

= 〈(Stρng0 ∗ σ) ·Dρng0, f 〉 = 〈(Stρng0 ∗ σ), Dρng0 · f 〉 = σ(Stρng ∗ [Dρng0 · f ]).

Thus it is finally left to us to verify that the argument of σ in the last expression is in fact convergent to
f in the norm of

(
S0(Rd), ‖ · ‖S0

)
.

This can be derived from the fact (for any Segal algebra, see [10,11])

‖Stρng0 ∗ f − f ‖S0 → 0, for n→ ∞, ∀ f ∈ S0(Rd), (30)

and (by just taking the Fourier transform of this last equation and replacing f̂ ∈ F(S0(Rd)) = S0(Rd)

by f again):
‖Dρng0 · f − f ‖S0 → 0, for n→ ∞, ∀ f ∈ S0(Rd). (31)

These two estimates can be combined to the required claim by the following chain of inequalities, using
the triangular equation and the L1-boundedness of the Dirac sequence (Stρng)n≥1. Given f ∈ S0(Rd)

one has for n large enough:

‖Stρng ∗ [Dρng0 · f ]− f ‖S0 ≤ ‖Stρng ∗ [Dρng0 · f − f ]‖S0 + ‖Stρng ∗ f − f ‖S0

≤ ‖Stρng‖1 · ‖Dρng0 · f − f ‖S0 + ε = (‖g‖1 + 1) · ε. (32)

This establishes that each σ ∈ S′0 defines an mild Cauchy sequence.
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It is clear from the proof that of course the mild distribution arising from such a mild CS is in fact
the original mild distribution, since we have

lim
n→∞

Vg( fn)(t, s) = Vgσ(t, s), ∀(t, s) ∈ R2. (33)

Altogether the above considerations show that it is possible to view (S′0(Rd), ‖ · ‖S′0
) as a kind of

“natural completion” of
(
Cb(Rd), ‖ · ‖∞

)
, based on the concept of mild Cauchy sequences, very much in

the spirit of the sequential approach to distributions, as featured by Lighthill ([1]) or as pointed out in
the book of Bracewell ([2], Chap.5 and Chap.6).

Connections to Gabor Analysis

In practice it is not possible to compute Vg(σ) a continuous functions of 2d variables for
uncountably many arguments (t, s) ∈ R2d. Hence one may ask whether it is enough to verify
boundedness resp. pointwise convergence on a sufficiently large resp. dense subset of the TF-plane
(phase space).

There is a precise answer to this question, closely connected to the theory of Gabor frames.
Without going into details (and leaving it to the reader to consult with [3,12,13] or other more recent
sources on Gabor analysis) let us summarize the most important facts. Although one could use general
lattices Λ = ∗ Zd CRd × R̂d, for suitable non-singular 2d× 2d-matrices we restrict our attention to
lattices of the form Λ = aZd × bZd, with a, b > 0. We call a the time-step (or grid constant in the image
domain for d = 2) and b the frequency-step (or grid constant in the wave-number domain for d = 2).

A (regular) Gabor family generated by the triple (g, a, b) is a family of the form {MnbTkag | n, k ∈ Zd},
for some g ∈ L2(Rd). In a short-hand notation we will use the more abstract symbol gλ := MnbTkag
for the Gabor atom located at λ = (ka, nb) in phase space. A regular Gabor family is a Gabor frame if
the Gabor frame operator

S( f ) := S(g,a,b) f := ∑
λ∈Λ
〈 f , gλ〉gλ (34)

is a bounded and invertible operator on
(

L2(Rd), ‖ · ‖2
)
. Then any f ∈ L2(Rd) can be represented as a

norm-convergent double sum in
(

L2(Rd), ‖ · ‖2
)
, of the form

f = ∑
λ∈Λ

Vg̃(λ)gλ, (35)

where g̃ = S−1(g) = S−1
(g,a,b)g is the dual Gabor atom, providing the minimal norm representation of f

using the Gabor family (gλ)λ∈Λ, with the important estimate

‖Vg̃ f |Λ‖`2(Λ) ≤ C‖ f ‖L2(Rd), ∀ f ∈ L2(Rd), (36)

for some constant depending only on g and (a, b) (in fact, suitable normalized only on γ0, i.e., the
density of the lattice Λ = aZd × bZd).

It is one of the most important results of Gabor Analysis that g ∈ S0(Rd) not only implies that
Sg,a,b is a bounded operator on

(
S0(Rd), ‖ · ‖S0

)
, due to the estimate

‖(Vg̃( f )(λ))|Λ‖`1(Λ) ≤ C1‖ f ‖S0 , ∀ f ∈ S0(Rd),

but also that g̃ belongs S0(Rd), see [14,15].

