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Abstract: We study smooth exponentially harmonic maps from a compact, connected, orientable
Riemannian manifold M into a sphere Sm ⊂ Rm+1. Given a codimension two totally geodesic
submanifold Σ ⊂ Sm, we show that every nonconstant exponentially harmonic map φ : M → Sm

either meets or links Σ. If H1(M,Z) = 0 then φ(M) ∩ Σ 6= ∅.
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1. Introduction

Let M be a compact, connected, orientable n-dimensional Riemannian manifold, with the
Riemannian metric g. Let φ : M → N be a C∞ map into another Riemannian manifold (N, h).
The Hilbert-Schmidt norm of dφ is ‖dφ‖ =

[
traceg (φ∗h)

]1/2 : M→ R. Let us consider the functional

E : C∞(M, N)→ R, E(φ) =
∫

M
exp

(
1
2
‖dφ‖2

)
d vg .

A C∞ map φ : M→ N is exponentially harmonic if it is a critical point of E i.e., {d E(φs)/ds}s=0 = 0
for any smooth 1-parameter variation {φs}|s|<ε ⊂ C∞(M, N) of φ0 = φ. Exponentially harmonic maps
were first studied by J. Eells & L. Lemaire [1], who derived the first variation formula

d
ds
{E(φs)}s=0 = −

∫

M
exp

[
e(φ)

]
hφ (V, τ(φ) + φ∗∇e(φ)) d vg

where e(φ) = 1
2‖dφ‖2 and τ(φ) ∈ C∞(φ−1TN

)
is the tension field of φ (cf. e.g., [2]). Also

V =
(
∂φs/∂s

)
s=0 is the infinitesimal variation induced by the given 1-parameter variation.

In particular, the Euler-Lagrange equations of the variational principle δ E(φ) = 0 are

− ∆φi +
(

Γi
jk ◦ φ

) ∂φj

∂xα

∂φk

∂xβ
gαβ +

∂φi

∂xα

∂e(φ)
∂xβ

gαβ = 0 (1)

where

∆u = − 1√
G

∂

∂xα

(√
G gαβ ∂u

∂xβ

)
, G = det[gαβ],

is the Laplace-Beltrami operator and Γi
jk are the Christoffel symbols of hij. The (partial) regularity

of weak solutions to (1) was investigated by D.M. Duc & J. Eells (cf. [3]) when N = R and by Y-J.
Chiang et al. (cf. [4]) when N = Sm. Differential geometric properties of exponentially harmonic maps,
including the second variation formula for E, were found by M-C. Hong (cf. [5]), J-Q. Hong & Y. Yang
(cf. [6]), L-F. Cheung & P-F. Leung (cf. [7]), and Y-J. Chiang (cf. [8]).
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The purpose of the present paper is to further study exponentially harmonic maps φ winding in
N = Sm, a situation previously attacked in [4], though confined to the case where M is a Fefferman
space-time (cf. [9]) over the Heisenberg group Hn and φ : M→ Sm is S1 invariant. Fefferman spaces
are Lorentzian manifolds and exponentially harmonic maps of this sort are usually referred to as
exponential wave maps (cf. e.g., Y-J. Chiang & Y-H. Yang, [10]). Base maps f : Hn → Sm associated
(by the S1 invariance) to φ : M → Sm turn out to be solutions to degenerate elliptic equations
[resembling (cf. [11]) the exponentially harmonic map system (1)] and the main result in [4] is got by
applying regularity theory within subelliptic theory (cf. e.g., [12]).

Through this paper, M will be a compact Riemannian manifold and φ : M→ Sm an exponentially
harmonic map. Although the properties of an exponentially harmonic map may differ consistently
from those of ordinary harmonic maps (see the emphasis by Y-J. Chiang, [13]), we succeed in recovering,
to the setting of exponentially harmonic maps, the result by B. Solomon (cf. [14]) that for any
nonconstant harmonic map φ : M→ Sm from a compact Riemannian manifold either φ(M) ∩ Σ 6= ∅
or φ : M → Sm \ Σ isn’t homotopically null. Here Σ ⊂ Sm is an arbitrary codimension 2 totally
geodesic submanifold.

The ingredients in the proof of the exponentially harmonic analog to Solomon’s theorem (see [14])
are (i) setting the Equation (1) in divergence form

−∇∗
(

exp
[
e(φ)

]
∇φi

)
+ 2 e(φ) exp

[
e(φ)

]
φi = 0

(got by a verbatim repetition of arguments in [4]), (ii) observing that Sm \ Σ is isometric to the warped
product manifold Sm−1

+ ×w S1, and (iii) applying the Hopf maximum principle (to conclude that there
are no nonconstant exponentially harmonic maps into hemispheres).

