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Abstract: This paper aims to illustrate how SABO (Semi-Analytical method for Barrier Option pricing)
is easily applicable for pricing floating strike Asian barrier options with a continuous geometric
average. Recently, this method has been applied in the Black–Scholes framework to European vanilla
barrier options with constant and time-dependent parameters or barriers and to geometric Asian
barrier options with a fixed strike price. The greater efficiency of SABO with respect to classical finite
difference methods is clearly evident in numerical simulations. For the first time, a user-friendly
MATLAB R© code is made available here.

Keywords: boundary element method; finite difference method; floating strike Asian options;
continuous geometric average; barrier options

1. Introduction

The pricing of continuously-monitored Asian options is a relevant task from both a mathematical
and a financial point of view.

Asian options are quite common derivatives because they provide protection against strong price
fluctuations in volatile markets and reduce the possibilities of price manipulations. The payoff of an
Asian option depends on the average price of the underlying asset that is less volatile than the asset
price itself. In general, Asian options are hence less valuable than their vanilla European counterparts
because an option on a lower volatility asset is worth less.

On the other hand, it is more difficult to deal with Asian options than vanilla options because their
price depends on the average value assumed by the underlying asset during the option’s life, requiring
some mathematical effort in order to describe the dynamics of the average under consideration.

In this paper, Asian options are equipped with a continuously-monitored geometric average [1].
Asian options evaluated with the geometric mean, although not common among practitioners, give
some information also about the evaluation of Asian options with the arithmetic mean [2]. From a
theoretical point of view, the method illustrated in the paper is extensible to arithmetic Asian options,
as well, with slight modification, but from the numerical point of view, there are several problems that
we plan to investigate in the near future. Defining the stochastic process

At :=
∫ t

0
log(Sτ)dτ (1)
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then the geometric average is defined as exp
(

At
t

)
. When A and S are written with subscripts (At and

St), they are intended as stochastic processes; otherwise, they are considered independent variables
in the differential analysis context. The differential problem that describes the price evolution of this
option is:

∂V
∂t

+
σ2

2
S2 ∂2V

∂S2 + rS
∂V
∂S

+ log(S)
∂V
∂A
− rV = 0 , S ∈ R+, A ∈ R, t ∈ [0, T) (2)

V(S, A, T) assigned , S ∈ R+, A ∈ R. (3)

Wanting to provide a further protection against excessive fluctuations of the strike price, it is possible
to apply barriers in the option contract; for example, knock-out barriers make the option cease to exist
if the underlying asset reaches a barrier during the life of the option. The model analyzed in this paper
concerns an Asian option with an up-and-out barrier at S = B and a floating strike payoff, i.e.,

∂V
∂t

+
σ2

2
S2 ∂2V

∂S2 + rS
∂V
∂S

+ log(S)
∂V
∂A
− rV = 0 , S ∈ (0, B), A ∈ R, t ∈ [0, T) (4)

V(S, A, T) assigned , S ∈ (0, B), A ∈ R (5)

V(B, A, t) = 0 , A ∈ R, t ∈ [0, T) (6)

asymptotic conditions of vanilla option , {(S, A) : S = 0∨ A→ −∞∨ A→ +∞}, (7)

with the final condition:

call V(S, A, T) = max
(

S− exp
(

A
T

)
, 0
)

or (8)

put V(S, A, T) = max
(

exp
(

A
T

)
− S, 0

)
. (9)

The problem (2)–(3) of pricing a floating strike Asian option with a continuous geometric average
and without a barrier has a closed-form solution in the domain (S, A, t) ∈ R+ ×R× [0, T) that can be
formulated either as the payoff expected value (also known as the Feynman–Kac formula):

V(S, A, t) =
∫ +∞

−∞

∫ B

0
V(S̃, Ã, T)G(S, A, t; S̃, Ã, T)dS̃ dÃ , (10)

with the transition probability density function G associated with the differential operator defined in
Equation (4), which is known to be:

G(S, A, t; S̃, Ã, t̃) =
√

3H[̃t−t]
πσ2 (̃t−t)2 exp

{
− 2

σ2 (̃t−t)
log2

(
S
S̃

)
+ 6

σ2 (̃t−t)2 log
(

S
S̃

) (
A− Ã + (̃t− t) log(S)

)
− 6

σ2 (̃t−t)3

(
A− Ã + (̃t− t) log(S)

)2 −
(

2r+σ2

2
√

2σ

)2
(̃t− t)

}(
S̃
S

) 2r−σ2

2σ2 1
S̃

,
(11)

or (see [3]) through the formula:

Vcall(S, A, t) = SN [d]− e
A
T S

T−t
T eqN

[
d− σ

T

√
T3 − t3

3

]

d =
t(log(S)− A

t ) + (r + σ2

2 )T2−t2

2

σ
√

T3−t3

3

q =
(t− T)[6Tr(t + T) + (T− t)(2t + T)σ2]

12T2

(12)
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for the call option, where N [·] is the normal cumulative distribution function, and eventually,
the put-call parity:

Vcall(S, A, t)−Vput(S, A, t) = S− e
A
T S

T−t
T eq . (13)

Instead, when applying barriers, no closed-formulas are available. In this context, SABO is a
Semi-Analytical method conceived of for the pricing of Barrier Options, and its milestones are resumed
in Section 4.1. It is quite a general method, applicable also to fixed strike payoffs [4,5], put options [6],
time-dependent parameters [7] and double barriers [8].

SABO is compared here with two Finite Difference (FD) methods chosen among the wide class of
numerical methods at our disposal [9]. Equation (4) is proven to be hypo-elliptic [10–12], a property
that guarantees a smooth solution and should benefit from approximations based on Taylor expansions.
Anyway, SABO appears to be certainly more efficient looking at the results below.

2. Results

We have performed several simulations related to the pricing of a geometric call Asian option
with a floating strike price and with an up-and-out barrier as modeled by the differential problem
(4)–(8). Numerical results, some of which are displayed in the following, have been obtained by the
MATLAB R© codes implementing the algorithms of SABO, FD1 and FD2 described in Sections 4.1, 4.2.1
and 4.2.2, respectively. In Section 5 the SABO code is provided.

Example 1. In this example, we use the finance parameters displayed in Table 1. The floating strike call option
with an up-and-out barrier at S = 150 =: B is evaluated at t = 0 and A = 0, truncating the A-domain at
Amin = 0 and Amax = 5, in accordance with (20) and either (19) or (27).

The approximation by SABO is obtained setting the parameters described in Section 4.1 Nt = NA = 20,
and the option value is displayed in Figure 1 as a function of S.

The convergence at S = 100, 120, 140, 148 is shown in Table 2 refining the mesh: at each level, parameters
Nt and NA are doubled.

The approximation by FD1 is obtained setting the discretization parameters (defined in (17), (18) and (30))
∆t = 10−3/2k, ∆A = 10−2/2k and, for the discretization of the asset domain (0, B), either ∆S = 2 or ∆S = 1.
The related results are reported in Tables 3 and 4.

