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Abstract: Anomalous waves and rogue events are closely associated with irregularities and
unexpected events occurring at various levels of physics, such as in optics, in oceans and in the
atmosphere. Mathematical modeling of rogue waves is a highly active field of research, which has
evolved over the last few decades into a specialized part of mathematical physics. The applications
of the mathematical models for rogue events is directly relevant to technology development for
the prediction of rogue ocean waves and for signal processing in quantum units. In this survey,
a comprehensive perspective of the most recent developments of methods for representing rogue
waves is given, along with discussion of the devised forms and solutions. The standard nonlinear
Schrödinger equation, the Hirota equation, the MMT equation and other models are discussed
and their properties highlighted. This survey shows that the most recent advancement in modeling
rogue waves give models that can be used to establish methods for the prediction of rogue waves in
open seas, which is important for the safety and activity of marine vessels and installations. The study
further puts emphasis on the difference between the methods and how the resulting models form the
basis for representing rogue waves in various forms, solitary or with a wave background. This review
has also a pedagogic component directed towards students and interested non-experts and forms a
complete survey of the most conventional and emerging methods published until recently.
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1. Introduction

Anomalous waves, or “rogue waves”, represent a rare phenomenon at sea, which occurs on
multiple occasions yearly [1,2] and causes millions of dollars of loss of cargo and loss of lives
annually [3]. Rogue waves are abnormally elevated waves, with a height 2–3× that of the normal
average wave and unusually having steep shapes [4,5]. Rogue waves were recorded for the first
time in 1995 during a winter storm in the North Sea, when the “New Years Wave” hit the Draupner
platform with a wave height of 27 m and 2.25× the average wave height [4]. The laser installation
on the deck, which regularly records the elevation of the platform over the sea bed, registered the
solitary giant wave with its elevation 15.4 m above and 11.6 m below the zero-level [4]. The shape
of the wave was symmetrical (Figure 1) with a Gaussian bell shape and with a particularly narrow
wavelength. This shape and behavior of anomalous waves are conserved across several observations
made in the last 25 years, including the rogue wave that hit the North Alwyn platform in November
1997 [6], the Gorm platform in 1984 [6] and from Storm 172 on the North Alwyn field 100 miles east of
Shetland [5]. The latter was particularly unusual, with a height 3.19× the average (Figure 1).
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Figure 1. The laser-readings of the most extreme rogue wave registered (top), which hit the34
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in the North Sea.37
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been increasingly exposed to rogue waves in the last decades [3,6]. This development has also sparked45

the project “Max Wave” [2] which has contributed with new models and algorithms for predicting46

rogue waves by the use of satellite observation data. Rogue waves occur also in optical systems [8] in47

the atmosphere [9], in plasma [10] as well as in molecular systems during chemical reactions [11].48

Earlier mathematical models and derived algorithms that were used to predict wave patterns were49

originally developed by using the linear Gaussian random model, and rogue phenomena at sea50

were largely disregarded as superstition. The linear Gaussian model is essentially a superposition51

of elementary waves and predicts the occurrence of a rogue event at a very low probability. This52
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Figure 1. The laser readings of the most extreme rogue wave registered (top), which hit the the North
Alwyn platform east of Shetland [5], reaching 18.04 m and a ratio of 3.19× the surrounding waves.
(Bottom) The New Years wave registered in 1995 on the Draupner platform in the North Sea.

Rogue waves are known to have sunk over 20 supercarriers since 1970 [6] and carry a force
of 16–20-times (100 metric tons/m2) that of a 12-m wave, and they can easily break ship structures,
which are designed to withstand far lower impact forces (6 metric tons/m2) [3]. Rogue waves are
an eminent threat to shipping and naval activities and increase in prevalence with climate-change
weather patterns [7]. In this context, the insurance sector has searched for new models for predicting
rogue waves and for fortifying naval structures [3], as both off-shore installations, shipping and
also cruise-ships have been increasingly exposed to rogue waves in the last few decades [3,6]. This
development has also sparked the project “Max Wave” [2], which has contributed with new models
and algorithms for predicting rogue waves by the use of satellite observation data. Rogue waves occur
also in optical systems [8], in the atmosphere [9], in plasma [10], as well as in molecular systems during
chemical reactions [11].

Earlier mathematical models and derived algorithms that were used to predict wave patterns
were originally developed by using the linear Gaussian random model, and rogue phenomena at sea
were largely disregarded as superstition. The linear Gaussian model is essentially a superposition of
elementary waves and predicts the occurrence of a rogue event at a very low probability. This low
probability is however incorrect accounting for the laser readings made in the last two decades at
off-shore installations. Non-linear models, which show a better agreement with the frequency of
rogue events at sea, are therefore gradually replacing the Gaussian model used in the insurance
industry. Non-linear models have been studied by several groups and include the modified non-linear
Schrödinger equation (NLSE) [6], the Peregrine soliton model [12] the Levi–Civita and Nekrasov
models [13,14], the Davey–Stewartson model [15], the fourth order partial differential equation of
Kadomtsev–Petviashvili, the one-dimensional Korteweg–de Vries equation for shallow water surfaces,
the second-order Zakharov partial differential equation [16] and the fully-nonlinear potential equations.
Other systems have recently been developed and are herein reviewed in detail given their relevance to
rogue wave ocean phenomena, including the inhomogenous non-linear Schrödinger equation [17],
the Akhmediev model [18–21] and the recent models developed by Cousins and Sapsis [22–24].
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2. The Non-Linear Schrödinger Equation in the Prediction of Rogue Waves

