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Abstract: In this paper, by applying umbral calculus methods to generating functions for the
combinatorial numbers and the Apostol type polynomials and numbers of order k, we derive some
identities and relations including the combinatorial numbers, the Apostol-Bernoulli polynomials and
numbers of order k and the Apostol-Euler polynomials and numbers of order k. Moreover, by using
p-adic integral technique, we also derive some combinatorial sums including the Bernoulli numbers,
the Euler numbers, the Apostol-Euler numbers and the numbers y1 (n, k; λ). Finally, we make some
remarks and observations regarding these identities and relations.
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1. Introduction

In order to give the results presented in this paper, we use two techniques which are p-adic
integral technique and the umbral calculus technique. In [1–5], we constructed generating functions
for families of combinatorial numbers which are used in counting techniques and problems and also
computing negative order of the first and the second kind Euler numbers and other combinatorial
sums. In this paper, by applying umbral algebra and umbral analysis methods and their operators to
generating functions of the combinatorial numbers and the Apostol type polynomials and numbers,
we give many identities and relations including the Fibonacci numbers, the combinatorial numbers,
the Apostol-Bernoulli polynomials and numbers of higher order and the Apostol-Euler polynomials
and numbers of higher order.

Throughout this paper, we use the following notations, definitions and relations.
Here and in the following, let C, R, Z, and N be the sets of complex numbers, real numbers,

integers, and positive integers, respectively, and let N0 : = N∪ {0}. We assume 00 = 1.
Moreover, throughout this paper, log z is tacitly assumed to denote the principal branch of the

many-valued function log z with the imaginary part (log z) constrained by

−π < Im(log z) ≤ π

(cf. [6–9]).
The Apostol-Bernoulli polynomials B(k)n (x, λ) of order k are defined by

FB (t, x; λ, k) =
(

t
λet − 1

)k
etx =

∞

∑
n=0
B(k)n (x, λ)

tn

n!
, (1)
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where λ is an arbitrary (real or complex) parameter and x ∈ R, and |t| < 2π when λ = 1 and
|t| < 2π

| log λ| when λ 6= 1. Moreover, B(k)n (λ) := B(k)n (0, λ) denote the Apostol-Bernoulli numbers of

order. B(k)
n := B(k)

n (1) denote the Bernoulli numbers of order k and also Bn := B(1)
n denote the Bernoulli

numbers (cf. see,for details, [6,8–14], and the references cited therein).
The Apostol-Euler polynomials E (k)n (x, λ) of order k are defined by

FE (t, x; λ, k) =
(

2
λet + 1

)k
etx =

∞

∑
n=0
E (k)n (x, λ)

tn

n!
, (2)

where λ is an arbitrary (real or complex) parameter and x ∈ R, and |t| < π when λ = 1 and
|t| < π

| log λ| when λ 6= 1. Moreover, E (k)n (λ) := E (k)n (0, λ) denote the Apostol-Euler numbers of order

k. E(k)
n := E(k)

n (1) denote the Euler numbers of order k and also En := E(1)
n denote the Euler numbers

(cf. see, for details, [6,8–15], and the references cited therein).
The λ-array polynomials Sn

v (x; λ) are defined by

FS(t, x, v; λ) =

(
λet − 1

)v

v!
ext =

∞

∑
n=0

Sn
v (x; λ)

tn

n!
(3)

where v ∈ N0 and λ ∈ C (cf. [16]). Furthermore,

S2 (n, v; λ) := Sn
v (0; λ)

where, as usual, S2 (n, v; λ) denote the λ-Stirling numbers (cf. [8,12]). Substituting λ = 1 into (3),
we have the array polynomials:

Sn
v (x) := Sn

v (x; 1)

(cf. [16–18] and (Theorem 2 [19])).
In (cf. Equation (8) [1]), we defined the combinatorial numbers y1 (n, k; λ) by means of the

following generating function:

Fy1 (t, k; λ) =
1
k!
(
λet + 1

)k
=

∞

∑
n=0

y1 (n, k; λ)
tn

n!
(4)

where k ∈ N0 and λ ∈ C.
By using (4), we have

y1 (n, k; λ) =
1
k!