The approximation by FD2 is obtained setting the discretization parameters ∆t = ∆A = 0.01/2k and
either ∆S = 2 or ∆S = 1. The results are displayed in Tables 5 and 6.
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Figure 1. SABO approximation of a call up-and-out Geometric Asian option with floating strike and

data in Table 1.

The convergence at S = 100, 120, 140 is shown in Table 2 refining the mesh: at each level parameters Nt and39
NA are doubled.4041

Table 2. V(S, 0, 0) evaluated by SABO at S = 100, 120, 140, 148.

Nt = NA S = 100 S = 120 S = 140 S = 148 elapsed time (sec)

20 4.4059 2.1078 0.2771 0.0441 9.0·100

40 4.4339 2.2728 0.3814 0.0632 3.1·101

80 4.4335 2.3506 0.4683 0.0807 1.3·102

160 4.4334 2.3600 0.4854 0.0843 5.1·102

320 4.4333 2.3616 0.4882 0.0849 2.2·103

640 4.4333 2.3619 0.4887 0.0850 1.0·104

The approximation by FD1 is obtained setting the discretization parameters (defined in (17), (18) and (30))42
∆t = 10−3/2k, ∆A = 10−2/2k and, for the discretization of the asset domain (0, B), either ∆S = 2 or43
∆S = 1. The related results are reported in Tables 3 and 4.4445

Table 3. V(S, 0, 0) evaluated by FD1 at S = 100, 120, 140, 148, with ∆S = 2.

k S = 100 S = 120 S = 140 S = 148 elapsed time (sec)

1 5.8385 3.6788 0.9933 0.1834 6.9·100

2 5.2000 3.0951 0.7729 0.1405 3.3·101

3 4.8342 2.7511 0.6412 0.1148 1.5·102

4 4.6360 2.5610 0.5673 0.1004 5.3·102

5 4.5324 2.4605 0.5278 0.0926 2.1·103

6 4.4794 2.4087 0.5073 0.0886 8.5·103

7 4.4526 2.3824 0.4968 0.0866 4.1·104

Figure 1. Semi-Analytical method for Barrier Option (SABO) approximation of a call up-and-out
geometric Asian option with a floating strike and the data in Table 1.
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Table 1. Floating strike up-and-out call option data.

B T r σ

150 1 0.035 0.2

Table 2. V(S, 0, 0) evaluated by SABO at S = 100, 120, 140, 148.

Nt = NA S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

20 4.4059 2.1078 0.2771 0.0441 9.0 × 100

40 4.4339 2.2728 0.3814 0.0632 3.1 × 101

80 4.4335 2.3506 0.4683 0.0807 1.3 × 102

160 4.4334 2.3600 0.4854 0.0843 5.1 × 102

320 4.4333 2.3616 0.4882 0.0849 2.2 × 103

640 4.4333 2.3619 0.4887 0.0850 1.0 × 104

Table 3. V(S, 0, 0) evaluated by FD1at S = 100, 120, 140, 148, with ∆S = 2.

k S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

1 5.8385 3.6788 0.9933 0.1834 6.9 × 100

2 5.2000 3.0951 0.7729 0.1405 3.3 × 101

3 4.8342 2.7511 0.6412 0.1148 1.5 × 102

4 4.6360 2.5610 0.5673 0.1004 5.3 × 102

5 4.5324 2.4605 0.5278 0.0926 2.1 × 103

6 4.4794 2.4087 0.5073 0.0886 8.5 × 103

7 4.4526 2.3824 0.4968 0.0866 4.1 × 104

Table 4. V(S, 0, 0) evaluated by FD1 at S = 100, 120, 140, 148, with ∆S = 1.

k S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

1 5.8427 3.6815 0.9946 0.1837 1.9 × 101

2 5.2047 3.0985 0.7744 0.1408 7.7 × 101

3 4.8392 2.7550 0.6429 0.1151 2.8 × 102

4 4.6413 2.5651 0.5691 0.1007 1.1 × 103

5 4.5380 2.4648 0.5296 0.0930 4.4 × 103

6 4.4551 2.4131 0.5092 0.0890 2.2 × 104

7 4.4583 2.3869 0.4988 0.0870 9.5 × 104

Table 5. V(S, 0, 0) evaluated by FD2 at S = 100, 120, 140, 148, with ∆S = 2.

k S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

1 4.6607 2.5250 0.5016 0.0853 9.8 × 100

2 4.4796 2.3874 0.4806 0.0826 3.7 × 101

3 4.4394 2.3640 0.4845 0.0840 1.5 × 102

4 4.4296 2.3587 0.4861 0.0844 6.0 × 102

5 4.4269 2.3570 0.4864 0.0845 2.4 × 103

6 4.4261 2.3564 0.4864 0.0845 1.0 × 104
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Table 6. V(S, 0, 0) evaluated by FD2 at S = 100, 120, 140, 148, with ∆S = 1.

k S = 100 S = 120 S = 140 S = 148 Elapsed Time (s)

1 4.6657 2.5287 0.5034 0.0857 2.8 × 101

2 4.4853 2.3918 0.4826 0.0831 1.2 × 102

3 4.4452 2.3685 0.4865 0.0844 4.5 × 102

4 4.4354 2.3632 0.4881 0.0848 1.9 × 103

5 4.4327 2.3616 0.4884 0.0849 7.6 × 103

6 4.4318 2.3609 0.4884 0.0849 4.8 × 104

Example 2. In this example, we use the finance parameters displayed in Table 7 and volatility equal to
σ = 0.2, 0.3, 0.4. The floating strike call option with an up-and-out barrier at S = 115 =: B is evaluated at
t = 0 and A = 0, truncating the A-domain at Amin = 0 and Amax = 5, in accordance with (20) and (19).

The approximation by SABO is obtained setting the parameters described in Section 4.1 Nt = NA = 20
and the option value is displayed in Figure 2 as a function of S for the different values of σ (continuous lines),
in comparison with the corresponding prices of Asian options without barriers (dotted lines).

Table 7. Floating strike up-and-out call option data.

B T r

115 1 0.08

Version June 11, 2018 submitted to Axioms 6 of 18
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Figure 2. SABO approximation of a call up-and-out Geometric Asian option with floating strike, data

in Table 7 and various values of σ (continuous lines) compared with the corresponding prices of Asian

options without barriers (dotted lines).