Rogue waves occur both in oceans, as well as in optical systems [12], as well as in other wave
systems (see above). For fiber optic systems, rogue waves are normally entirely one-dimensional;
however, two-dimensional rogue waves have been recently documented, in the form of the
two-dimensional dissipative rogue waves [25]. These recently discovered optical rogue waves occur
when a delayed feedback is generated in the transverse plane of the the cavity, forming an overlap of
counter-directional fiber optic signals, which leads to a rogue amplitude [25]. These two-dimensional
signals in optical systems are described by there own form of PDE, the Lugiato–Lefever equation [26],
which allows for 2D rogue wave solutions to be modeled without collapse dynamics. This model is
also used for describing a large spectrum of nonlinear phenomena in optical systems, such as bistability,
localized structures, self-pulsating localized structures and also complex spatiotemporal behavior
through an extended quasi-periodicity [27]. Rogue waves formed in fiber optic systems have also
been recently considered as a new field of research in optics, given their anharmonic and nonlinear
properties, which can be a future application of optical technologies [28]. In particular, a class of rogue
waves which have the potential for application in optical technologies are the self-similar pulses [29–32].
Self-similar pulses are wave amplitudes measured in fiber amplifiers [33], which experience an optical
gain together with a Kerr nonlinearity [34]. During the induction of the self-similar impulse in the
solid, a fluid or any wave-carrying medium, the shape of the resulting rogue wave no longer depends
on the shape or duration of the seed pulses, but depends only on the seed pulse energy (chirping).
This creates a large effect on the amplitude, which is largely independent of the initial conditions of the
wave pattern. This event, or formation of a rogue component in the wave train, has also been observed
in ocean wave systems [35] and has attracted various groups to develop prediction methods using
the variations of the non-linear Schrödinger equation (NLSE) [17,29,33,36,37]. One group in particular
developed the variable coefficient inhomogenous nonlinear Schrödinger equation (vci-NLSE) for
optical signals [17]:

iψx +
1
2

β(x)ψtt + χ(x)|ψ|2ψ + α(x)t2ψ = iγ(x)ψ, (1)

which derives from the Zakharov equation [38]. Here, ψ(t, x) is the complex function for the electrical
(wave) field and x, and t are respectively the propagation distance function and retarded time function.
The parameter α(x) defines the normalized loss rate, and the function α(x)t2 accounts for the chirping
effects (which indicates that the initial chirping parameter is the square of the normalized growth
rate). The parameter β(x) defines the group-velocity dispersion (i.e., for an entire wave train), while
χ(x) defines non-linearity parameters, and γ(x) defines the loss or gain effects of the wave signal.
This equation is adaptable both for oceanic waves, as well as for optical non-linear wave guides.
Equation (1) is essentially the same as the generalized Gross–Pitaevskii equation with the harmonic
oscillator potentials in the Bose–Einstein condensates [39] and can be solved by applying the similarity
transformation [40] by replacing ψ(t, x) in Equation (1) with:

ψ(t, x) = ρ(x)Ψ(T, X)eiφ(t,x), (2)

where ρ(x) is the amplitude and T and X represent the differential functions describing the original
propagation distance and the similarity variable, while φ(t, x) is the linear variable function of the
exponential term, which all must be considered well to avoid singularity of the system ψ(t, x) [17].
T and X are given as:

T =
t− tc(x)

W(x)
(3)

X =
∫ z

0

β(s)
W2(s)ds

(4)
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and hence, the similarity transformation gives:

iΨX +
1
2

ΨTT + |Ψ|2Ψ = 0, (5)

which is the standard non-linear Schrödinger equation.
The transformation and integrability conditions derived by [17] show that the factors of the

wave system, such as effective wave propagation, distance, central position amplitude, the width
and phase of the pulse, are ultimately dependent on the group velocity dispersion and on the
non-linearity parameters of the system (α, β, γ, χ). The “self-similar” solution found in the process
of the transformation of the variable coefficient inhomogenous nonlinear Schrödinger equation into
the standard nonlinear Schrödinger equation can ultimately be controlled under dispersion and
non-linearity management [17]. Once transformed from the iNLSE, the solutions to the NLSE are
derived by the derivation of polynomial conjugates to the root exponential function. This process is
reviewed in detail here from the studies by [19].

