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Abstract: In this short paper, we aim at a qualitative framework for modeling multivariate decision
problems where each alternative is characterized by a set of properties. To this extent, we consider
convex spaces as underlying universes and make use of lattice operations in convex spaces to
formalize the notion of quantiles. We also put in evidence that many important models of decision
problems can be viewed as convex spaces-based models. Several properties of aggregation operators
are translated into this general setting, and independence and invariance are used to provide
axiomatic characterizations of quantiles.
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1. Introduction

The aim of this paper is to propose a general unified framework for defining aggregation operators.
Our framework is abstract and algebraic in nature and in this framework we generalize some results
of the literature [1–4].

We consider convex structures where the notion considered here (see [5]) is not restricted to the
context of vector spaces. The basic idea of our approach is to describe the space of alternatives in terms
of a “topological” relation. We can prove that lattices, median spaces and interval spaces are convex
spaces and also that to every property spaces (see [1,2,4]) is associated with a convex structure.

We then focus on aggregation operators f : XA → X where X is convexity space and A is
a nonempty set. We study aggregation operators that satisfy properties of monotonicity and
independence and we consider aggregation operators that are based on decisive subsets of A. Moreover,
we consider operators that are componentwise compatible with the structure of convexity space of X.

We propose also a particular version of Arrow’s theorem thus considering a link between
aggregation theory and social choice theory as in [6]. It appears that there are many connections
between the work presented here with the results of [3,4,7–12]. Applications of these types of results
can be found in in [4,13,14].

The structure of the paper is as follows. In Section 2 we introduce convex spaces and we provide
the necessary definitions. Section 3 is devoted to describe some important examples. Finally in
Sections 3 and 4 we study some classes of agggregation operators acting on abstract convex structures.

2. Abstract Convex Structures

The notion of convexity is a basic mathematical structure that is used to analyze many different
problems and there are in the literature various kinds of generalized, topological, or axiomatically
defined convexities. There are generalizations that are motivated by concrete problems and those
that are stated from an axiomatic point of view, where the notion of abstract convexity is based on
properties of a family of sets.

In this paper the general notion of abstract convexity structure that is studied in [5] is considered.
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Definition 1. A family C of subsets of a set X is a convexity on a set X if ∅ and X belong to C and C is closed
under arbitrary intersections and closed under unions of chains.

The elements of C are called convex sets of X and the pair (X, C) is called a convex space.
Moreover, the convexity notion allows us to define the notion of the convex hull operator, which is

similar to that of the closure operator in topology.

Definition 2. If X is a set with a convexity C and A is a subset of X, then the convex hull of A ⊆ X is the set

convA =
⋂
{C ∈ C : A ⊆ C}. (1)

This operator enjoys certain properties that are identical to those of usual convexity: for instance
convA is the smallest convex set that contains set A. It is also clear that C is convex if and only if
convC = C.

The convex hull of a set {x1, . . . , xn}is called an n-polytope and is denoted by [x1, . . . , xn].
A 2-polytope [a, b] is called the segment joining a, b.

A convexity C is called N-ary (N ∈ N) if A ⊆ C whenever convF ⊆ A for all F ⊆ A where F has
at most N elements. A 2-ary convexity is called an interval convexity.

We also consider biconvex spaces, i.e., triples of the form (X,A,B) whereA,B are two convexities
on a set X, called the lower and the upper convexity. Obviously every convex space (X, C) can be
viewed as a biconvex space (X, C, C).

If X, Y are convex spaces with convexities C,D, respectively, we consider the following definition
of a compatible map between two convex spaces.

Definition 3. A map γ : X → Y is convex if γ−1(C) ∈ C for every ∈ C and such that when Ci ∈ C for i ∈ I

γ(
⋂
i∈I

Ci) =
⋂
i∈I

γ(Ci). (2)

For a general theory of convexity we refer to [5].