3. Discussion54
Looking at the Example 1, the values of a call option with an up-and-out barrier obtained by SABO55
and displayed in Figure 1 show that the solution, as expected, assumes lower values than the56
analogous option without barriers whose closed formula is (12) or that can be computed through the57
evaluation of the payoff expected value (10). The same behavior is recovered by the two proposed58
FD methods (FD1 and FD2).59
Talking about efficiency and convergence, we have to look at stabilization of digits in Tables 2-6 where60
the option values at S = 100, 120, 140, 148 are written.61
SABO, whose results are written in Table 2 appears to be faster than FD methods: doubling of62
parameters Nt and NA the CPU time of computation quadruples but one more digit of accuracy is63
achieved. The convergence is slower near the barrier because there the barrier option value is more64
different from the option value without barriers: the option value without barrier can be quasi-exactly65
computed by the Feynman-Kac formula (10) and therefore the approximation error introduced by66
SABO solving the boundary integral equation (15) related to the barrier case is more involved in67
representation formula (14) as the asset nears the barrier (look at (26)).68
Comparing with Tables 3 and 4, at analogous computational time, SABO appears much more accurate69
and therefore efficient than FD1. Furthermore, note that FD1 is still sensitive to the mesh refinement70
in S-domain: to halve ∆S means a significant variation in values of V together with a big increase of71
computational costs.72
Analyzing Tables 5 and 6, we observe that FD2 has a superior accuracy than FD1 due to its higher73
order of consistency: approximations of derivatives in t and A variables are both of second order.74
Anyway FD2 is less efficient than SABO and the coarseness of S-grid still affects significantly its75
results. Refinements in S-grid would result in much longer computational times, no more comparable76
with those of SABO.77
Looking at Example 2, SABO keeps its robustness varying the volatility values. The solutions78
displayed in Figure 2 show the property of smoothness proven in Ref. [11]. The increase in79
volatility causes the expected increase in the value of Vanilla options but on the contrary it implies a80
diminishing of barrier option values near the barrier.81

Figure 2. SABO approximation of a call up-and-out geometric Asian option with a floating strike, the
data in Table 7 and various values of σ (continuous lines) compared with the corresponding prices of
Asian options without barriers (dotted lines).

3. Discussion

Looking at Example 1, the values of a call option with an up-and-out barrier obtained by SABO
and displayed in Figure 1 show that the solution, as expected, assumes lower values than the analogous
option without barriers whose closed formula is (12) or that can be computed through the evaluation
of the payoff expected value (10). The same behavior is recovered by the two proposed FD methods
(FD1 and FD2).

Talking about efficiency and convergence, we have to look at the stabilization of the digits in
Tables 2–6 where the option values at S = 100, 120, 140, 148 are written.

SABO, the results of which are written in Table 2, appears to be faster than the FD methods:
doubling parameters Nt and NA, the CPU time for computation quadruples, but one more digit of
accuracy is achieved. The convergence is slower near the barrier because there, the barrier option
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value is more different from the option value without barriers: the option value without the barrier
can be quasi-exactly computed by the Feynman–Kac Formula (10), and therefore, the approximation
error introduced by SABO solving the boundary integral Equation (15) related to the barrier case is
more involved in representation Formula (14) as the asset nears the barrier (look at (26)).

Comparing Tables 3 and 4, with an analogous computational time, SABO appears much more
accurate and therefore efficient than FD1. Furthermore, note that FD1 is still sensitive to the mesh
refinement in the S-domain: to halve ∆S means a significant variation in values of V together with a
big increase of the computational costs.

Analyzing Tables 5 and 6, we observe that FD2 has a superior accuracy compared to FD1 due
to its higher order of consistency: approximations of derivatives in the t and A variables are both
of second order. Anyway, FD2 is less efficient than SABO, and the coarseness of the S-grid still
significantly affects its results. Refinements in the S-grid would result in much longer computational
times, no longer comparable with those of SABO.

Looking at Example 2, SABO maintains its robustness varying the volatility values. The solutions
displayed in Figure 2 show the property of smoothness proven in [11]. The increase in volatility causes
the expected increase in the value of vanilla options, but on the contrary, it implies a diminishing of
barrier option values near the barrier.

4. Methods

4.1. SABO

SABO is a Semi-Analytical method for the pricing of Barrier Options. The foundation on which it
is based is the integral representation of the solution of the modeling differential problem based on the
knowledge of the transition probability density function.

For a problem like that in (4)–(7), it is proven in [4] that the integral representation formula is:
∀(S, A, t) ∈ (0, B)×R× [0, T)

V(S, A, t) =
∫ +∞

−∞

∫ B

0
V(S̃, Ã, T)G(S, A, t; S̃, Ã, T)dS̃ dÃ +

∫ T

t

∫ +∞

−∞

σ2

2
B2 ∂V

∂S̃
(B, Ã, t̃)G(S, A, t; B, Ã, t̃)dÃ dt̃ (14)

where the transition probability density function G(S, A, t; B, Ã, t̃) is defined in (11) and associated
with the differential operator defined in Equation (4).

Note that in (14), both V(S, A, t) and ∂V
∂S̃
(B, Ã, t̃) are unknown, but, at S = B, the Boundary

Condition (6) can be applied giving rise to the Volterra integral equation of the first kind:

0 = V(B, A, t) =
∫ +∞

−∞

∫ B

0
V(S̃, Ã, T)G(B, A, t; S̃, Ã, T)dS̃ dÃ +

∫ T

t

∫ +∞

−∞

σ2

2
B2 ∂V

∂S̃
(B, Ã, t̃)G(B, A, t; B, Ã, t̃)dÃ dt̃ (15)

in the unknown ∂V
∂S̃
(B, Ã, t̃).

The unknown is approximated by:

∂V
∂S̃

(B, Ã, t̃) ≈
Nt

∑
k=1

NA

∑
h=1

α
(k)
h ψh(Ã)ϕk(t̃) (16)

having defined piecewise constant basis functions:

ϕk(t̃) := H[t̃− tk−1]− H[t̃− tk], k = 1, . . . , Nt ,

on a uniform time grid:

tk := k∆t, k = 0, . . . , Nt, ∆t :=
T
Nt

, Nt ∈ N+ , (17)
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and piecewise constant basis functions:

ψh(Ã) := H[Ã− Ah−1]− H[Ã− Ah], h = 1, . . . , NA ,

on a uniform A-grid over the truncated A-domain [Amin, Amax]:

Ah := Amin + h∆A, h = 0, . . . , NA, ∆A :=
Amax − Amin

NA
, NA ∈ N+ . (18)

A careful choice of Amin and Amax has to be performed in such a way that the double integral:

∫ T

t

∫ +∞

−∞
G(B, A, t; B, Ã, t̃)dÃ dt̃

is rightly approximated by:

∫ T

t

∫ Amax

Amin

G(B, A, t; B, Ã, t̃)dÃ dt̃.