Lemma 4. Given non-zero g ∈ S0(Rd) there exists γ0 > 0 such that for a ≤ γ0, b ≤ γ0 one has: (g, a, b)
generates a Gabor frame, with g̃ ∈ S0(Rd). Hence Vg̃(σ) is well defined for σ ∈ S′0(Rd), and one has:

• f ∈ S0(Rd) if and only if Vg( f )|Λ ∈ `1(Λ);
• f ∈ S0(Rd) if and only if Vg̃( f )|Λ ∈ `1(Λ);
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• f ∈ S0(Rd) if and only if f has a representation

f = ∑
λ∈Λ

cλgλ, for some sequence(cλ)λ∈Λ ∈ `1(Λ). (37)

In each case the `1-norm of the involved coefficients (the infimum over all possible representations in the case
of (37)) defines an equivalent norm on

(
S0(Rd), ‖ · ‖S0

)
.

Based on this observation it is easy to verify by simple modifications of the proofs given above
(the details are left to the interested reader):

Proposition 2. In the situation of Lemma 4 a sequence (hn)n≥1 in Cb(Rd) is a mild Cauchy sequence if and
only if

supn≥1 sup
k,l∈Zd

|Vg(hn)(ak, bl)| < ∞

and (
Vg(hn)(ak, kl)

)
n≥1 (38)

is a Cauchy-sequence (with respect to n) for any k, l ∈ Zd.

For specific Gabor atoms g ∈ S0(Rd) (sufficient conditions can be found in [16] or [17]) one can
show that the otherwise necessary condition a · b < 1 is also a sufficient condition for creating a Gabor
frame. For a long time this was known to be a valid criterion for the Gauss function (see [18,19]). Quite
recently this criterion has been extended to the class of totally positive functions in [20].

6. Natural Extension of Operators

The idea of generalized functions or distributions is not so much to discuss linear functionals, but
rather treat objects which are “more general than functions” as if they where functions. In fact, one
wants to include in the mathematical discussions objects which arise naturally in analysis, such
as Dirac measures, Dirac combs or pure frequencies χs(t) = e2πi〈s,t〉 which are either not ordinary
(pointwise defined) functions resp. not integrable. Still, one would like to define operations like
convolution, pointwise multiplication or Fourier transforms on these objects in a way which extends
these operations, as known for ordinary functions, as “naturally” as possible.

Distributions can be shifted, multiplied with decent functions, they can be dilated (or even rotated
for d > 1) and one can take a Fourier transform. It is also possible to define their support and it
behaves in the expected way (e.g., with respect to translation or dilation operators), we will not discuss
this in detail here.

Clearly the extension of the operators defined on ordinary functions, say at least on S0(Rd) or
Cb(Rd) to the more general setting of S′0(Rd) or in our setting to ECmiCS should be compatible, i.e.,
the extended operator should always be the (only) natural operator defined on the extension of the
given operator in such a way that one has for any ordinary function:

Given an ordinary function and applying the operator first and then the embedding into
ECmiCS should be the same as applying the extended operator to the ECmiCS generated by the
ordinary function.

In the context of the Banach Gelfand Triple (S0, L2, S′0)(Rd) one would argue that the operators
should not only map the Hilbert space to the Hilbert space, but also the test functions to test
functions, and finally the dual spaces into each other, not only in a norm-continuous way, but also in a
w∗-w∗-continuous form. But we will not make use of this connection.

The answer to this request is for most cases as natural as it is simple. If an ECmiCS is represented
by a mild Cauchy sequence ( fn)n≥1 one tries to define the extension operator T̃ and via (T fn)n≥1. Of



Axioms 2020, 9, 25 14 of 18

course one has to verify in concrete cases that this is well defined, i.e., maps mild Cauchy sequences
into mild Cauchy sequences and preserves equivalence classes.

We will provide a short discussion of the key steps only for the case of the Fourier transform
T = F. In this case we reduce the discussion to a sequence ( fn)n≥1 with fn ∈ S0(Rd) for n ≥ 1.