2. Exponentially Harmonic Maps into Warped Products

Let S = L×R, where L is a Riemannian manifold with the Riemannian metric gL. Let w ∈ C∞(S)
such that w(y) > 0 for any y ∈ S and let us endow S with the warped product metric

h = Π∗1 gL + w2 dt⊗ dt,

where t = t̃ ◦Π2, t̃ is the Cartesian coordinate on R, and

Π1 : S→ L, Π2 : S→ R,

are projections. The Riemannian manifold (S, h) is customarily denoted by L×w R. Let φ : M→ S be
an exponentially harmonic map and let us set

F = Π1 ◦ φ, u = Π2 ◦ φ.

We need to establish the following

Lemma 1. Let M be a compact, connected, orientable Riemannian manifold and φ = (F , u) : M → S =

L×w R a nonconstant exponentially harmonic map. Then u is a solution to

(
w ◦ φ

)
∆u +

(
∂w
∂t
◦ φ

)
‖∇u‖2 (2)

=
(
w ◦ φ

)
(∇u) e(φ) + 2 (∇u)(w ◦ φ).

If additionally ∂w/∂t = 0 then φ(M) ⊂ L× {tφ} for some tφ ∈ R.
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Also for an arbitrary test function ϕ ∈ C∞(M) we set

φs(x) =
(

F(x), u(x) + s ϕ(x)
)
, x ∈ M, |s| < ε,

so that {φs}|s|<ε is a 1-parameter variation of φ. For each x0 ∈ M let {Eα : 1 ≤ α ≤ n} ⊂ C∞(U, T(M))

be a local g-orthonormal (i.e., g(Eα , Eβ) = δαβ) frame, defined on an open neighborhood U ⊂ M of
x0. Then

‖dφs‖2 = traceg (φ
∗
s h) =

n

∑
α=1

(
φ∗s h

)
(Eα , Eα)

on U. On the other hand

(
φ∗s h

)
(X, X) =

(
F∗gL

)
(X, X) + (w ◦ φs)

2 [X(u) + s X(ϕ)
]2 (3)

for every tangent vector field X ∈

4

on U . On the other hand

(3)
(
φ∗sh
)
(X,X) =

(
F ∗gL

)
(X,X) + (w ◦ φs)2

[
X(u) + sX(ϕ)

]2

for every tangent vector field X ∈ X(M). Formula (3) for X = Eα
yields

‖dφs‖2 = ‖dF‖2 +
(
w ◦ φs

)2 [‖∇u‖2 + 2s g(∇u , ∇ϕ) + s2 ‖∇ϕ‖2
]
.

Hence (differentiating with respect to s)

(4)
d

ds
{E(φs)}s=0 =

∫

M

exp
[
e(φ)

] {(
w ◦ φ

)2
g(∇u , ∇ϕ)

+
(
w ◦ φ

) (
wt ◦ φ

)
ϕ ‖∇u‖2

}
d vg

where wt = ∂w/∂t. Moreover

(5) exp
[
e(φ)

] (
w ◦ φ

)2
g
(
∇u , ∇ϕ

)

= div
(
ϕ exp

[
e(φ)

]
(w ◦ φ)2∇u

)

+ϕ
{

exp
[
e(φ)

] (
w ◦ φ

)2
∆u− (∇u)

(
exp

[
e(φ)

]
(w ◦ φ)2

)}

where div : X(M) → C∞(M) is the divergence operator with respect
to the Riemannian volume form

d vg =
√
G dx1 ∧ · · · ∧ dxn

i.e. LX d vg = div(X) d vg and ∆ is the Laplace-Beltrami operator
(on functions) i.e. ∆u = −div(∇u). Substitution from (5) into (4)
together with Green’s lemma yields [by {dE(φs)/ds}s=0 = 0 and the
density of C∞(M) in L2(M)]

(6)
(
w ◦ φ

)
∆u+

(
wt ◦ φ

)
‖∇u‖2

=
(
w ◦ φ

)
(∇u) e(φ) + 2 (∇u)(w ◦ φ)

which is (2) in Lemma 1. When wt = 0 equation (6) is

(7) div
{

exp
[
e(φ)

]
(w ◦ φ)2 ∇u

}
= 0.

Equation (7) is part of the Euler-Lagrange system associated to the
variational principle δ E(φ) = 0. Next [by (7)]

(8) div
{(
w ◦ φ

)2
u exp

[
e(φ)

]
∇u
}

= exp
[
e(φ)

] (
w ◦ φ

)2 ‖∇u‖2 .