By the analysis developed in [5], this results in seeking for Amax such that:

−
∫ T

t

exp
(
− (t̃−t)(2r+σ2)2

8σ2

)
2Bσ

√
2π(t̃− t)

Erf

[√
6
(

A− Amax + (t̃− t) log(B)
)

(t̃− t)3/2σ

]
dt̃ =

Erf
[
(2r+σ2)

√
T−t

2σ
√

2

]
B(2r + σ2)

(19)

and Amin such that:

∫ T

t

exp
(
− (t̃−t)(2r+σ2)2

8σ2

)
2Bσ

√
2π(t̃− t)

Erf

[√
6
(

A− Amin + (t̃− t) log(B)
)

(t̃− t)3/2σ

]
dt̃ =

Erf
[
(2r+σ2)

√
T−t

2σ
√

2

]
B(2r + σ2)

(20)

with a suitable tolerance. Otherwise, it is possible to consider the whole unbounded A-domain ≡ R,
but with two infinite basis functions, the first and the last, as investigated in [4].

In order to numerically solve the Volterra integral Equation (15), we convert it into a discrete
linear system of equations by means of collocation BEM. Hence we collocate (15) at points:

Ai =
Ai + Ai−1

2
, i = 1, . . . , NA tj =

tj + tj−1

2
, j = 1, . . . , Nt ,

finally obtaining, for i = 1, . . . , NA, j = 1, . . . , Nt:

∫ T

tj

∫ +∞

−∞

σ2

2
B2

Nt

∑
k=1

NA

∑
h=1

α
(k)
h ψh(Ã)ϕk(t̃)G(B, Ai, tj; B, Ã, t̃) dÃ dt̃ = −

∫ +∞

−∞

∫ B

0
V(S̃, Ã, T)G(B, Ai, tj; S̃, Ã, T) dS̃ dÃ

i.e., in matrix notation,
Aα = F . (21)

The unknown vector is:

α = (α(k)
∣∣
k=1,...,Nt

) =
(
(α

(k)
h

∣∣
h=1,...,NA

)
∣∣
k=1,...,Nt

)
,
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and the matrix entries are equal to the case of fixed strike Asian options deeply investigated also from
a computational point of view in [4,5]: for i, h = 1, . . . , NA, j, k = 1, . . . , Nt, define ξ = i − h, ξ =

−NA + 1, . . . , NA − 1 and ` = k− j, ` = 0, . . . , Nt − 1, thus obtaining:

A(jk)
ih =

σB∆t
4
√

2π

∫ 1

1
2− 1

2 H[`]

exp
{
−
(

2r+σ2

2
√

2σ

)2
∆t(τ + `− 1/2)

}
√

∆t(τ + `− 1/2)

{
Erf

[√
6
(
∆A(ξ + 1

2 ) + ∆t(τ + `− 1/2) log(B)
)

σ∆t3/2(τ + `− 1/2)3/2

]

− Erf

[√
6
(
∆A(ξ − 1

2 ) + ∆t(τ + `− 1/2) log(B)
)

σ∆t3/2(τ + `− 1/2)3/2

]}
dτ =: A(`)

ξ .

(22)

As we are considering constant coefficients in (4), the fundamental solution (11) depends on
t, t̃, A, Ã only through the differences t− t̃ and A− Ã implying that the matrix has a block-Toeplitz
structure both in time and A-space:

A =



A(0) A(1) A(2) · · · A(Nt−1)

0 A(0) A(1) · · · A(Nt−2)

0 0 A(0) . . .
...

...
...

. . . . . . A(1)

0 0 · · · 0 A(0)



with A(`) =



A(`)
0 A(`)

−1 A(`)
−2 · · · A(`)

−NA+1

A(`)
1 A(`)

0 A(`)
−1 · · · A(`)

−NA+2

A(`)
2 A(`)

1 A(`)
0

. . .
...

...
...

. . . . . . A(`)
−1

A(`)
NA−1 A(`)

NA−2 · · · A(`)
1 A(`)

0


for ` = 0, . . . , Nt − 1

(23)

so it is possible to adopt suitable strategies to save computational costs (as done in [13], even if this
feature is not implemented in the code included here) and memory requirements.

A change in the payoff function is caught by the evaluation of the rhs entries: in the case of a
floating strike call payoff, for i = 1, . . . , NA, j = 1, . . . , Nt:

F (j)
i = −

∫ +∞

−∞

∫ B

0
max

(
S̃− e

Ã
T , 0
)

G(B, Ai, tj; S̃, Ã, T) dS̃ dÃ (24)

=
B−

2r−σ2

2σ2

2σ
√

2π(T − tj)

∫ B

0
S̃

2r−3σ2

2σ2 +
T−tj

2T exp

− (T − tj)
2(2r + σ2)2 + 4 log2

(
B
S̃

)
8σ2(T − tj)


{
−S̃1−

T−tj
2T Erfc

[√
3
2

2Ai + 2(T − tj) log(B)− 2T log(S̃)− (T − tj) log( B
S̃
)

σ(T − tj)
3
2

]

+B
T−tj

2T exp

(
Ai
T

+
σ2(T − tj)

3

24 T2

)

Erfc

[
12 TAi + σ2(T − tj)

3 − 6 T
(
− 2(T − tj) log(B) + 2 T log(S̃) + (T − tj) log( B

S̃
)
)

2
√

6 Tσ(T − tj)
3
2

]}
dS̃ ,

(25)

with Erfc the complementary of error function Erf.
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The approximation of ∂V
∂S̃
(B, Ã, t̃) through the resolution of (21) is an intermediate step for the

final evaluation of the option price by (14):

V(S, A, t) ≈ − S−
2r−σ2

2σ2

2σ
√

2π(T − t)

∫ B

0
S̃

2r−3σ2

2σ2 + T−t
2T exp

− (T − t)2(2r + σ2)2 + 4 log2
(

S
S̃

)
8σ2(T − t)


{
−S̃1− T−t

2T Erfc

[√
3
2

2A + 2(T − t) log(S)− 2T log(S̃)− (T − t) log( S
S̃
)

σ(T − t)
3
2

]

+ S
T−t
2T exp

(
A
T
+

σ2(T − t)3

24 T2

)

Erfc

[
12 TA + σ2(T − t)3 − 6 T

(
− 2(T − t) log(S) + 2 T log(S̃) + (T − t) log( S

S̃
)
)

2
√

6 Tσ(T − t)
3
2

]}
dS̃

+
σB

4
√

2π

(
B
S

) 2r−σ2

2σ2 Nt

∑
k=floor[ t

∆t ]+1

NA

∑
h=1

α
(k)
h

∫ tk

max(t,tk−1)

1√
t̃− t

exp

− (t̃− t)2(2r + σ2)2 + 4 log2
(

S
B

)
8(t̃− t)σ2


Erf

√3
2

2(Ah − A)− 2(t̃− t) log(S) + (t̃− t) log
(

S
B

)
(t̃− t)3/2σ


− Erf

√3
2

2(Ah−1 − A)− 2(t̃− t) log(S) + (t̃− t) log
(

S
B

)
(t̃− t)3/2σ

 dt̃ .