3. Some Examples

We present some examples and classes of convex spaces. First of all we note that every real vector
space together with the collection of all convex sets in the usual meaning, is a 2-arity convex space.

Ordered spaces The usual convexity on R can be defined in terms of ordering as follows: a set C
is convex if and only if when a, b ∈ C and a ≤ x ≤ b implies x ∈ C. We can define in the same way
a convexity on a partially ordered set (see [5], p. 6). Such a convexity is called the order convexity.

Lattices If 〈L,∧,∨〉 is a lattice we denote by L and U the collections of all ideals and all filters
respectively (the empty set and the whole lattice are treated as (non-proper) ideals and filters). Since the
union of a chain of filters (ideals) is a filter (ideal), these are two convexities on L that will be called
the lower and the upper lattice convexity respectively. Moreover there exists a convexity C generated
by L⋃U the least convexity containing all ideals and filters. This convexity will be called the lattice
convexity on L.

Please note that if L is linearly ordered then G equals the order convexity. The convexity of the
dual lattice is the same as the original one.

It is possible to consider lattices as convex spaces (with the lattice convexity) as well as bi-convex
spaces (with the lower and upper lattice convexities). It is easy to check that a proper halfspace is
either a prime filter or a prime ideal. It can be proved also that the lattice convexity is an interval
convexity and that

[a, b] = {x ∈ L : a ∧ b ≤ x ≤ a ∨ b}. (3)
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Median spaces A median space is a convexity space X with an interval convexity such that for
each a, b, c ∈ X there exists a unique point in [a, b] ∩ [a, c] ∩ [b, c]. We call it the median of a, b, c and
denote by m(a, b, c). This defines a map m : X3 → X, called the median operator on X. In any convexity
space, every point in [a, b] ∩ [a, c] ∩ [b, c] is called a median of a, b, c. There is a natural way to define
the structure of a median space by means of the median operator (see [5]).

Property-based domains A property-based domain (as defined in [1]) is a pair (X,H) where X
is a non-empty set and H is a collection of non-empty subsets of X and if x, y ∈ X and x 6= y there
exists H ∈ H such that x ∈ H and y /∈ H. The elements ofH are referred to as properties and if x ∈ H
we say that x has property represented by the subset H. This definition is slightly more general than
that of [3] and of [4], in fact it is not assumed that the set X is finite and we do not consider that the set
Hc is a property if H is a property.

The “property space” model provides a very general framework for representing preferences and
then aggregation of preferences. In every property-based domain we can define a convexity defined as
follows. A subset S ⊆ X is said to be convex if it is intersection of properties.

Arrowian framework The problem of preference aggregation can be viewed as a property-based
domain and then as a convex space. We consider a set of alternatives A and a setR of binary relations
in A. We can consider different requirements on the setR and soR can be the set of preorders or the
set of linear orders in A.

If we define for each pair a, b ∈ A the set

Ha,b = {R ∈ R : aRb} (4)

the familyH = {Ha,b : a, b ∈ A} defines a property-based domain structure on the setR. See [4] for
more details on Arrowian framework.

4. Aggregation Functional over Convex Spaces

Aggregation operators are mathematical functions that are used to combine several inputs
into a single representative outcome; see [15] for a comprehensive overview on aggregation theory.
Aggregation operators play an important role in several fields such as decision sciences, computer
and information sciences, economics and social sciences and there are a large number of different
aggregation operators that differ on the assumptions on the inputs and about the information that we
want to consider in the model.

Definition 4. If N is an arbitrary nonempty set and X is a convex space, then an aggregation functional is
a map F : XA → P(X).

Our framework is very general, we do not assume that the sets X and A are finite or that the
map F : XA → P(X) is surjective. Moreover, we consider the case in which there are more than one
equivalent solutions and also the case in which there are no solutions. For each c ∈ X, we denote by
c the constant c map in LA.

The following properties of an aggregation functional are key to our analysis.