Let us integrate over M in (8) and use Green’s lemma. We obtain
∫

M

exp
[
e(φ)

] (
w ◦ φ

)2 ‖∇u‖2 d vg = 0

yielding [as φ is assumed to be nonconstant] u(x) = tφ for some tφ ∈ R
and any x ∈M . Q.e.d.

(M). Formula (3) for X = Eα yields

‖dφs‖2 = ‖dF‖2 +
(
w ◦ φs

)2 [‖∇u‖2 + 2s g(∇u , ∇ϕ) + s2 ‖∇ϕ‖2].

Hence (differentiating with respect to s)

d
ds
{E(φs)}s=0 =

∫

M
exp

[
e(φ)

] {(
w ◦ φ

)2 g(∇u , ∇ϕ) (4)

+
(
w ◦ φ

) (
wt ◦ φ

)
ϕ ‖∇u‖2

}
d vg

where wt = ∂w/∂t. Moreover

exp
[
e(φ)

] (
w ◦ φ

)2 g
(
∇u , ∇ϕ

)
(5)

= div
(

ϕ exp
[
e(φ)

]
(w ◦ φ)2∇u

)

+ϕ
{

exp
[
e(φ)

] (
w ◦ φ

)2 ∆u− (∇u)
(

exp
[
e(φ)

]
(w ◦ φ)2

)}

where div:

4

on U . On the other hand

(3)
(
φ∗sh
)
(X,X) =

(
F ∗gL

)
(X,X) + (w ◦ φs)2

[
X(u) + sX(ϕ)

]2

for every tangent vector field X ∈ X(M). Formula (3) for X = Eα
yields

‖dφs‖2 = ‖dF‖2 +
(
w ◦ φs

)2 [‖∇u‖2 + 2s g(∇u , ∇ϕ) + s2 ‖∇ϕ‖2
]
.

Hence (differentiating with respect to s)

(4)
d

ds
{E(φs)}s=0 =

∫

M

exp
[
e(φ)

] {(
w ◦ φ

)2
g(∇u , ∇ϕ)

+
(
w ◦ φ

) (
wt ◦ φ

)
ϕ ‖∇u‖2

}
d vg

where wt = ∂w/∂t. Moreover

(5) exp
[
e(φ)

] (
w ◦ φ

)2
g
(
∇u , ∇ϕ

)

= div
(
ϕ exp

[
e(φ)

]
(w ◦ φ)2∇u

)

+ϕ
{

exp
[
e(φ)

] (
w ◦ φ

)2
∆u− (∇u)

(
exp

[
e(φ)

]
(w ◦ φ)2

)}

where div : X(M) → C∞(M) is the divergence operator with respect
to the Riemannian volume form

d vg =
√
G dx1 ∧ · · · ∧ dxn

i.e. LX d vg = div(X) d vg and ∆ is the Laplace-Beltrami operator
(on functions) i.e. ∆u = −div(∇u). Substitution from (5) into (4)
together with Green’s lemma yields [by {dE(φs)/ds}s=0 = 0 and the
density of C∞(M) in L2(M)]

(6)
(
w ◦ φ

)
∆u+

(
wt ◦ φ

)
‖∇u‖2

=
(
w ◦ φ

)
(∇u) e(φ) + 2 (∇u)(w ◦ φ)

which is (2) in Lemma 1. When wt = 0 equation (6) is

(7) div
{

exp
[
e(φ)

]
(w ◦ φ)2 ∇u

}
= 0.

Equation (7) is part of the Euler-Lagrange system associated to the
variational principle δ E(φ) = 0. Next [by (7)]

(8) div
{(
w ◦ φ

)2
u exp

[
e(φ)

]
∇u
}

= exp
[
e(φ)

] (
w ◦ φ

)2 ‖∇u‖2 .

Let us integrate over M in (8) and use Green’s lemma. We obtain
∫

M

exp
[
e(φ)

] (
w ◦ φ

)2 ‖∇u‖2 d vg = 0

yielding [as φ is assumed to be nonconstant] u(x) = tφ for some tφ ∈ R
and any x ∈M . Q.e.d.