(26)

4.2. Finite Difference Methods

SABO is compared here (as in [5]) with two Finite Difference (FD) methods chosen among the
wide class of FD methods available and deeply analyzed in [14]. This is because Equation (4) is proven
to be hypoelliptic [10–12], a property that guarantees a smooth solution and that should benefit from
approximations based on Taylor expansions.

The existence of the solution of Problem (4)–(5) and its Feynman–Kac representation (10) are
proven involving stochastic arguments without the need for exact boundary conditions. Boundary
conditions at S = 0 and for A→ ±∞ have to be empirically deduced analogously to what was done
in [5,15]. At S = B, Condition (6) holds.

In order to apply FD methods, the first step is to shrink to a bounded domain [0, B]× [Amin, Amax]

enclosing the option evaluation point (S∗, A∗) and then apply boundary conditions at the borders.

• We have chosen Amin less than or equal to the minimum between the value suggested in (20) and
A∗. There is not a consistent condition valid at A = −∞ in finance, and as a consequence, it is
not easy to conceive of a proper condition at points (S, Amin, t). The use of the upwind method
makes this condition unnecessary if log(S) > 0 (as in the herein proposed examples). In fact, ∂V

∂A
is approximated by a forward difference so that the boundary condition at Amin becomes useless;
otherwise, if log(S) < 0, a backward difference can be considered together with a condition on
the derivative at A = Amin, as for example ∂2V

∂A2 (S, Amin, t) = 0.

• The upper bound is set at:
Amax = T log(B) , (27)

the maximum value assumed by the stochastic process At defined in (1) if St = B during the
whole time interval [0, T].

The average exp(A/T) is a non-decreasing function of time; therefore, if exp(A/t)− B > 0 at
time t, then exp(A/T)− B > 0 at maturity, and so, the option is worth nothing as shown by the
Payoff Function (8). Hence, if log(S) > 0, ∂V

∂A is approximated by a forward difference and the
boundary condition at Amax is set:

V(S, Amax, t) = 0 . (28)
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• At S = 0, Equation (4) is degenerate, but if the stochastic process St = 0 at any time, then
the average asset price exp(At/t) = constant and the option value V can be considered as
independent of stochastic variables S and A, deducing from Equation (4) that:

lim
S→0

[
∂V
∂t

+
σ2

2
S2 ∂2V

∂S2 + rS
∂V
∂S

+ log(S)
∂V
∂A
− rV

]
= lim

S→0

[
∂V
∂t
− rV

]
= 0 .

The ordinary differential equation:

lim
S→0

[
∂V
∂t
− rV

]
= 0

suggests the condition:

lim
S→0

V(S, A, t) = e−r(T−t) lim
S→0

V(S, A, T) = 0 . (29)

The second step, after the definition of the computational domain, is the definition of the grid.
Using a (A, t)-grid as defined by (17) and (18) in [Amin, Amax]× [0, T], let us further introduce the
S-grid in [0, B]:

∆S :=
B

NS
, NS ∈ N+, Si := i∆S, i = 0, . . . , NS (30)

and define the approximated option value:

Vk
i,h :≈ V(Si, Ah, tk) .

• The values VNt
ih can be found from the final condition:

VNt
i,h = V(Si, Ah, T), i = 0, · · · , NS − 1, h = 0, · · · , NA ;

• in the herein proposed examples, log(Si) > 0, so everywhere, we apply a forward difference and,
at the boundary A = Amax, Condition (28):

Vk
i,NA

= 0 for k = 0, · · · , Nt − 1, i = 0, · · · , NS − 1 ;

• at the boundary S = 0, we apply Condition (29):

Vk
0,h = 0 h = 0, · · · , NA − 1, k = 0, · · · , Nt − 1 ;

• at the boundary S = B, we apply the Boundary Condition (6), hence:

Vk
NS ,h = 0, h = 0, · · · , NA, k = 0, · · · , Nt .

4.2.1. Finite Difference Method FD1

The first scheme FD1 is the very classical FD scheme where the derivatives of V in (4) are
approximated by truncations of Taylor expansions:

• first order backward difference for the time derivative approximation:

∂V
∂t

(Si, Ah, tk) =
Vk

i,h −Vk−1
i,h

∆t
+ O(∆t)
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• second order central difference for the S derivative approximation:

∂V
∂S

(Si, Ah, tk) =
Vk

i+1,h −Vk
i−1,h

2∆S
+ O(∆S2)

• second order central difference for the S second order derivative approximation:

∂2V
∂S2 (Si, Ah, tk) =

Vk
i+1,h − 2Vk

i,h + Vk
i−1,h

∆S2 + O(∆S2)

• if log(Si) > 0, first order forward difference for the A derivative approximation:

∂V
∂A

(Si, Ah, tk) =
Vk

i,h+1 −Vk
i,h

∆A
+ O(∆A)

We can now write down the discrete approximation of (4) at each point (Si, Ah, tk):

for i = 1, . . . , NS − 1, h = 0, . . . , NA − 1, k = 0, . . . , Nt − 1,

Vk
i,h−Vk−1

i,h
∆t + 1

2 σ2S2
i

Vk
i+1,h−2Vk

i,h+Vk
i−1,h

∆S2 + rSi
Vk

i+1,h−Vk
i−1,h

2∆S + log(Si)
Vk

i,h+1−Vk
i,h

∆A − rVk
i,h = 0 (31)

and rearrange the scheme in a compact form:

Vk−1
i,h = aiVk

i,h + biVk
i+1,h + ciVk

i−1,h + diVk
i,h+1

where:

ai = 1− ∆t
(
r + σ2i2 + log(Si)

∆A
)

, bi =
∆t
2
(
ri + σ2i2

)
, ci =

∆t
2
(
− ri + σ2i2

)
, di =

∆t
∆A log(Si) .

It is easy to see that the scheme, backward computing the new value Vk−1
i,h , is explicit in time.

We want to remark about two more things: first, the weights depend only on i, therefore on the S
variable, and second, the values Vk

i,0 having Amin as the coordinate give no contribution to the scheme.

4.2.2. Finite Difference Method FD2

The method FD2 is suggested in [16]. The PDE (4) is collocated at the points:

(Si, Ah+ 1
2
, tk+ 1

2
) :=

(
Si, Ah +

∆A
2

, tk +
∆t
2

)
.