The Solutions to the NLSE

The NLSE equation has been solved by various groups, including [16,19,40–42]. Following one of
the most recent works by [18,19] in particular, the steps for deriving exact solutions to the NLSE are
defined by identifying rational solutions [18] for the homogenous nonlinear system in Equation (5)
by using the Darboux transformation [43]. This method is often used to derive rational solutions for
non-linear systems and is adaptable to specific optical rogue waves, as well as ocean rogue waves,
when represented by the NLSE. The main definition of a rogue event is that the wave “appears from
nowhere and vanishes without a trace”, which is feature partly related to the behavior of solitons,
which are independent waves that self-propagate and exit a collision unchanged. The origin of solitons
arises from the first observation of a single solitary wave in the North Sea, made in 1834 by J. S. Russell,
who later reproduced the solitary wave in a tank. Since then, solitons have been mainly studied in
optical systems and are represented as solutions to several types of nonlinear PDEs, including the
NLSE, the Korteweg–de Vries equation and the Sine–Gordon equation. This type of rogue behavior
is described by the rational solutions derived from the NLSE [19], which describe an induction of a
system instability to the top of a plane wave amplitude, which is transferred to the highest amplitude
and then decays exponentially towards zero [18]. This behavior is represented by Ma-solitons and by
Akhmediev breathers or “Akhmediev solitons” [18,19,44–46]. The difference between these two soliton
models lies in the initial conditions, where the Ma-solitons originate from the initial conditions, while
the Akhmediev solitons arise during evolution of the system given by modulation instability [44,47,48].

When solving the NLSE according to the Akhmediev scheme [19], their method describes the
modeled envelope function (ψ) as a solution ranked into an order of hierarchy, starting from first
and progressing to the second, third or fourth order [19]. The difference between each order is the
increasing amplitude of the rogue wave (first order, lowest amplitude, fourth order, sharpest peak
and highest amplitude). The envelope function ψ is expressed as a ratio of polynomials multiplied
to the complex exponential root function, eix. The polynomials, which are given by functions of
variable x and t, are identified by performing the Darboux transformation on the NLSE system [19].
Akhmediev and colleagues furthermore applied a compatibility-check between the root function eix

and the reference-state for two specified column matrix elements, which define initial conditions for
the NLSE. These matrix elements (vectors) are given specifically by Akhmediev and colleagues [19] as
two differential equations:

rx = il2r + ilψ∗s− il2|ψ|2r +
1
2

ψ∗s (6)

sx = il2s + ilψr− 1
2

ψtr +
i
2
|ψ|2s (7)
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which are split into real and imaginary parts, before being simplified and solved to fit into the modified
Darboux scheme [19,43] to give the two linear differential forms:

rl(x, t) =
√

2
[

xt− 1
2
+ ix

]
e−ix/2 (8)

sl(x, t) =
√

2
[

x− i(t +
1
2
)

]
e−ix/2 (9)

where the two vectors (8), (9) are used in the Darboux scheme to find ψj, where j is the order of
hierarchy. The general solution to the NLSE, derived from this scheme [19], is given by the following
general form (for any order in the hierarchy):

ψj(x, t) =
[
(−1)j +

Gj(x, t) + ixHj(x, t)
Dj(x, t)

]
eix (10)

where G, H and Dare the polynomials of the two variables x and t (mentioned above). The first
order-solution [19] has the following polynomials: G = 1, H = 2 and D = 1 + 4t2 + 4x2, which give the
following envelope function (shown in Figure 2):

ψl =

[
1− 4

1 + 2ix
1 + 4t2 + 4x2

]
eix (11)

Figure 2. The plot of ψ1, the first-order solution to the standard NLSE [19]. Real and imaginary parts
shown respectively above and below. Plotted with SageMATH [49,50].
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For the second-order solution, [19] identify the vectors r2 and s2 by solving Equations (6) and (7)
by using the form of ψ given in (10). This gives the second-order solution:

ψ2(x, t) =
[
(−1)2 +

− 2t4 − 12t2x2 + ix
(

8t2x2 + 2t2 − 4x4 − 2x2 + 15
4

)
− 3t2 − 10x4 − 9x2 + 3

8
16t6

3 + 13t2 + 16x6

3 + 36x4 + 33x2 + 3
4

]
eix (12)

which is shown in Figure 3. The third and fourth order rational solutions are furthermore calculated
and given in [19].

Figure 3. The plot of ψ2, the second-order solution to the standard NLSE [19]. Real and imaginary
parts shown respectively above and below. Plotted with SageMATH [49,50].

The same hierarchy-dependency is given in the approach by [17], for the transformed vci-NLSE,
who define the general solutions for the NLSE in the hierarchical n-th order given by:

ψn =
1

W

√
β

χ
[(−1)−1 +

Gn + i(Z− Z0)Hn

Fn
× ei[(1− v2

2 )(Z−Z0)+vT+φ]] (13)

where each factor is given for the first and second order rational solutions [17]. Similarly to the
hierarchy solutions of Akhmediev [19], the increasing order gives higher and higher rogue waves,
compared to their surrounding waves. The first and second order rational solutions given in [17]
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reflect respectively a 3× and 5× rogue wave height, compared to the surrounding waves. For plots of
these, refer to [17].