k

∑
j=0

(
k
j

)
jnλj (5)

where n ∈ N0 (cf. Equation (9) [1]).
Relationships between the λ-array polynomials Sn

v (x; λ) and the numbers y1 (n, k; λ) and the
Stirling numbers of the second kind S2(n, k) are given below, respectively:

Sn
k (0; λ) = S2 (n, v; λ) = (−1)k y1 (n, k;−λ)

and
S2(n, k) = (−1)k y1 (n, k;−1) (6)

(cf. [1,17,20–25]).
The Fibonacci numbers Fj are defined by the following generating function

t
1− t− t2 =

∞

∑
n=0

Fntn
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(cf. (p. 229. [26])). We need the following well-known formulas for the Fibonacci numbers. Let
λ = 1+

√
5

2 and β = 1−
√

5
2 . Let j ∈ N, we have

λj = λFj + Fj−1 (7)

and
βj = βFj + Fj−1

(cf. (p. 78, Lemma 5.1. [26])). Using the above identities, one easily derives the following
Binet’s formula:

Fj =
λj − βj

λ− β
.

Substituting −n with n ∈ N, into the above equation, we easily have

F−n = (−1)n+1Fn

(cf. (p. 84 [26])).

1.1. p-Adic Integrals

In the last section, we will give some combinatorial sums with p-adic integrals technique. Hence,
let us give definitions of these integrals and a few properties of them.

Let f (x) ∈ C1(Zp → K), a set of continuous derivative functions, and K is a field with a
complete valuation.

The Volkenborn integral (the bosonic p-adic integral) is defined by

∫
Zp

f (x)dµ1(x) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x), (8)

where µ1(x) = µ1
(

x + pNZp
)

is the Haar distribution on Zp:

µ1

(
x + pNZp

)
=

1
pN ,

(cf. [27,28]). On the other hand, the p-adic fermionic integral is defined by

∫
Zp

f (x) dµ−1 (x) = lim
N→∞

pN−1

∑
x=0

(−1)x f (x) (9)

where

µ−1 (x) = µ−1

(
x + pNZp

)
=

(−1)x

pN

(cf. [29]).
The Bernoulli numbers and the Euler numbers are related to the following p-adic integrals

representations, respectively,

Bn =
∫
Zp

xndµ1 (x) , (10)

(cf. [27,28]) and

En =
∫
Zp

xndµ−1 (x) , (11)

(cf. [27]).
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1.2. Umbral Algebra and Calculus

Throughout this section, we use the notations and definitions of the Roman’s book (cf. [13]). Let
P = C [x] be the algebra of polynomials in the single variable x over the field of complex numbers. Let
P∗ be the vector space of all linear functionals on P. Let 〈L | p(x)〉 be the action of a linear functional L
on a polynomial p(x). Let F denote the algebra of formal power series

f (t) =
∞

∑
k=0

ak

tk

k!
,

(cf. [13]). Furthermore, for all n ∈ N0, one has

〈 f (t) | xn〉 = an (12)

and also
〈 f (t)g(t) | p (x)〉 = 〈 f (t) | g(t)p (x)〉 , (13)

where f (t), g(t) are in F (cf. [13]).
For p (x) ∈ P, as a linear functional, we have〈

eyt | p (x)
〉
= p (y) . (14)

and as a linear operator, we have
eyt p (x) = p (x + y) (15)

(cf. [13]). The Sheffer polynomials for pair (g(t), f (t)), where g(t) must be invertible and f (t) must be
delta series. The Sheffer polynomials for pair (g(t), t) is the Appell polynomials or Appell sequences
for g(t). The Appell polynomials are defined by means of the following generating function

∞

∑
k=0

sk (x)
k!

tk =
1

g(t)
ext, (16)

(cf. [13]). Some properties of the Appell polynomials are given as follows.

sn (x) = g(t)−1xn, (17)

(p. 86, Theorem 2.5.5 [13]), derivative formula

tsn (x) = nsn−1 (x) (18)

(cf. p. 86, Theorem 2.5.6 [13]); and see also [6,30,31]).
We summarize the results presented in this paper as follows:
In Section 2, by applying the umbral algebra and umbral calculus methods to generating functions

of the special numbers and polynomials, we derive some identities and relations including the
numbers y1 (n, k; λ), combinatorial sums, the Fibonacci numbers, Apostol-Bernoulli type numbers and
polynomials, and the Apostol-Euler type numbers and polynomials. Finally, we give some remarks
and observations.