Then, we use the following approximations, based on suitable Taylor expansions and standard
finite difference approximations:

∂V
∂t

(Si, Ah+ 1
2
, tk+ 1

2
) =

1
2

(∂V
∂t

(Si, Ah, tk+ 1
2
) +

∂V
∂t

(Si, Ah+1, tk+ 1
2
)
)
+ O(∆A2)

=
Vk+1

i,h −Vk
i,h

2∆t
+

Vk+1
i,h+1 −Vk

i,h+1

2∆t
+ O(∆t2 + ∆A2) ,

∂V
∂S

(Si, Ah+ 1
2
, tk+ 1

2
) =

1
2

(∂V
∂S

(Si, Ah+1, tk+1) +
∂V
∂S

(Si, Ah, tk)
)
+ O(∆t2 + ∆A2)

=
Vk+1

i+1,h+1 −Vk+1
i−1,h+1

4∆S
+

Vk
i+1,h −Vk

i−1,h

4∆S
+ O(∆t2 + ∆A2 + ∆S2) ,
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∂2V
∂S2 (Si, Ah+ 1

2
, tk+ 1

2
) = 1

2

(
∂2V
∂S2 (Si, Ah+1, tk+1) +

∂2V
∂S2 (Si, Ah, tk)

)
+ O(∆t2 + ∆A2)

=
Vk+1

i−1,h+1−2Vk+1
i,h+1+Vk+1

i+1,h+1
2∆S2 +

Vk
i−1,h−2Vk

i,h+Vk
i+1,h

2∆S2 + O(∆t2 + ∆A2 + ∆S2) ,

V(Si, Ah+ 1
2
, tk+ 1

2
) =

1
2

(
Vk

i,h + Vk+1
i,h+1

)
+ O(∆t2 + ∆A2) ,

∂V
∂A

(Si, Ah+ 1
2
, tk+ 1

2
) =

1
2

( ∂V
∂A

(Si, Ah+ 1
2
, tk+1) +

∂V
∂A

(Si, Ah+ 1
2
, tk)

)
+ O(∆t2)

=
Vk+1

i,h+1 −Vk+1
i,h

2∆A
+

Vk
i,h+1 −Vk

i,h

2∆t
+ O(∆t2 + ∆A2) .

After substituting the above approximations into the PDE and discarding the error terms, we get
the following equations for the approximate values of the option prices:

aiVk
i−1,h + biVk

i,h + ciVk
i+1,h = diVk+1

i−1,h+1 + eiVk+1
i,h+1 + f iV

k+1
i+1,h+1 + gi(V

k
i,h+1 −Vk+1

i,h ) (32)

where, using the notation λ = ∆t
∆S2 :

ai =
λ
2

(
− S2

i σ2 + rSi∆S
)

, bi =
(

1 + λS2
i σ2 +

log(Si)∆t
∆A + r∆t

)
, ci = − λ

2

(
S2

i σ2 + rSi∆S
)

,

di = −ai , ei =
(

1− λS2
i σ2 +

log(Si)∆t
∆A − r∆t

)
, f i = −ci , gi =

(
− 1 + log(Si)∆t

∆A

)
.

The procedure for solving the option pricing equation is as follows:

1. Fill the values VNt
i,h , i = 0, · · · , NS, h = 0, · · · , NA using the payoff function.

2. For each k = Nt − 1 : −1 : 0:

(a) Apply the boundary condition at A = Amax to define Vk
i,NA

, for i = 0, · · · , NS.
(b) For each h = NA − 1 : −1 : 0, solve for the three-diagonal system in the unknowns the

values Vk
i,h, for i = 1, · · · , NS − 1, using the boundary condition at S = 0 and S = B.

This is a time-explicit difference scheme, as well. If we need the option price only at t = 0, then it
is not necessary to store the full matrix V of approximate option prices; in fact, we need only two levels,
say Vold corresponding to t = tk+1 and Vnew corresponding to the current time level t = tk. At the
beginning, Vold is computed using the final condition, and at the end of each time step, the values of
Vnew are copied to Vold. Anyway, it requires the resolution of a linear system: the three-diagonal matrix
M = diag(a, b, c) can be assembled and factorized at the beginning, outside the cycles, depending only
on the S-grid.

5. MATLAB R© Code Implementing SABO

All the above-provided numerical results were obtained by codes developed with MATLAB R©

Release 2007b running on a laptop computer (CPU Intel i5, 4 Gb RAM). The code implementing the
SABO algorithm is given below.

% Approximation of an up−and−out Asian c a l l option with f l o a t i n g s t r i k e
% by SABO

c lose a l l
c l e a r
c l c

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%data s e t
t0 =0; %beginning of the c o n t r a c t
T=1; %expiry of the c o n t r a c t
r = 0 . 0 3 5 ; %f r e e r i s k i n t e r e s t r a t e
sigma = 0 . 2 ; %v o l a t i l i t y
B=150; %up b a r r i e r value
S s t a r = [ 1 0 0 , 1 2 0 , 1 4 0 ] ; %a c t u a l spot p r i c e
Astar =0; %a c t u a l geometric mean value
t s t a r =t0 ; %a c t u a l time i n s t a n t of eva luat ion
prec =10^(−9); % p r e c i s i o n required in Matlab " quad " funct ion

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%d i s c r e t i z a t i o n of time domain
Nt=20; %number of time s teps
dt =(T−t 0 )/Nt ; %time step length
t = [ 0 : dt : T ] ; %time grid
tba r =( t ( 2 : Nt+1)+ t ( 1 : Nt ) ) / 2 ; %time c o l l o c a t i o n points

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%d i s c r e t i z a t i o n of A−domain
NA=Nt ; %number of A−s u b i n t e r v a l s
AA=−(2∗T^(3/2)∗ sigma )/ sqr t ( 6 ) + Astar+T∗ log ( B ) ;
Amin=round ( fzero (@( a ) abs ( . . .

quad (@( tau ) exp (−( tau ∗ (2∗ r+sigma ^2)^2)/(8∗ sigma ^ 2 ) ) . / . . .
(2∗ sigma∗ sqr t (2∗ pi∗ tau ) ) . ∗ . . .
e r f ( sqr t ( 6 ) ∗ ( Astar−a+tau∗ log ( B ) ) . / ( tau . ^ ( 3 / 2 )∗ sigma ) ) , . . .
0 ,T−t0 ,10^−11)− . . .
e r f ( ( 2∗ r+sigma ^2)∗ sqr t ( T−t 0 )/(2∗ sqr t ( 2 )∗ sigma ) ) / ( 2∗ r+sigma^2))−prec , . . .
AA) ) ; %a r t i f i c i a l lower bound of A−domain

%Amin=0;
AA=(2∗T^(3/2)∗ sigma )/ sqr t ( 6 ) + Astar+T∗ log ( B ) ;
Amax=round ( fzero (@( a ) abs ( . . .

quad (@( tau ) exp (−( tau ∗ (2∗ r+sigma ^2)^2)/(8∗ sigma ^ 2 ) ) . / . . .
(2∗ sigma∗ sqr t (2∗ pi∗ tau ) ) . ∗ . . .
e r f ( sqr t ( 6 ) ∗ ( Astar−a+tau∗ log ( B ) ) . / ( tau . ^ ( 3 / 2 )∗ sigma ) ) , . . .
0 ,T−t0 , 1 0 ^ −1 1 ) + . . .
e r f ( ( 2∗ r+sigma ^2)∗ sqr t ( T−t 0 )/(2∗ sqr t ( 2 )∗ sigma ) ) / ( 2∗ r+sigma^2))−prec , . . .
AA) ) ; %a r t i f i c i a l upper bound of A−domain

%Amax=5;
dA=(Amax−Amin)/NA; %A−s u b i n t e r v a l length
A=[Amin :dA:Amax ] ; %A−grid
Abar=(A( 2 :NA+1)+A( 1 :NA) ) / 2 ; %A c o l l o c a t i o n points
disp ( ’ t runcated A−domain : ’ )
Amin
Amax
t i c

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%computation of matrix e n t r i e s
M=zeros (NA,NA, Nt ) ;
M_inf=zeros (NA,NA, Nt ) ;
KK= 3 . 5 ; %bound usefu l to e r f
%−−−−−−−−−−−− main diagonal −−−−−−−−−−−−−%
for i =1 :NA

for h=1:NA
% search of integrand funct ion zeros
i f ( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( 1 0 ^ − 1 6 ) ) ) / . . .