Monotonicity If C ∈ C, F( f ) ⊆ C and y ∈ C then F(g) ⊆ C where g(i) = y and f (j) = g(j)
if j 6= i.
Idempotence c ∈ F(c) for every c ∈ X.
Independence If C, D ∈ C F( f ) ⊆ C and for all i ∈ A, f (i) ∈ C if and only if g(i) ∈ D we have
that F(g) ⊆ D .
Invariance For every convex map γ : X → X, F(γ ◦ f ) = γ(F( f ))
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5. Quantiles in Convex Spaces

We briefly consider aggregation functionals based on a complete lattices. As it is well known
the quantile is a generalization of the concept of median and it plays an important role in statistical
and economic literature. We study quantile in an ordinal framework and we consider an axiomatic
representation of quantiles as in [1,7,8]. Here we provide a definition and characterization of quantiles
for lattice-valued operators.

If A is a nonempty set and L a bounded lattice a non-additive measure on A with values in L is
a function m : 2A → L such that m(∅) = 0, m(A) = 1 and m(C) ≤ m(D) whenever C ⊆ D.

Definition 5. If α is an element of L, then the lattice-valued quantile of level α is the functional Qα : LA → L
defined by

Qα( f , m) =
∨
{x : m({ f ≥ x}) ≥ α}.

It can be proved that this definition extends the well known definition of quantile for real-valued
functions (see [8]).

We recall the definition of completely distributive lattice. A complete lattice L is said to be
a completely distributive is the following distributive law holds

∧
i∈I

(∨
j∈J

xij

)
=
∨

f∈J I

(∧
i∈I

xi f (i)

)
,

for every doubly indexed subset {xij : i ∈ I, j ∈ J} of L. Please note that every complete chain
(in particular, the extended real line and each product of complete chains) is completely distributive.
Moreover, complete distributivity reduces to distributivity in the case of finite lattices.

A collection of sets U ⊆ 2A is said to be an upper set in A if X ∈ U and X ⊂ Y implies that Y ∈ U .
Then we can prove the following results.

Proposition 1. Let L be a completely distributive lattice. An aggregation functional F : LA → L is a lattice-
valued quantile with respect to a non-additive measure m : 2A → L if and only if there exists a upper set U
such that

F( f ) =
∨
{x ∈ L : there exists U ∈ U such that f (i) ≥ x for every i ∈ U} (5)

or if and only if there exists a upper set U such that

F( f ) =
∧
{x ∈ L : there exists U ∈ U such that f (i) ≤ x for every i ∈ U} (6)

Proof of Proposition 1. By Proposition 1 in [7] if L is a completely distributive lattice an aggregation
functional F : LA → L is a lattice-valued quantile with respect to a non-additive measure m : A → L if
and only if there exists a upper set U such that

F( f ) =
∨

U∈U

∧
i∈U

f (i)

or if and only if there exists a upper set U such that

F( f ) =
∧

U∈U

∨
i∈U

f (i).

Then we can prove that F is a lattice-valued quantile when F( f ) ≥ x if and only if there exists
U ∈ U such that f (i) ≥ x for every i ∈ U. Then we get

F( f ) =
∨
{x ∈ L : there exists U ∈ U such that f (i) ≥ x for every i ∈ U}.
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The second statement follows similarly.

Since we know that the lattice convexity is an interval convexity we can prove the following
characterization of lattice-valued quantiles.

Proposition 2. If L is a completely distributive lattice, then an aggregation functional F : LA → L is a lattice-
valued quantile with respect to a non-additive measure m : A → L if and only if there exists an upper set U
such that

F( f ) =
⋂
{C ∈ C : {i : f (i) ∈ C} ∈ U} (7)

Then the elements in F( f ) belong to a convex set C if and only if f (i) belongs to C for a “decisive ”
or a “large enough”set.

Let us define quantiles in an abstract convex structures.