Let us first consider the sequence ( f̂n)n≥1. In order to check that it is a mild Cauchy sequence
we use a Gaussian window g = g0, because it has the advantage of being Fourier invariant. Then by
Plancherel’s Theorem (see [3], formula (3.10)):

Vg0( f̂n)(t, s) = 〈 f̂n, MsTtg0〉 = 〈 fn, T−s Mtg0〉 = e−2πit·s〈 fn, MtT−sg0〉, (39)

or in short (
Vg0( f̂n)

)
(t, s) = e−2πit·sVg0( fn)(−s, t), (t, s) ∈ Rd × R̂d. (40)

The same identities also allow to conclude that the mapping f 7→ f̂ preserves equivalence classes and
that of course this extension is compatible with the usual definition of an extended Fourier transform
(possible for any Fourier invariant Banach space of test functions):

σ̂( f ) = σ( f̂ ), f ∈ S0(Rd), σ ∈ S′0. (41)

In fact, we verify that for (t, s) ∈ Rd × R̂d one has:

Vg0( f̂ )(t, s) = 〈 f̂ , MsTtg0〉 = 〈 f ,F−1(MsTtg0)〉

with the limit limn→∞Vg0( f̂n)(s, t), for any mild CS representing σ.

7. Alternative Starting Points

Although we consider Cb(Rd) as a natural starting point when it comes to describe the “largest
space of signals” for which the STFT is still a bounded functions via equivalence classes of mild
Cauchy sequences (ECmiCS) one may ask whether, by the same form of “completion”, other starting
points could be chosen, in order to get the same space, but derive more easily additional properties
(like Fourier invariance). Alternatively, one might ask, whether certain choices which are closer
to applications (like the use of periodic, discrete signals as point of departure) yield other objects.
Fortunately this will not be the case. The discussion of these two points makes up the current section.

The first result in this direction describes a general observation, making use of the functional
analytic setting:

Proposition 3. Given a Banach space (B, ‖ · ‖B) ↪→ (S′0(Rd), ‖ · ‖S′0
) and w∗-dense. Assume that there

is a bounded sequence of operators (An)n≥1 on (S′0(Rd), ‖ · ‖S′0
) such that for any n ≥ 1 An maps S′0(Rd)

continuously into (B, ‖ · ‖B)

f = w∗- lim n→∞ An( f ), ∀ f ∈ S0(Rd). (42)

Then the normed space of ECmiCS arising from (B, ‖ · ‖B) can be naturally identified with the space of
ECmiCS arising from

(
Cb(Rd), ‖ · ‖∞

)
.

Proof. First of all we recall that S0(Rd) is w∗-dense in S′0(Rd) and that for any given σ ∈ S′0 the sequence

fn = Rn(σ) := Dρng0 · [Stρng0 ∗ σ]

is bounded in (S′0(Rd), ‖ · ‖S′0
) and tends to σ in the w∗-sense. The sequence of operators (Rn) is the

prototype of a sequence as alluded in the assumptions of this proposition.
For the proof of our claim let us fix the Banach space (B, ‖ · ‖B) and the sequence (An)n≥1.
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Given a mild CS-sequence in Cb(Rd) we want to find a representative in the same equivalence
class consisting of members of B (instead of the original choice Cb(Rd)).

Given thus ( fn)n≥1 in Cb(Rd) (viewed as elements of S′0(Rd)) we may consider bn := (An fn)n≥1.
By the assumptions we have bn ∈ B for each n ≥ 1. Next we verify that this is (of course) also a mild
CS. Given g ∈ S0(Rd) we fix (t, s) ∈ Rd × R̂d and put h = MsTtg and watch the behavior of

Vg(bn)(t, s) = Vg(An fn)(t, s) = An fn(h)

for n→ ∞. One has

|An fn(h)− fn(h)| = | fn(A∗nh− h)| → 0 for n→ ∞.

This implies at once that the new sequence (bn)n≥1 is equivalent to the original one, as well as (by
consequence) it is a mild Cauchy sequence itself.

By a similar argument one verifies that two equivalent sequence ( fn) and ( f̃n) give rise to
equivalent sequences An( fn) and An( f̃ ), thus showing that the equivalence classes are preserved by
the replacement.

It remains to be shown that the new version of ECmiCS allowing only the representatives from B
describes an equivalent norm, i.e., to verify that the restriction/modification in the set of representatives
does not have an effect on the corresponding infimum’s norm. This is quite plausible because the norm
estimate only uses ‖Vg0 σ‖∞ resp. S′0-norms.

Concrete estimate rely on the boundedness of the family (An) on (S′0(Rd), ‖ · ‖S′0
):

sup
n≥1
‖Vg(An( fn))‖∞ = sup

n≥1
‖An( fn)‖S′0

≤ C′ · sup
n≥1
‖ fn‖S′0

.

which implies that the corresponding inf-norms for ECmiCS are equivalent.