( sigma∗dt ^(3/2)∗(10^−16)^(3/2))−KK > 0) || . . .
( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B ) ∗ ( 1 − 0 . 5 ) ) ) / . . .
( sigma∗dt ^(3/2)∗ (1−0 .5)^(3/2) )+KK < 0)

M( i , h , 1 ) = 0 ;
e lse

i f ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B ) ∗ ( 1 − 0 . 5 ) ) ) / . . .
( sigma∗dt ^(3/2)∗(1−0.5)^(3/2))−KK > 0
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Upper=fzero (@( s ) . . .
( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( s − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s−0.5) .^(3/2))−KK, [ 0 . 5 + 1 0 ^ −1 6 , 1 ] ) ;

e lse
Upper =1;

end
i f ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗1 0 ^ −1 6 ) ) / . . .

( sigma∗dt ^(3/2)∗(10^−16)^(3/2))+KK < 0
Lower=fzero (@( s ) . . .

( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗ ( s − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s −0 . 5 ) . ^ ( 3 / 2 ) ) +KK, [ 0 . 5 + 1 0 ^ −1 6 , 1 ] ) ;

e lse
Lower=0.5+10^−16;

end
M( i , h , 1 ) = sigma∗B∗dt/4/ sqr t (2∗ pi )∗quad (@( s ) . . .

exp (− ((2∗ r+sigma ^2)/(2∗ sqr t ( 2 )∗ sigma ))^2∗ dt ∗ ( s − 0 . 5 ) ) . / . . .
sqr t ( dt ∗ ( s − 0 . 5 ) ) . ∗ . . .
( e r f ( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗ ( s − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s − 0 . 5 ) . ^ ( 3 / 2 ) ) ) − . . .
e r f ( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( s − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s − 0 . 5 ) . ^ ( 3 / 2 ) ) ) ) , Lower , Upper , prec ) ;

end
end

end
disp ( ’ diagonal block : b u i l t ! ’ )
%−−−−−−−−−−−− secondary diagonals −−−−−−−−−−−−−%
for e l l =1 :Nt−1

for i =1 :NA
for h=1:NA

% search of integrand funct ion zeros
i f ( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( e l l − 0 . 5 ) ) ) / . . .

( sigma∗dt ^(3/2)∗ ( e l l −0.5)^(3/2))−KK > 0) || . . .
( ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B)∗ (1+ e l l − 0 . 5 ) ) ) / . . .
( sigma∗dt ^(3/2)∗ (1+ e l l −0.5)^(3/2))+KK < 0)

M( i , h , e l l +1)=0 ;
e lse

i f ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B)∗ (1+ e l l − 0 . 5 ) ) ) / . . .
( sigma∗dt ^(3/2)∗ (1+ e l l −0.5)^(3/2))−KK > 0

Upper=fzero (@( s ) . . .
( sqr t ( 6 ) ∗ ( Abar ( i )−A( h+1)+ dt∗ log ( B )∗ ( s+ e l l − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s+ e l l −0.5) .^(3/2))−KK, [ 0 , 1 ] ) ;

e lse
Upper =1;

end
i f ( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗ ( e l l − 0 . 5 ) ) ) / . . .

( sigma∗dt ^(3/2)∗ ( e l l −0.5)^(3/2))+KK < 0
Lower=fzero (@( s ) . . .

( sqr t ( 6 ) ∗ ( Abar ( i )−A( h)+ dt∗ log ( B )∗ ( s+ e l l − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s+ e l l −0 . 5 ) . ^ ( 3 / 2 ) ) +KK, [ 0 , 1 ] ) ;

e lse
Lower =0;

end
M( i , h , e l l +1)= sigma∗B∗dt/4/ sqr t (2∗ pi )∗quad (@( s ) . . .

exp (− ((2∗ r+sigma ^2)/(2∗ sqr t ( 2 )∗ sigma ))^2∗ dt ∗ . . .
( s+ e l l −0 . 5 ) ) . / sqr t ( dt ∗ ( s+ e l l − 0 . 5 ) ) . ∗ . . .
( e r f ( ( sqr t ( 6 ) ∗ (dA∗ ( i−h+0.5)+ dt∗ log ( B )∗ ( s+ e l l − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s+ e l l − 0 . 5 ) . ^ ( 3 / 2 ) ) ) − . . .
e r f ( ( sqr t ( 6 ) ∗ (dA∗ ( i−h−0.5)+ dt∗ log ( B )∗ ( s+ e l l − 0 . 5 ) ) ) . / . . .
( sigma∗dt ^(3/2)∗ ( s+ e l l − 0 . 5 ) . ^ ( 3 / 2 ) ) ) ) , . . .
Lower , Upper , prec ) ;

end
end

end
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end
disp ( ’ matrix : b u i l t ! ’ )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%computation of rhs e n t r i e s
Rhs=zeros (NA, 1 , Nt ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−%
for j =1 :Nt

for i =1 :NA
Rhs ( i , 1 , j )=1/(2∗ sigma∗ sqr t (2∗ pi ) ) ∗ . . .