The similarity between (13) and (10) is striking, and both retain the basic form of a complex
polynomial multiplied by a complex exponential root function giving soliton solutions. The root
functions of (10) and (13) are shown in their generic form in Figure 4, which depicts the distinction
between the seed pulse for the regular NLSE and the vci-NLSE, as studied respectively by [17,19] for
the rogue wave problem.

The root function for the vci-NLSE (Figure 4) shows its specific pattern of wave accumulation,
which is similar to the formation of wave packets. This pattern is conserved with the physical
behavior of rogue wave formation, where the rogue wave forms during a focusing phase [51].
Other approaches used to solve the NLSE have been given by [37], who used the inverse scattering
method of transformation, which is a generalization of the Fourier analysis. Their solutions differ from
the methods discussed above and are periodic and ascribed by a complex envelope function for the
deep water train with added higher order terms from the perturbation procedure [37]. One of the
solutions is shown in Figure 5, which shows the following variant of the Osborne models:

ψ =
cos(
√

2x)sech(
√

2t) + i
√

2tanh(2t)√
2− cos(

√
2x)sech(

√
2t)

e2it, (14)

which is a periodic function in space, derived from the general form given in [37], shown in Figure 5.
The disadvantage of this system, compared to single-peak models derived from [19], lies in their

periodicity and multiple peaks, while the rational solutions behind the single peak models of [18,19]
are the first in general to serve as prototypes for rogue waves.

Figure 4. The root functions for the standard NLSE and the inhomogenous variable coefficient NLSE.
(Top) The seed impulse used in the solutions to the standard NLSE, eix [19]. (Bottom) A generic
form of the seed impulse used in the solutions of the inhomogenous variable coefficient NLSE [17]
f (x) = ei(1−x2/2)+x. Real part (blue) and imaginary part (red).
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Figure 5. The selected wavefunction from the Osborne models [37]. (Top) Real part; (Bottom) imaginary
part. Plotted with SAGEMATH [49,50].

3. The Korteweg–de Vries Equation

Wave systems defined by higher order nonlinear PDEs, such as (2), can be solved also by the
bilinearization technique [52]. This technique involves the step of transforming the differential equation
into a more tractable form by replacing the unknown time- and position-dependent envelope function
with a new form [52]. After this replacement has been performed, the bilinearization technique
applies Hirota bilinear operators for a modified Bäcklund transformation technique [53], which assists
in rewriting the original PDE into a simplified PDE composed of bilinear operators, from which
exact soliton solutions can be identified. The most suitable example [52] for the application of the
bilinearization technique is on the Korteweg–de Vries (KdV) equation:

Ψt + 6ΨΨx + Ψxxx = 0 (15)

where the boundary conditions are that ψ → 0 as |x| → ∞. The real wavefunction is differentiated
according to the spatial and temporal dimensions as denoted. In the bilinearization technique,
a transformation of the wavefunction to another form is the first step, where an ideal steady-state form
is proposed [52] to:

ψ(x, t) = (p2/2)sech2(η/2), (16)

where:
η = px− p3t + η0, (17)



Axioms 2018, 7, 42 9 of 19

and η0 and p are arbitrary constants. By the bilinearization technique [52], one can rewrite (16) in
the form:

ψ(x, t) = 2p2(eη/2 + e−η/2), (18)

which is converted to its functional form:

ψ(x, t) = 2
∂2ln[ f (x, t)]

∂x2 , (19)

with f(x) = 1+eη .
The bilinearization technique [52] substitutes (19) into the original KdV Equation (15) and

integrates it with respect to x:

fxt f − fx ft + fxxxx f − 4 fxxx fx + 3( fxx)
2 = 0 (20)

which is the original version of the bilinearized variant of the Korteweg–de Vries Equation (15) as
derived by [53]. The solution to (20), f(x) = 1+eη , is defined as a more fundamental quantity than
ψ in Equation (18) for the structure of the original nonlinear PDE in Equation (15). In the method
of bilinearization, the Hirota bilinear operators are introduced. These are defined by the following
definition [53]:

Dn
t Dm

x a · b = (∂/∂t− ∂/∂t′)n(∂/∂t− ∂/∂t′)ma(x, t)b(x′, t′) |x=x′ ,t′=t (21)

with m and n being arbitrary positive integers. At this stage, the converted form of the KdV
Equation (20) is rewritten as a PDE composed of Hirota operators:

Dx(Dt + D3
x) f · f = 0, (22)

which is a simplified form for the identification of exact solutions using the Bäcklund transformation
for the original nonlinear PDE (15). The exact solution structure for the type of Hirota-operator based
PDE form (22) of the KdV Equation (15) is given by:

Ψ = 1 + ε(eη1 + eη2)− ε2 F(Ω1 −Ω2, p1 − p2)

F(Ω1 + Ω2, p1 + p2)
eη1+η2 (23)

which represents the two-soliton solution to the original KdV Equation (15). η1 and η2 are the functions
with the independent variables x and t as given in (16) for each of the solitons, and Ω1 = −p3