(M)→ C∞(M) is the divergence operator with respect to the Riemannian volume form

d vg =
√

G dx1 ∧ · · · ∧ dxn

i.e., LX d vg = div(X) d vg and ∆ is the Laplace-Beltrami operator (on functions) i.e., ∆u = −div(∇u).
Substitution from (5) into (4) together with Green’s lemma yields [by {dE(φs)/ds}s=0 = 0 and the
density of C∞(M) in L2(M)] (

w ◦ φ
)

∆u +
(
wt ◦ φ

)
‖∇u‖2 (6)

=
(
w ◦ φ

)
(∇u) e(φ) + 2 (∇u)(w ◦ φ)

which is (2) in Lemma 1. When wt = 0 Equation (6) is

div
{

exp
[
e(φ)

]
(w ◦ φ)2 ∇u

}
= 0. (7)

Equation (7) is part of the Euler-Lagrange system associated to the variational principle δ E(φ) = 0.
Next (by (7))

div
{(

w ◦ φ
)2 u exp

[
e(φ)

]
∇u
}
= exp

[
e(φ)

] (
w ◦ φ

)2 ‖∇u‖2 . (8)

Let us integrate over M in (8) and use Green’s lemma. We obtain
∫

M
exp

[
e(φ)

] (
w ◦ φ

)2 ‖∇u‖2 d vg = 0
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yielding (as φ is assumed to be nonconstant) u(x) = tφ for some tφ ∈ R and any x ∈ M. Q.e.d.

3. Exponentially Harmonic Maps Omitting a Codimension 2 Sphere Aren’t Null Homotopic

Let Σ ⊂ Sm be a codimension 2 totally geodesic submanifold. A continuous map φ : M → Sm

meets Σ if φ(M) ∩ Σ 6= ∅ and links Σ if φ(M) ∩ Σ = ∅ and φ : M → Sm \ Σ is not null homotopic.
The purpose of the section is to establish

Theorem 1. Let φ : M → Sm be a nonconstant exponentially harmonic map from a compact, connected,
orientable Riemannian manifold M into the sphere Sm ⊂ Rm+1. If Σ ⊂ Sm is a codimension 2 totally geodesic
submanifold, then φ either meets or links Σ.

Proof. The proof is by contradiction, i.e., we assume that φ doesn’t meet Σ and the map φ : M→ Sm \Σ
is null homotpic. Let (ξ j) be a system of coordinates on Rm+1 such that Σ is given by the equations
ξ1 = ξ2 = 0. Let Sm−1

+ ⊂ Rm be the hemisphere

Sm−1
+ =

{
y = (y′ , ym) ∈ Rm−1 ×R : y ∈ Sm−1 , ym > 0

}
.

Let us consider the map

I : Sm−1
+ × S1 → Sm \ Σ, I(y, ζ) =

(
ymu, ymv, y′

)
,

y =
(
y′ , ym

)
∈ Sm−1

+ , ζ = u + i v ∈ S1 ⊂ C.

Let gN denote the canonical Riemannian metric on SN ⊂ RN+1. The map I is an isometry of
Sm−1
+ × f S1 onto (Sm \ Σ , gm) with the warping function

f ∈ C∞(Sm−1
+ × S1), f (y, ζ) = ym .

Let us consider the map ψ̃ = I−1 ◦ φ. We need the following.

Lemma 2. Let S and S be Riemannian manifolds, π : S→ S a local isometry, and f : M→ S an exponentially
harmonic map. Then every map f : M→ S such that π ◦ f = f is exponentially harmonic.

Proof. Let h and h be the Riemannian metrics on S and S. For every 1-parameter variation { fs}|s|<ε of
f0 = f we set f s = π ◦ fs so that { f s}|s|<ε is a 1-parameter variation of f 0 = f . A calculation relying
on π∗h = h yields E( fs) = E( f s) for every |s| < ε. Q.e.d.

By Lemma 2 the map ψ̃ = I−1 ◦ φ is exponentially harmonic. Let us set

F = π1 ◦ ψ̃ , ũ = π2 ◦ ψ̃ ,

where π1 : Sm−1
+ × S1 → Sm−1

+ and π2 : Sm−1
+ × S1 → S1 are projections. Next let us consider a point

x0 ∈ M and set ζ0 = ũ(x0) ∈ S1. Also, considered the covering map p : R → S1, p(t) = exp(2πit),
pick t0 ∈ R such that p(t0) = ζ0. As φ is null homotopic, the map ψ̃ is null homotopic as well. Then

ũ∗ π1(M, x0) = 0

where π1(M, x0) is the first homotopy group of M. Consequently there is a unique smooth function
u : M→ R such that p ◦ u = ũ and u(x0) = t0. The map

ψ = (F, u) : M→ Sm−1
+ ×w R
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is exponentially harmonic [because ψ = π ◦ ψ̃ and

π =
(

1Sm−1
+

, p
)

: Sm−1
+ ×w R→ Sm−1

+ × f S1

is a local isometry, where w ∈ C∞(Sm−1
+ ) is given by w(y) = ym]. We may then apply Lemma 1 to the

map ψ with L = Sm−1
+ to conclude that

ψ(M) ⊂ Sm−1
+ ×

{
tψ

}

for some tψ ∈ R. It follows that F = π1 ◦ ψ : M→ Sm−1
+ is exponentially harmonic. We shall close the

proof of Theorem 1 by showing that exponentially harmonic mappings into Sm−1
+ are constant.