quad (@( S ) . . .
exp (− ((T−tba r ( j ) ) ^ 2∗ ( 2∗ r+sigma ^2)^2+4∗ log ( B ./ S ) . ^ 2 + . . .
4∗sigma ^2∗(T−tba r ( j ) )∗ log ( T−tba r ( j ) ) ) / . . .
(8∗ sigma ^2∗(T−tba r ( j ) ) ) + . . .
( ( 2∗ r−3∗sigma ^2)/(2∗ sigma ^2)+(T−tba r ( j ) ) / ( 2∗T ) )∗ log ( S ) − . . .
(2∗ r−sigma ^2)/(2∗ sigma ^2)∗ log ( B ) ) . ∗ . . .
(−S . ^ ( ( T+tbar ( j ) ) / ( 2∗T ) ) . ∗ . . .
e r f c ( sqr t ( 1 . 5 )∗ ( 2∗ Abar ( i )+2∗ (T−tba r ( j ) )∗ log ( B)−2∗T∗ log ( S ) − . . .
( T−tba r ( j ) )∗ log ( B ./ S ) ) / ( sigma ∗ (T−tba r ( j ) ) ^ ( 3 / 2 ) ) ) + . . .
B ^ ( ( T−tba r ( j ) ) / ( 2∗T ) )∗ exp ( Abar ( i )/T+( sigma ^2∗(T−tba r ( j ) ) ^ 3 ) / . . .
(24∗T ^ 2 ) )∗ ( e r f c ( ( 1 2∗T∗Abar ( i )+ sigma ^2∗(T−tba r ( j ))^3−6∗T ∗ . . .
(−2∗(T−tba r ( j ) )∗ log ( B)+2∗T∗ log ( S ) + ( T−tba r ( j ) )∗ log ( B ./ S ) ) ) / . . .
(2∗ sqr t ( 6 )∗T∗sigma ∗ (T−tba r ( j ) ) ^ ( 3 / 2 ) ) ) ) ) , 0 , B , prec ) ;

end
end
disp ( ’ rhs : b u i l t ! ’ )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%l i n e a r system r e s o l u t i o n by backward s u b s t i t u t i o n
alpha ( : , 1 , Nt)=M( : , : , 1 ) \ Rhs ( : , 1 , Nt ) ;
for i =Nt−1:−1:1

alpha ( : , 1 , i )=Rhs ( : , 1 , i ) ;
for j = i +1:Nt

alpha ( : , 1 , i )= alpha ( : , 1 , i )−M( : , : , j−i +1)∗ alpha ( : , 1 , j ) ;
end
alpha ( : , 1 , i )=M( : , : , 1 ) \ alpha ( : , 1 , i ) ;

end
disp ( ’ BIE s o l u t i o n : b u i l t ! ’ )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%computation of s o l u t i o n in domain nodes ( Ss tar , Astar ) a t time t s t a r
V=zeros ( length ( S s t a r ) , length ( Astar ) ) ;
V1=zeros ( length ( S s t a r ) , length ( Astar ) ) ;
F=zeros (NA, Nt ) ;
for j S =1: length ( S s t a r )

i f S s t a r ( j S )>=B
V( jS , : ) = zeros ( 1 , length ( Astar ) ) ;

e lse
for jA =1: length ( Astar )
%−−−−−−−−−−−− f i r s t i n t e g r a l −−−−−−−−−−−−−%

V1 ( jS , jA)=−1/(2∗sigma∗ sqr t (2∗ pi ) ) ∗ . . .
quad (@( S ) . . .
exp (− ((T−t s t a r )^2∗ (2∗ r+sigma ^2)^2+4∗ log ( S s t a r ( j S ) . / S ) . ^ 2 + . . .
4∗sigma ^2∗(T−t s t a r )∗ log ( T−t s t a r ) ) / ( 8∗ sigma ^2∗(T−t s t a r ) ) + . . .
( ( 2∗ r−3∗sigma ^2)/(2∗ sigma ^2)+(T−t s t a r )/(2∗T ) )∗ log ( S ) − . . .
(2∗ r−sigma ^2)/(2∗ sigma ^2)∗ log ( S s t a r ( j S ) ) ) . ∗ . . .
(−S . ^ ( ( T+ t s t a r )/(2∗T ) ) . ∗ e r f c ( sqr t ( 1 . 5 )∗ ( 2∗ Astar ( jA ) + . . .
2∗ (T−t s t a r )∗ log ( S s t a r ( j S ))−2∗T∗ log ( S ) − . . .
( T−t s t a r )∗ log ( S s t a r ( j S ) . / S ) ) / ( sigma ∗ (T−t s t a r ) ^ ( 3 / 2 ) ) ) + . . .
S s t a r ( j S ) ^ ( ( T−t s t a r )/(2∗T ) )∗ exp ( Astar ( jA )/T + . . .
( sigma ^2∗(T−t s t a r )^3)/(24∗T^2))∗ e r f c ( ( 1 2∗T∗Astar ( jA ) + . . .
sigma ^2∗(T−t s t a r )^3−6∗T∗(−2∗(T−t s t a r )∗ log ( S s t a r ( j S ) ) + . . .
2∗T∗ log ( S ) + ( T−t s t a r )∗ log ( S s t a r ( j S ) . / S ) ) ) / . . .
(2∗ sqr t ( 6 )∗T∗sigma ∗ (T−t s t a r ) ^ ( 3 / 2 ) ) ) ) , 0 , B , prec ) ;
disp ( ’ post−pro : f i r s t i n t e g r a l ! ’ )
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%−−−−−−−−−−−− sum −−−−−−−−−−−−−%
for kt= f l o o r ( t s t a r /dt ) + 1 : Nt

Lower=max ( t s t a r , t ( kt ) ) ;
Upper= t ( kt + 1 ) ;
for hA=1:NA

F (hA, kt ) = ( sigma∗B)/(4∗ sqr t (2∗ pi ) ) ∗ . . .
quad (@( s ) exp (− (( s−t s t a r ) . ^ 2∗ ( 2∗ r+sigma ^ 2 ) ^ 2 + . . .
4∗ log ( S s t a r ( j S )/B)^2+4∗ sigma ^2∗( s−t s t a r ) . ∗ . . .
log ( s−t s t a r ) ) . / ( 8 ∗ ( s−t s t a r )∗ sigma ^ 2 ) + . . .
( ( 2∗ r−sigma ^2)/(2∗ sigma ^2))∗ log ( B/ S s t a r ( j S ) ) ) . ∗ . . .
( e r f ( sqr t ( 1 . 5 ) ∗ ( 2 ∗ (A(hA+1)−Astar ( jA ) ) − . . .
2∗ ( s−t s t a r )∗ log ( S s t a r ( j S ) ) + ( s−t s t a r ) ∗ . . .
log ( S s t a r ( j S )/B ) ) . / ( ( s−t s t a r ) . ^ ( 1 . 5 ) ∗ sigma ) ) − . . .
e r f ( sqr t ( 1 . 5 ) ∗ ( 2 ∗ (A(hA)−Astar ( jA ))−2∗( s−t s t a r ) ∗ . . .
log ( S s t a r ( j S ) ) + ( s−t s t a r )∗ log ( S s t a r ( j S )/B ) ) . / . . .
( ( s−t s t a r ) . ^ ( 1 . 5 ) ∗ sigma ) ) ) , Lower , Upper , prec ) ;

V( jS , jA )=V( jS , jA )+ alpha (hA, 1 , kt )∗F (hA, kt ) ;
end

end
V( jS , jA )=V( jS , jA )+V1 ( jS , jA ) ;

end
end

end
toc

d a t a s e t ( { [ Ss tar ’ ,V] ’ S ’ , ’V ’ } )
%p l o t ( Ss tar ’ ,V) %graph of option values as funct ion of a s s e t values
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