1 and
Ω2 = −p3

2, following the same definition for (16) for each soliton. η represent the perturbations [52].
The KdV Equation (15) has also been solved by Matveev by identifying positon solutions [54], which
exert the same behavior as solitons, such as conserved shape after collision and elastic collision behavior.
The positon differs from the soliton in that it has an infinite energy and is therefore not a strong model
for oceanic or optical rogue waves. Positons have however a tendency to represent smoother solutions
than solitons to the KdV equation and can have very high peaks compared to the wave normal. The
KdW equation has also been solved by a nonlinear Fourier method [55,56], which is represented by a
superposition of nonlinear oscillatory modes of the wave spectrum. This model, developed by Osborne
[55,56], has the capacity to include a large number of non-linear oscillatory patterns, also known as
multi-quasi-cnoidal waves, which are used to form the rogue wave by superposition in constructive
phases. These solutions to the original KdV Equation (15) include several solitons, depending on the
number of degrees of freedom selected for the numerical simulation of the KdV equation. This yields a
3D wave complex composed of solitons and radiation components in the simulated wave train [55].
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4. The Extended Dysthe Equation

In 1979, Dysthe [57] developed a modification of the perturbation-based NLSE by adding an
additional term to the third-order perturbation variant originally developed by Higgins [58]. Dysthe’s
method gave an NLSE variant, known as the extended Dysthe equation, which was shown to have a
better agreement with the mean flow response to non-uniformities in deep-water waves. The extended
Dysthe equation is given by:

i
k

ψxyy + ψyy + 2ikψx + 2ψz = oε4, (24)

where the inhomogenous component is the fourth-order perturbation defined by Dysthe [57]. Dysthe
transformed this equation to standard NLSE using dimensionless variables and added the following
perturbation to the general solution:

ψ = c0(1 + α)ei(θ′− 1
2 ic2

0t) (25)

where α and θ are small real perturbations of the amplitude and phase, respectively. After insertion
of (25) in the dimensionless form of (24) and linearizing, Dysthe obtained a simplified system of two
PDEs, where the respective plane-wave solutions are in the form:(

α′

θ′

)
∝ ei(λx+µy−Ωt) (26)

and:
φ ∝ e[Kz+i(λx+µy−Ωt)] (27)

where K =
√
(λ2 + µ2) and λ, µ and Ω are selected parameters that satisfy a set of dispersion relations

given by Dysthe [57].
The stability of the solutions derived by Dysthe shows that the Dysthe equation represents a

more realistic model than the NLSE, given that it does not predict a maximum growth rate for all
wavevectors, but only for some wavevectors. This displays that the fourth order perturbation term
added to the NLSE gives a considerable improvement to the results relating to the stability of the
finite amplitude wave. It is particularly the first derivative by the transformed variables in the x
and z dimensions in Equation (24) that contributes to the excellent results of Dysthe. Dysthe and
Trulsen [59,60] further developed this equation by including up to the fifth-order of the derivative of
the wave amplitude describing the linear dispersive terms and simulated successfully [61] the New
Year’s wave [4] using the extended Dysthe equation [57,61].

5. The MMT Model

The MMT equation is a one-dimensional nonlinear dispersion equation, which was originally
proposed by Majda, McLaughlin and Tabak [62]. The MMT equation gives soliton-like solutions,
which have been analyzed in detail by Zhakarov [63–65], and gives four-wave resonant interaction
between waves, which, when coupled with large-scale forces and small-scale damping, yields a family
of solutions that exhibit direct and inverse cascades [22]. The MMT equation is given by:

iψt = |∂x|α + λ|∂x|β/4(||∂x|β/4ψ|2|∂x|β/4ψ) + iDψ (28)

where ψ is a complex scalar and |∂x|α is the pseudodifferential operator defined on the real axis through
the Fourier transform:

|∂x|αψ(k) = |k|αψ̂(k) (29)
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The last term in (28) is the dissipation term, which is tuned to fit ocean waves through the
Laplacian operator, Dψ, defined in the Fourier space:

D̂ψ(k) =

{
−(|k| − k∗)2ψ̂(k) |k| > k∗

0 |k| 6 k∗
(30)

This dissipation term, used by [22], is similar to other dissipation models used by Komen and
colleagues [66], who have developed concrete models for simulating large wave groups with focusing
and defocusing effects. λ is the nonlinearity coefficient and corresponds to the focusing phase when <0
and to the defocusing phase when >0. The MMT Equation (28) differs from the standard NLSE in that
its family of solutions develops in a more exponential pattern, rather then the Gaussian bell-shaped
pattern observed for the solutions for the NLSE [22]. The interesting aspect of this pattern of the
spectrum of solutions of the MMT equation is in the mode of formation of the rogue wave, where
their energy is transferred from and to the surrounding waves. The solutions are in other words
induced by the intermittent formation from the localized rogue event arising out of the regular
Gaussian background and collapsing into the surrounding waves. The energy of the rogue wave is
transferred to the surroundings and experiences a complete zero-point state, merging completely in
the background [22].