8. References and History

The sequential approach to distribution theory is not new. Usually described as a way to handle
“generalized functions” without making (explicit!) use of methods from functional analysis it offers the
possibility to deal with objects which cannot be treated in the context of ordinary functions or even
equivalence classes of measurable functions (as they are described by the space

(
Lp(Rd), ‖ · ‖p

)
, for

1 ≤ p ≤ ∞).
The most well known book in that direction is certainly the small booklet of Lighthill (first

published in 1962), see [1]. But there are other ones following a similar path, such as Jones ([21]) or
later Antosik/Mikusinki [22]. In the book by Bracewell ([2], Chap.5 and Chap.6) also some comments
are made about the possibility of a sequential approach to distribution theory, avoiding the theory of
topological vector-spaces and duality theory, ready to be used by engineers.

The approach starts with a definition of good functions and fairly good functions, and the observation
that the Fourier transform of a good functions is again a good function (later on, that the Fourier
inversion theorem applies in a pointwise sense). In the usual literature describing the Schwartz theory
of tempered distributions good functions are called rapidly decreasing or also Schwartz functions, fairly
good functions are just the pointwise multipliers of the Schwartz space (see also [23], check).

The sequential approach to tempered distributions then goes on the define regular sequences of test
functions, showing that for each regular sequence of test functions ( fn) in S(Rd) the limit

lim
n→∞

∫
Rd

fn(x)F(x)dx (43)
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exists, for every F(x) ∈ S(Rd). Translated into the functional analytic setting a regular sequence is a
sequence of regular distributions arising from test functions fn ∈ S(Rd) via

σn(F) =
∫
Rd

F(x) fn(x)dx, (44)

which is w∗-convergent to some limit.
Going on to call the sequence ( fn) a distribution and use the symbol f for it is similar to identify

an infinite decimal expression with the sequence of finite decimal approximations by truncating the
(potentially infinite) sequence at some point and leaving the rest equal to zero.

In this sense the convention∫
Rd

f (x)F(x)dx := lim
n→∞

∫
Rd

fn(x)F(x)dx

is meaningful, but one has to be careful not to confuse the symbolic expression (left hand side of the
above expression) with an effective integral. But the situation is not so far from the use of the symbol
1/π for the multiplicative inverse of the irrational number π, which also is quite different from the
rational number 4/3 which obviously is the multiplicative inverse to 3/4, because in the setting of
rational numbers both symbols have an a priori meaning.

Coming back to the situation described by Lighthill it is clear that there are many sequences
of test functions defining the same distribution (e.g. a Dirac Delta distribution), hence one has to
define a natural equivalence relation. Altogether the starting point for the sequential approach to
tempered distribution is the definition of such a distribution as an equivalence class of regular sequences
of test functions.

This approach is taken by Jones [21] and Antosik, Mikusinksi and Sikorski in [12], and of course [1],
where the readers can find more details.

In order to compare the two settings let us just recall that it is long known that S(Rd) ↪→(
S0(Rd), ‖ · ‖S0

)
(see [24]) it is plausible that mild Cauchy sequences of test functions are also regular

sequences. We just have to mentiona small extra condition, which allows us to formulate the following
claim properly.

Lemma 5.

• For every mild CS (hn) in Cb(Rd) there exists an equivalent sequence ( fn) in S(Rd). In other words,
every equivalence class defining a mild distribution can be constituted with the help of mild Cauchy
sequences from S(Rd).

• Any mild CS in S(Rd) is also a regular sequence, which implies that any mild distribution (viewed as
ECmiCS) also defines a tempered distribution (in the sense of Lighthill).

• A regular sequence of test functions defines a mild distribution if and only if

sup
n≥1
‖Vg( fn)‖∞ < ∞.

Proof. The first claim can be verified by simply applying to a given sequence (hn) in Cb(Rd) the usual
regularization operators, already used in the earlier part of this note (i.e., smoothing with a Dirac-like
Gaussian and localization by pointwise multiplication with a dilated Gaussian, very much like Fourier
multipliers). By tuning the parameters it is easy to verify that one can establish equivalence.

The remaining statements follow from the fact that S(Rd) is a dense subspace of
(
S0(Rd), ‖ · ‖S0

)
.

Details are left to the reader.

Remark 3. As a final remark let us note that this article is part of a series of articles aiming at a demonstration
that the Banach Gelfand Triple can be viewed as a universal tool for the treatment of problem in signal processing.
The connections to classical analysis are described in [25]. An alternative approach showing how to introduce
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(
S0(Rd), ‖ · ‖S0

)
based on Riemann integrals is provided in [26]. The content of [27,28] show how it could be

used for the teaching of engineers and physicists.

There are of course many references to the classical approach to distribution theory of L. Schwartz
(originally [29]), such as [30], see also [31].
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