In Section 3, by using the p-adic integrals, we give many combinatorial sums related to the
Bernoulli numbers, the Euler numbers, the Apostol-Euler numbers and the numbers y1 (n, k; λ).

2. Identities Including the Numbers y1 (n, k; λ), Combinatorial Sums, and Apostol-Euler Type
Numbers and Polynomials

In this section, by using the umbral algebra and umbral calculus methods, we derive many
identities and relations containing the numbers y1 (n, k; λ), combinatorial sums, the Fibonacci
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numbers, Apostol-Bernoulli type numbers and polynomials, and the Apostol-Euler type numbers
and polynomials.

Theorem 1.
1
k!

k

∑
j=0

(
k
j

)
λj

m

∑
v=0

(
m
v

)
xm−v jv =

1
k!

k

∑
j=0

(
k
j

)
λj (x + j)m

or
m

∑
v=0

(m)v
v!

xm−vy1 (v, k; λ) =
1
k!

k

∑
j=0

(
k
j

)
λj (x + j)m (19)

Proof. By applying linear operators in (15) and (18) to (4), respectively, we obtain

1
k!
(
λet + 1

)k xm =
1
k!

k

∑
j=0

(
k
j

)
λj (x + j)m (20)

and

1
k!
(
λet + 1

)k xm =
∞

∑
n=0

y1 (n, k; λ)
1
n!

tnxm (21)

=


0, n > m

y1 (n, k; λ) , n = m
m
∑

v=0

(m)v
v! xm−vy1 (v, k; λ) n < m.

Combining (20) with (21), we get the desired results.

Remark 1. Substituting x = 0 into (19), we arrive at (5).

By applying the action of a linear operator
(
λet + 1

)k to the Apostol-Euler polynomial E (a)
n (x, λ),

we obtain the following result.

Theorem 2.

k

∑
j=0

(
k
j

)
λjE (a)

n (x + j, λ) =
k

∑
j=0

(
k
j

)
j

∑
v=0

(−1)j−v

(
j
v

)
2vE (a−v)

n (x, λ) . (22)

Proof. By applying the action of a linear operator
(
λet + 1

)k to the Apostol-Euler polynomial

E (a)
n (x, λ), we obtain

(
λet + 1

)k E (a)
n (x, λ) =

k

∑
j=0

(
k
j

)
λjetjE (a)

n (x, λ) . (23)

Applying linear operators in (15) to the above equation, we have

(
λet + 1

)k E (a)
n (x, λ) =

k

∑
j=0

(
k
j

)
λjE (a)

n (x + j, λ) . (24)

Combining the following relation with (23)

E (a)
n (x, λ) =

(
2

λet + 1

)a
xn
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(cf. p. 101 [13]), we have

(
λet + 1

)k E (a)
n (x, λ) =

k

∑
j=0

(
k
j

)
j

∑
v=0

(−1)j−v

(
j
v

)
2v
(

2
λet + 1

)a−v
xn.

After some elementary calculation in the above equation, we have

(
λet + 1

)k E (a)
n (x, λ) =

k

∑
j=0

(
k
j

)
j

∑
v=0

(−1)j−v

(
j
v

)
2vE (a−v)

n (x, λ) . (25)

Combining (24) and (25), we arrive at the desired result.

Substituting λ = k = 1 into (22), we arrive at the following corollary, which was proved by
Roman (p. 103, Equation (4.2.11) [13]), see also (cf. [32]).