The MMT model shows also the formation of quasisolitons, which appear in triple-wave packets,
as modeled by Zakharov and Pushkarev [63] and differ from regular solitons in that they radiate
the energy backwards towards the preceding amplitudes. This behavior of the solutions may be
particularly compatible with the simulation of rogue wave events occurring in regions with strong
counter-wind currents, such as in the Agulhas Current [67] or in the regions of the Irish sea [2],
which are heavily populated by rogue events, on the passage of the warm waters of the Gulf stream
when encountering the frequent low-pressure systems over the Irish sea with counter-wave winds.
The quasibreathers or quasisolitons [63] have a root function similar to the Dysthe-type solutions given
in (25). Zakharov and Pushkarev [63] approach the solutions in the form:

ψ(t) = ei(Ω−kV)tφk (31)

where Ω and V are constants (Ω < 0 and V > 0) and k is the wavenumber, which is an approximate
solution to the soliton-like solution for the MMT model. In this approximation, [63] give φk the
following form:

φk = λ

∫
T1234φ∗1 φ2φ3δ(k + k1 − k2 − k3)dk1dk2dk3

−Ω + kV − |k|α , (32)

which represents a form that gives quasi-soliton solutions [68] to the MMT equation. This form of the
solutions to the MMT equation radiates energy backwards to the proceeding amplitudes and represents
therefore an energy focusing, which is rather dissimilar from the focusing effects modeled by others for
rogue patterns (vide supra). It is interesting to note that backward radiation plays also a central role in
the dynamics of the quasi-solitons, and not only for their energy accumulation profile. Using the MMT
model, Zakharov and Pushkarev [63] developed also a model for collapses of the rogue event, by using
self-similar solutions, and modeled the formation of the wave wedge in the appearing and vanishing
state, given by a Fourier space distribution of the wave function. Zakharov and Pushkarev [63] have
also used the MMT model to develop a turbulence-based solution for the localized rogue event, using
the initial condition in the form of an NLSE soliton:

ψ(x, 0) =
q

2k9/4
m

eikmx

cosh(qx)
, (33)

which shows a conserved action and momentum and an “inner turbulence” localized both in the
real and Fourier spaces of the solutions to the modeled envelope function. This “intrinsic turbulence”
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is described by the authors as affecting the form of its wave spectra, which is irregular and has a
stochastic behavior [63]. This model of the rogue wave shows quasi-periodic oscillations with slowly
diminishing amplitudes over time, caused by the destruction of rogue wave by the surrounding
interference, which the authors denoted as a “quasi-breather”.

6. The Hirota Equation

Multisolitons and breathers for rogue waves have been also successfully modeled [69] by applying
the Darboux transformation on the Hirota equation [53]. In their approach, Tao and He [69] developed
the Lax pair on the Hirota equation, by using the AKNS [70] procedure to get the Lax pair with the
spectral parameters of the Hirota equation given below:

iψt + α(2|ψ|2ψ + ψxx) + iβ(ψxxx + 6|ψ|2ψx = 0 (34)

where the Lax pair is expressed as:
φx = Mφ, φt = Nφ (35)

giving rise to the extended matrix representation of the operators in the Hirota equation as described by
Tao and He [69]. Tao and He further applied the Darboux transformation [43] on the Lax-represented
system by using the simple gauge transformation for spectral problems,

φ[1] = Tφ (36)

where T is the polynomial applied on the parameter λ given in the Lax pair and φ is the seed function.
Tao and He [69] argue however that regular seed solution φ = eix as described in the previous sections
is too special and makes the rogue wave model not universal enough. Tao and He develop therefore a
different seed function compared to Akhmediev and colleagues [19,44], for instance, and develop a
more extended form of the seed function by starting from a zero seed solution and a periodic seed
solution to construct the complete solutions for the breathers and solitons. At zero seed and with the
parameter λ from the Lax pair, they set the following Hermitian seed pair:

φ = e−i(ξ+iη)x−[4βi(ξ+iη)3+2αi(ξ+iη)]2t (37)

and:
φ∗ = ei(ξ+iη)x+[4βi(ξ+iη)3+2αi(ξ+iη)]2t (38)

back in the Darboux transformation to get the one-soliton solution:

ψ
[1]
soliton = 2ηe2i(−iξx−4βξ3t−2αξ2t+12βξη2t+2αη2t) × sech(−2ηx− 24βη2t + 8βη3t− 8αηξt). (39)

Tao and He [69] further report the model for the two-soliton solution and finally give the form of
the one-soliton breather solution:

ψ
[1]
breather = eiφ

[
c− 2η[ηcosh(2d2)− iσsinh(2d2)− ccos(2d1]

ccosh(2d2)− ηcos(2d1)

]
, (40)

where d1, d2, σ are given in [69]. Tao and He finally construct the Rogue wave solutions to the original
Hirota equation in (34) by Taylor expansion on the breather solutions in (40). The Taylor expansion is
carried out on the η variable of the breather solution (40), which is given in [69], and forms the general
form of the first order rogue wave of the Hirota equation:

ψroguewave = kei(−2ξx+βt)
(

1− 2k1 + 2k2 + ik3t
k1 − k2

)
(41)
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where the polynomials k1, k2, k3 are given by Tao and He [69]. The rogue wave model resulting from
this form is more general than the model given by Akhmediev and colleagues [71] on the Hirota
equation. This difference is caused by the appearance of several parameters related to the eigenvalues
of the Lax pairs and gives however a possibility to tune more finely the model to experiments on rogue
waves. This advantage of the model by Tao and He increases the ability to modulate the precision of
reproducing a rogue wave model by calculations. Tao and He’s method grants also the possibility of
calculating higher order rogue wave solutions to the Hirota equation by determinant representation of
the Darboux transform, which was carried out in a subsequent work [72].