4. Exponentially Harmonic Map System in Divergence Form

Let us consider the L2 inner products

(u, v)L2 =
∫

M
uv d vg , (X, Y)L2 =

∫

M
g(X, Y) d vg .

Let us think of the gradient ∇ as a first order differential operator ∇ : C1(M)→ C
(
T(M)

)
and

let ∇∗ be its formal adjoint, i.e., (
∇∗X , u

)
L2 =

(
X , ∇u

)
L2

for any X ∈ C1(T(M)
)

and u ∈ C1(M). Ordinary integration by parts shows that ∇∗X = −div(X).
Let ρ = exp

[
e(F)

]
∈ C∞(M). Starting from ∆u = −div(∇u) one has

(
ρ ∆u, ϕ

)
L2 =

(
∇∗∇u, ρϕ

)
L2 =

(
∇u, ∇(ρϕ)

)
L2

=
(
∇∗(ρ∇u), ϕ

)
L2 +

∫

M
ϕ g(∇u, ∇ρ) d vg

for any ϕ ∈ C∞(M), that is
exp

[
e(F)

]
∆u = ∇∗

(
exp

[
e(F)

]
∇u
)

(9)

+ exp
[
e(F)

]
g
(
∇u, ∇e(F)

)
.

Lemma 3. Let F : M→ Sm−1
+ be an exponentially harmonic map and F = j ◦ F where j : Sm−1 ↪→ Rm is the

inclusion. If F =
(

F1 , · · · , Fm) then

−∇∗
(

exp
[
e(F)

]
∇Fi

)
+ 2 e(F) exp

[
e(F)

]
Fi = 0 (10)

for any 1 ≤ i ≤ m.

Proof. Let y =
(
y1 , · · · , ym−1) : Sm−1

+ → Bm−1 be the projection, where Bm−1 ⊂ Rm−1 is the open
unit ball. With respect to this choice of local coordinates, the standard metric gm−1 and its Christoffel
symbols are

hij = δij +
yiyj

1− |y|2 , |y|2 =
m−1

∑
i=1

(
yi)2 , (11)

hij = δij − yiyj , (12)

Γi
jk = yihjk . (13)
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Let us substitute from (13) into (1) [with φi = Fi] and take into account

e(F) =
1
2

gαβ ∂Fj

∂xα

∂Fk

∂xβ

(
hjk ◦ F

)
. (14)

The exponentially harmonic map system (1) becomes

− ∆Fi + 2 e(F) Fi + g
(
∇e(F), ∇Fi) = 0, 1 ≤ i ≤ m− 1. (15)

Multiplication of (15) by exp
[
e(F)

]
and subtraction from (9) [with u = Fi] yields (10) for any

1 ≤ i ≤ m− 1.
To see that (15) (and therefore (10)) holds for i = m as well, one first exploits the constraint

(Fm)2 = 1−∑m−1
i=1 (Fi)2 together with (11) and (14) to show that

e(F) =
1
2

m

∑
j=1

∥∥∇Fj∥∥2 .

Finally, one contracts (15) by Fi and uses once again the constraint together with ∆(u2) =

2
{

u ∆u− ‖∇u‖2}. Q.e.d.
We may now end the proof of Theorem 1 as follows. Let F : M → Sm−1

+ be an exponentially
harmonic map. Let us integrate over M in (10) for j = m. Then (by Green’s lemma)

∫

M
e(F) exp

[
e(F)

]
Fm d vg = 0

and Fm > 0 so that

0 = e(F) =
1
2

m

∑
j=1
‖∇Fj‖2

yielding Fj = constant. So φ is constant as well, a contradiction.

As well known Sm−1
+ × S1 and S1 are homotopically equivalent. Therefore a continuous map

φ : M→ Sm−1
+ × S1 is null homotopic if and only if π2 ◦ φ : M→ S1 is null homotopic. The homotopy

classes of continuous maps M → S1 form an abelian group π1(M) (the Bruschlinski group of M)
naturally isomorphic to H1(M,Z). We may conclude that

Corollary 1. Let M be a compact, orientable, connected Riemannian manifold with H1(M,Z) = 0. Then every
nonconstant exponentially harmonic map φ : M→ Sm meets Σ.
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