Corollary 1.
2E(a−1)

n (x) = E(a)
n (x + 1) + E(a)

n (x)

We assume that, λ 6= 1 and a ∈ N, we have the following well-known relationships between the
polynomials B(a)

n (x, λ) and E (a)
n (x,−λ):

∞

∑
n=0
E (a)

n (x,−λ)
tn

n!
=

(
2

−λet + 1

)a
etx

=

(
−2

t

)a ∞

∑
n=0
B(a)

n (x, λ)
tn

n!
.

Therefore
(n)a E

(a)
n−a (x,−λ) = (−2)a B(a)

n (x, λ)

or

E (a)
n (x, λ) =

(−2)a

(n + a)a
B(a)

n+a (x,−λ) .

Substituting the above relation into (22), we get the following result.

Theorem 3.

k

∑
j=0

(
k
j

)
λj (−2)a

(n + a)a
B(a)

n+a (x + j,−λ) (26)

=
k

∑
j=0

(
k
j

)
j

∑
v=0

(−1)j+a

(
j
v

)
2a

(n + a− v)a−v
B(a−v)

n+a−v (x,−λ) .

Setting k = 1 in (26), we get the following corollary.

Corollary 2.
B(a)

n+a (x,−λ) + λB(a)
n+a (x + 1,−λ) = − (n + a)B(a−1)

n+a−1 (x,−λ) . (27)

Remark 2. Another proof of the Equation (27) is given by Dere et al. [6] and see also (cf. [32]).

Remark 3. Substituting n + a = m and λ = −1 into (27), we get

B(a)
m (x + 1) = B(a)

m (x) + mB(a−1)
m−1 (x)
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(cf. p. 95, Equation (4.2.6) [13]).

The following theorem was proved in (cf. [1]). Here, we give a proof different from that in (cf. [1]).

Theorem 4. Let n and k be nonnegative integers. Then we have

y1 (n, k; λ) =
2k

k!
E (−k)

n (0, λ) .

Proof. Using (12), we obtain

y1 (n, k; λ) =
1
k!

〈(
λet + 1

)k | xn
〉

. (28)

From the above equation, we have

y1 (n, k; λ) =
2k

k!

〈(
λet + 1

2

)k

| xn

〉

=
2k

k!

〈
t0 |

(
λet + 1

2

)−k

xn

〉

=
2k

k!
E (−k)

n (0, λ) .

Therefore, we arrive at the desired result.

Theorem 5.
2k

k!

n

∑
j=0

(
n
j

)
E (a)

j (λ) E (−k)
n−j (λ) =

n

∑
j=0

(
n
j

)
E (a)

j (λ) y1 (n− j, k; λ)

Proof. We set

1
k!

〈(
λet + 1

)k | E (a)
n (λ)

〉
=

1
k!

〈(
λet + 1

)k |
(

n

∑
j=0

(
n
j

)
E (a)

j (λ)

)
xn−j

〉

=
1
k!

n

∑
j=0

(
n
j

)
E (a)

j (λ)
〈(

λet + 1
)k | xn−j

〉
Combining the above equation with (28), we get

1
k!

〈(
λet + 1

)k | E (a)
n (λ)

〉
=

1
k!

n

∑
j=0

(
n
j

)
E (a)

j (λ) y1 (n− j, k; λ) . (29)

On the other hand

1
k!

n

∑
j=0

(
n
j

)
E (a)

j (λ)
〈(

λet + 1
)k | xn−j

〉
(30)

=
2k

k!

n

∑
j=0

(
n
j

)
E (a)

j (λ)

〈
t0 |

(
λet + 1

2

)−k

xn−j

〉
.

Therefore, combining (29) with (30), we arrive at the desired result.
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Theorem 6.

y1 (m, k; λ) =
1

2k!

k

∑
j=0

(
k
j

)
λj

2
(Em (j + 1) + Em (j)) .

Proof. We set the following functional equation

Fy1 (t, k; λ) =
1

2k!

k

∑
j=0

(
k
j

)
λj (FE (t, j + 1; 1, k) + FE (t, j; 1, 1)) .