7. The Ablowitz–Musslimani Models: Non-Local Rogue Waves

Another critical method for modeling rogue waves was developed by Ablowitz and
Musslimani [73–76] and uses nonlocal integrable models of the NLSE (1) and KdV (15) equations, where
the resulting wave is derived by reverse space-time symmetry. The model evolves by establishing
integrability by an infinite number of constants of motion or an infinite number of conservation laws.
By this, the method uses a compatible pair of linear equations (similar to the Lax pair in the Hirota
equation in (35)) with the nonlinear integrable equation. The method by Ablowitz and Musslimani
differs from the Hirota method in that the pair of linear equations represent the scattering problem and
the evolution of the scattering data [73,76]. Furthermore, the method by Ablowitz and Musslimani
is different from others in that it constructs an inverse scattering problem also known as a linear
Riemann–Hilbert problem, which gives the solution to the nonlinear PDE with dependency on time.

The approach by Ablowitz and Musslimani [73] starts by linearizing the equation:

iqt(x, t) = qxx(x, t)± 2q(x, t)q∗(−x, t)q(x, t), (42)

where one can immediately observe the existence of a Hermitian pair with reverse directional variables.
This form, where reverse variables are used, defines the nonlocal property of the equation and has
the advantage that the equation remains invariant in time and space, after the complex conjugate is
taken. Hence, the nonlocal equation is parity- and time-symmetric (PT -symmetric), which prevents
the equation from yielding different results by a self-induced potential.

An exemplary Lax pair is given in [77] as:

vx =

(
−ik q(x, t)

r(x, t) ik

)
v, (43)

vt =

(
A B
C −A

)
v, (44)

where v is the two-component vector and k is a special parameter, while A and B are complex functions.
Ablowitz and Musslimani use this step specific compatibility conditions [78] to transform the original
PDE in (42) (i.e., ψxt = ψtx) and gain the simplified PDE pair:

iqt(x, t) = qxx(x, t)− 2r(x, t)q2(x, t), (45)

− irt(x, t) = rxx(x, t)− 2q(x, t)r2(x, t). (46)

which yields the original form in Equation (42). Ablowitz and Musslimani further define the nonlocality
by using a specific symmetry reduction:

r(x, t) = ∓q∗(−x, t). (47)
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This step is particularly characteristic of Ablowitz–Musslimani models [73–76], from which
the new class of nonlocal integrable evolution equations with the nonlocal NLSE hierarchy is
directly derived.

The aforementioned property of conserved quantities and conservation laws is also characteristic
of Ablowitz–Musslimani models [73,75]. Here, they define a set of eigenfunctions that obey specific
boundary conditions [73]. The eigenfunctions are very similar to the seed functions used by other
groups and, when inserted in the Lax pair, yield a Riccati model of the conservation quantities.
This yields the global conservation laws, which are given in [73] by:

C0 =
∫ +∞

−∞
q(x, t)q∗(−x, t)dx,

C1 =
∫ +∞

−∞
[qx(x, t)q∗(−x, t) + q(x, t)q∗x(−x, t)]dx,

C2 =
∫ +∞

−∞
[qx(x, t)q∗x(−x, t) + σq2(x, t)q∗2(−x, t)]dx,

which are real integrable Hamiltonians. Ablowitz and Musslimani [73] derive furthermore local
conservation laws defined by the equations:

∂t[q(x, t)q∗(−x, t)] + i∂x[q(x, t)q∗x(−x, t) + q∗(−x, t)qx(x, t)] = 0 (48)

∂t[q(x, t)q∗x(−x, t)] + i∂x[q∗x(−x, t)qx(x, t) + q(x, t)q∗xx(−x, t)− σq2(x, t)q∗2(−x, t)] = 0 (49)

which are used to develop the framework for the direct scattering problem and the inverse scattering
problem, where the scattering data are given by specific scattering matrices. The same symmetry is
also in the problem of the potential and in the eigenfunction and leads naturally to the same symmetry
relation in the scattering matrices, which is given by:

N(x, k) = ΛM∗(−x,−k∗) (50)

and:
N̄(x, k) = Λ−1M̄∗(−x,−k∗), (51)

where Λ is a 2 × 2 matrix with zeros in the diagonal and one, ±1 on the lower and upper
diagonal, respectively. For the inverse scattering problem, Ablowitz and Musslimani [73] account
for the symmetry condition by considering the set of basis terms as a left scattering problem
and supplement these terms with the equivalent right-scattering problem, from which they formulate
the Riemann–Hilbert problem and find the linear integral equations that govern the functions M and
M̄ in (50). These equations are given by:

M(x, k) =
(

1
0

)
+

J̄

∑
l=1

B̄le2ik̄l x M̄(x, k̄l)

k− k̄l
− 1

2πi

∫ ∞

−∞

R̄(ξ)e2iξx M̄(x, ζ)

ζ − (k + i0)
dζ, (52)

M̄(x, k) =
(

0
1

)
+

J

∑
l=1

Ble2ikl x M(x, kl)

k− kl
− 1

2πi

∫ ∞

−∞

R(ξ)e2iξx M(x, ζ)

ζ − (k + i0)
dζ, (53)

where R(k) and R̄(x) are the reflection coefficients. The terms Bl and B̄l are the conservation law
Hamiltonians applied symmetrically. From this stage, Ablowitz and Musslimani [73] derive a linear
algebraic integral system of equations that solves the inverse problem for the eigenfunctions M̄(x, k)
and M(x, k).
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The resulting soliton solutions of the Ablowitz–Musslimani model hence assume the form:

q(x) = − 2(η + η̄)eiθ̄1 e−4iη̄2
1 te−2η̄1x

1 + ei(θ1+θ̄1)e4i(η2
1−η̄2

1)te−2(η1+η̄1)x
, (54)

which represents a family of solutions defined by the four independent parameters, which have a
dynamic relationship with the time variable and which gradually develop a singularity in a finite time
period, ts at x = 0, where ts is given by:

ts =
(2n + 1)π − θ1 − θ̄1

4(η2
1 − η̄2

1)
. (55)

Equation (55) is a critical form of the time-variable, which distinguishes the method of
Ablowitz–Musslimani [73–78] from other rogue wave models and adds a non-linear evolution of
the rogue wave. Ablowitz and Musslimani have also most recently developed a new model that
includes nonlocal rogue waves with nonzero background, which provide a more realistic view of the
rogue wave, which focuses energy from neighboring waves [79].

Solutions to the Ablowitz–Musslimani model (42) were also developed by Yang and Yang [80],
who used the Darboux transformation method on the PDE coupled with the Bäcklund transformation
on the potential functions, identifying three types of rogue waves from the Ablowitz–Musslimani
picture. Yang and Yang expanded the solutions to polynomials using Schur polynomials [80].
This analysis of the Ablowitz–Musslimani model showed greater variation in the rogue waves
compared to the regular NLSE, where the variations were represented by the terms in the denominator
of the soliton solutions.

The parity-time symmetry potential of the Ablowitz–Musslimani equations has also been studied
by Yu [81] very recently, who obtained discrete rogue wave solutions with three free parameters (refer
to Equation (54) for similarities). Yu studied in particular the effect that the dispersion of the parity-time
symmetry has on the solutions, as well as the effect of the coefficients and the parameters. Yu [81] used
the Darboux transformation method in a similar fashion to Yang and Yang [80] to derive different forms
of solitons with different heights, which were defined by two of the three free parameters in the solution
(η and η̄ in Equation (54)). Yu [81] also assessed the stability of rogue waves over a specific period of
time and included a modulation instability coefficient that allows the modeling of several discrete
solutions that represent various stages of rogue wave formation (appearing suddenly and disappearing
suddenly), a property of rogue waves also reported by Akhmediev and colleagues [18–20]. Finally, Yu
modeled rogue waves that appear rapidly and do not disappear. This latter model may be particularly
relevant to describe rogue events during low-pressure systems at open sea, which have been reported
in several cases to give stable rogue waves with a long lifetime (i.e., the rogue waves reported in the
study by Munk [35]).

8. Conclusions

A survey of various mathematical models for representing rogue waves has herein been carried
out to the maximum extent of including the most applied, as well as most recent models. The overall
survey yields a perspective that delineates the common traits between the methods. This survey also
shows how novel and emerging models allow for better modeling of rogue waves, by including several
parameters associated with the evolution of the rogue waves, such as the duration, the height and other
particular properties that a rogue event can display when occurring in oceans, optical systems or even
in the atmosphere. The results show also that the new versatile forms of the older models (MMT and
Dysthe) can be furthermore adapted and studied numerically in upcoming papers, particularly with
relevance to counter-wave winds, which frequently occur on the Gulf Current off the Irish coast and on
the western Norwegian coast during northeast and north winds, respectively. By the overall review of
the various methods, a theorem is suggested for describing the origin of rogue waves in the ocean. The
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theorem suggests that a rogue wave in the ocean can be formed whenever there is a momentaneous
surplus of energy perturbed on the momentum or in the kinetic term of a wave train, induced either by
a sudden change in the atmosphere leading to strong winds appearing suddenly over large volumes
of water, or induced by a collision of large volumes of water with highly different temperatures and
densities, or finally, as often observed, a rogue event occurs by the constructive overlap of waves,
in opposite directions, in traverse directions or running in the same direction, and its duration is
determined, when occurring in the same direction, by the slight deviations in the momenta of the
overlapping waves. Future work will be the submission of a project proposal for predicting rogue
waves for off-shore structures, currently under development for the Norwegian Research Council.
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