Definition 6. If N is an arbitrary nonempty set and X is a convex space, then a quantile is an aggregation
functional F : XA → P(X) defined by

F( f ) =
⋂
{C ∈ C : {i : f (i) ∈ C} ∈ U} (8)

where U is an upper set in A.

Furthermore, we can characterize from an axiomatic point of view quantiles in an abstract
convex structure.

Proposition 3. If N is an arbitrary nonempty set and X is a convex space, then a quantile is a monotone,
idempotent and independent aggregation functional. Conversely an aggregation functional F : XA → P(X)

that is monotone and independent is a quantile.

Proof of Proposition 3. If C is a convex set in C and f is an element of XA we define the set N( f , C) =
{i ∈ N : f (i) ∈ C}. Let F be a quantile, C ∈ C, f an element of XA such that F( f ) ⊆ C and y ∈ C .
If we define an element g of XA by g(i) = y and f (j) = g(j) if j 6= i then N( f , C) ⊆ N(g, C) and so
F(g) ⊆ C. Moreover, if c ∈ C we have that c ∈ F(c) if F is a quantile since N(c, C) = A.

By the definition of quantile if F is a quantile, C, D ∈ C, F( f ) ⊆ C and for all i ∈ A, f (i) ∈ C
if and only if g(i) ∈ D we can easily prove that N( f , C) = N(g, D) and we get F(g) ⊆ D . So we have
proved that quantiles are monotone , idempotent and independent functionals.

We note that functional F is monotone and independent if and only if C, D ∈ C F( f ) ⊆ C ∈ C
and for all i ∈ N, if f (i) ∈ C then g(i) ∈ D we have that F(g) ∈ D .

We say that a set U ⊆ N is decisive with respect to an element C ∈ C if there exists f ∈ XA such
that N( f , C) = U and F(x) ⊆ C. Being F monotone and independent a set U is decisive with respect
to C if and only if for every f ∈ XA such that N( f , C) = U, F( f ) ⊆ C.

Since the functional F is monotone and independent then the set of decisive subset of N does not
depend on the convex set C. If U is the family of decisive subsets of N for every f ∈ XA, F( f ) ⊆ C
if and only if N(F, C) ∈ U . So we have proved that

F( f ) =
⋂
{C : N( f , C) ∈ U} =

⋂
{C ∈ C : {i : f (i) ∈ C} ∈ U}.

The following proposition presents another property of quantiles in convex spaces.

Proposition 4. f N is an arbitrary nonempty set and X is a convex space, then a quantile is an invariant
aggregation functional.
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Proof of Proposition 4. Let F : XA → P(X) be a quantile and γ : X → X a convex map.
Then F(γ ◦ f ) =

⋂{C ∈ C : {i : (γ ◦ f )(i) ∈ C} ∈ U} = ⋂{γ(C), C ∈ C : {i : f (i) ∈ γ−1C} ∈
U} = ⋂{γ(D), D ∈ C : {i : f (i) ∈ D} ∈ U} = ⋂{γ(C), C ∈ C : {i : f (i) ∈ C} ∈ U}.

If D = C ∈ C : {i : f (i) ∈ C} ∈ U} being γ continuous⋂
C∈D

γ(C) = γ(
⋂

C∈D
C)

and we get that F(γ ◦ f ) = γ(F( f )).

6. Concluding Remarks

We introduced a unified qualitative framework for studying aggregation operators. The approach
presented in this paper has taken its inspiration from social choice theory and we generalize some
results in social choice in certain respects. This setting has several appealing aspects, for it provides
sufficiently rich structures studied in the literature , which allow the definition of quantiles from
an ordinal point of view, and which do not depend on the usual arithmetical structure of the reals.

There are however many opportunities for much more detailed research in this area in particular
from the point of view of aggregation theory. An obvious topic for future research is to analyze other
aggregation functionals defined in convex spaces. There are several extensions avaiable within this
framework, for instance, one could consider Sugeno type integral defined by a class of decisive sets.
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