By combining the above equation with (4) and (2), we get

∞

∑
n=0

y1 (n, k; λ)
tn

n!
=

∞

∑
n=0

(
1

2k!

k

∑
j=0

(
k
j

)
λj (En (j + 1) + En (j))

)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation yields the desired result.

Theorem 7. Let m ∈ N. Then we have

S2 (m− 1, k; λ) =
1

mk!

k

∑
j=0

(−1)k−j

(
k
j

)
λj (Bm (j + 1, λ)−Bm (j, λ)) .

Proof. We also set the following functional equation

FS(t, 0, k; λ) =
1

tk!

k

∑
j=0

(−1)k−j

(
k
j

)
λj (FB (t, j + 1; λ, 1)− FB (t, j; λ, 1)) .

By combining the above equation with (1) and (3), we get

∞

∑
m=0

S2 (m, k; λ)
tm

m!

=
∞

∑
m=0

(
1

tk!

k

∑
j=0

(−1)k−j

(
k
j

)
λj (Bm (j + 1, λ)−Bm (j, λ))

)
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation yields the desired result.

Theorem 8. Let 2λ = 1 +
√

5. Then we have

n

∑
j=0

(
n
j

)
E (a)

j (λ) y1 (n− j, k; λ) =
1
k!

k

∑
j=0

(
k
j

) (
λFj + Fj−1

)
E (a)

n (j, λ) .

Proof. We define the following functional equation:

Fy1 (t, k; λ) FE (t, 0; λ, a) =
1
k!

k

∑
j=0

(
k
j

)
λj (FE (t, j; λ, a)) .

By combining the above equation with (4), (2), and (7), we get

∞

∑
n=0

n

∑
j=0

(
n
j

)
E (a)

j (λ) y1 (n− j, k; λ)
tn

n!

=
∞

∑
n=0

1
k!

k

∑
j=0

(
k
j

) (
λFj + Fj−1

)
E (a)

n (j, λ)
tn

n!
,



Axioms 2018, 7, 22 9 of 12

where λ = 1+
√

5
2 . Comparing the coefficients of tn

n! on both sides of the above equation yields the
desired result.

3. Combinatorial Sums via p-Adic Integral

In this section, by using the p-adic integrals, we derive some combinatorial sums containing the
Bernoulli numbers, the Euler numbers, the Apostol-Euler numbers and the numbers y1 (n, k; λ).

Theorem 9.

Bn =
k!
2k

n

∑
j=0

(
n
j

)
y1 (n− j, k; λ)

j

∑
v=0

(
j
v

)
E (k)v (λ) Bj−v.

Proof. Combining (2) with (4), we set the following functional equation:

Fy1 (t, k; λ) FE (t, x; λ, k) =
2k

k!
etx.

By using the above equation, we get

∞

∑
n=0
E (k)n (x, λ)

tn

n!

∞

∑
n=0

y1 (n, k; λ)
tn

n!
=

2k

k!

∞

∑
n=0

xn tn

n!
.

Therefore

∞

∑
n=0

n

∑
j=0

(
n
j

)
y1 (n− j, k; λ)

j

∑
v=0

(
j
v

)
xj−vE (k)v (λ)

tn

n!
=

2k

k!

∞

∑
n=0

xn tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation yields the following relation:

n

∑
j=0

(
n
j

)
y1 (n− j, k; λ)

j

∑
v=0

(
j
v

)
xj−vE (k)v (λ) =

2k

k!
xn. (31)

By applying the Volkenborn integral to (31), we get

n

∑
j=0

(
n
j

)
y1 (n− j, k; λ)

j

∑
v=0

(
j
v

)
E (k)v (λ)

∫
Zp

xj−vdµ1 (x) =
2k

k!

∫
Zp

xndµ1 (x) .

Combining the above equation with (10), we arrive at the desired result.

Remark 4. Replacing x by k and λ by λ2, the Equation (31) is reduced to the following relation:

n

∑
j=0

(
n
j

)
y1

(
n− j, k; λ2

)
E (k)j

(
k, λ2

)
=

2k

k!
kn. (32)

Since

λk2nE (k)n (k, λ2) =
n

∑
m=0

(
n
m

)
kmE∗(k)n−m (λ)

where E∗(k)n (λ) denote the Apostol-type Euler numbers of the second kind of order k (cf. [25,33]),
the Equation (32) yields

n

∑
j=0

(
n
j

)
y1
(
n− j, k; λ2)

2j

j

∑
m=0

(
j

m

)
kmE∗(k)j−m (λ) =

(2λ)k

k!
kn.
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By combining the above equation with the following identity

n

∑
m=0

(
n
m

)
2my1

(
m, k; λ2

)
E∗(k)n−m (λ) =

(2λ)k

k!
kn

(cf. [33]), we get the following combinatorial sums

n

∑
j=0

(
n
j

)
y1
(
n− j, k; λ2)

2j

j

∑
m=0

(
j

m

)
kmE∗(k)j−m (λ) =

n

∑
m=0

(
n
m

)
2my1

(
m, k; λ2

)
E∗(k)n−m (λ) .

Theorem 10.

En =
k!
2k

n

∑
j=0

(
n
j

)
y1 (n− j, k; λ)

j

∑
v=0

(
j
v

)
E (k)v (λ) Ej−v.

Proof. By applying the fermionic p-adic integral to (31), we have

n

∑
j=0

(
n
j

)
y1 (n− j, k; λ)

j

∑
v=0

(
j
v

)
E (k)v (λ)

∫
Zp

xj−vdµ−1 (x) =
2k

k!

∫
Zp

xndµ−1 (x) .

Combining the above equation with (11), we arrive at the desired result.

Theorem 11.
n

∑
j=0

(
n
j

)
y1 (n− j, k; λ)

j

∑
v=0

(
j
v

)
E (k)v (λ)

j + 1− v
=

2k

(n + 1)k!
.

Proof. Integrate Equation (31) with respect to x from 0 to 1, we obtain

n

∑
j=0

(
n
j

)
y1 (n− j, k; λ)

j

∑
v=0

(
j
v

)
E (k)v (λ)

1∫
0

xj−vdx =
2k

k!

1∫
0

xndx.

After some calculations, we get the desired result.

Theorem 12.

n

∑
j=0

(
n
j

)
y1 (j, k; λ)

(
Bn−j − En−j

)
=

1
k!

k

∑
j=0

(
k
j

)
λj (Bn(j)− En(j)) .

Proof. Setting

etxFy1 (t, k; λ) =
1
k!

k

∑
j=0

(
k
j

)
λje(x+j)t.

Combining (4), we have

∞

∑
n=0

n

∑
j=0

(
n
j

)
xn−jy1 (j, k; λ)

tn

n!
=

∞

∑
n=0

1
k!

k

∑
j=0

(
k
j

)
λj(x + j)n tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation yields the following relation:

n

∑
j=0

(
n
j

)
xn−jy1 (j, k; λ) =

1
k!

k

∑
j=0

(
k
j

)
λj(x + j)n. (33)
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By applying the bosonic p-adic integral to (33) and combining with (10), we have

n

∑
j=0

(
n
j

)
Bn−jy1 (j, k; λ) =

1
k!

k

∑
j=0

(
k
j

)
λjBn(j). (34)

By applying the fermionic p-adic integral to (33) and combining with (11), we obtain

n

∑
j=0

(
n
j

)
En−jy1 (j, k; λ) =

1
k!

k

∑
j=0

(
k
j

)
λjEn(j). (35)

Subtracting both sides of Equations (34) and (35), after some elementary calculations, we arrive at
the desired result.

Theorem 13.
n

∑
j=0

(
n
j

)
y1 (j, k; λ)

n + 1− j
=

1
k!

k

∑
j=0

(
k
j

)
λj (j + 1)n+1 − jn+1

n + 1
.

Proof. Integrate Equation (33) with respect to x from 0 to 1, we obtain

n

∑
j=0

(
n
j

)
y1 (j, k; λ)

1∫
0

xn−jdx =
1
k!

k

∑
j=0

(
k
j

)
λj

1∫
0

(x + j)ndx.

After some calculations, we get the desired result.
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