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1. Introduction

Any linear operator R defined on an algebra A over the field F is called a Rota–Baxter operator
(RB-operator) of weight λ ∈ F if it satisfies the relation

R(x)R(y) = R(R(x)y + xR(y) + λxy), x, y ∈ A (1)

An algebra with a given RB-operator acting on it is called a Rota–Baxter algebra (RB-algebra).
G. Baxter defined commutative RB-algebras in 1960 [1]; the relation of Equation (1) with λ = 0 is

simply a generalization of the integrated by parts formula. J.-C. Rota, P. Cartier and others studied [2–4]
combinatorial properties of RB-operators and RB-algebras. In the 1980s, the deep connection between
Lie RB-algebras and the classical Yang–Baxter equation (CYBE) was found [5,6]. In 2000, M. Aguiar
showed [7] that a solution of the associative Yang–Baxter equation (AYBE) [8] gives rise to a structure
of the associative RB-algebra. There are many applications of RB-operators in mathematical physics,
combinatorics, number theory, and operads [9–12].

There exist many constructions of free commutative RB-algebras, including those given by
J.-C. Rota, P. Cartier, and L. Guo jointly with W. Keigher [2,4,13]. We remark that the last [13] could
be used to define a structure of a Hopf algebra on a free commutative RB-algebra [14]. In 2008,
K. Ebrahimi-Fard and L. Guo obtained free associative RB-algebra [15]. Different linear bases of free
Lie RB-algebras were recently found [16–18].

In 1995 [19], J.-L. Loday introduced algebras that satisfy the following identity:

(x1 � x2 + x2 � x1) � x3 = x1 � (x2 � x3)

We call such algebras “pre-commutative algebras” because they play an analogous role for
“pre-algebras” that commutative algebras play for ordinary algebras. In literature, they are also known
as dual Leibniz algebras (by Koszul duality) or Zinbiel algebras (the word “Leibniz” written in the
inverse order). Regarding pre-commutative algebras, see, for example, [20–22].
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In 1999 [23], J.-L. Loday introduced dendriform algebras (we call these “pre-associative algebras”).
A linear space endowed with two bilinear products �,≺ is called a pre-associative algebra if the
following identities are satisfied:

(x1 � x2 + x1 ≺ x2) � x3 = x1 � (x2 � x3), (x1 � x2) ≺ x3 = x1 � (x2 ≺ x3)

x1 ≺ (x2 � x3 + x2 ≺ x3) = (x1 ≺ x2) ≺ x3

Given a pre-associative algebra A, if we have x � y = y ≺ x for any x, y ∈ A, then A
is a pre-commutative algebra because of the product �. The same space A under the product
x · y = x � y− y ≺ x is a pre-Lie algebra [24–26]; that is, it satisfies the identity (x1x2)x3 − x1(x2x3) =

(x2x1)x3 − x2(x1x3).
In [27–29], post-associative, -commutative, and -Lie algebras were introduced. All of these have

an additional product and satisfy certain identities.
The common definitions of the varieties of pre- and post-Var-algebras for a variety Var can be

found in [30,31].
In 2000 [7], M. Aguiar noticed that any commutative algebra with given a RB-operator R of zero

weight is a pre-commutative algebra with the operation defined by a � b = R(a)b. In 2007 [27], J.-L.
Loday stated that a commutative algebra 〈A, ·〉 with a RB-operator of weight 1 is a post-commutative
algebra under the operations � and ·, where x � y = R(x) · y.

In 2013 [30], this connection between RB-algebras and pre- and post-algebras was generalized to
any variety. In 2013 [11], it was proved that any pre-Var-algebra (post-Var-algebra) injectively embeds
into its universal enveloping RB-algebra of variety Var and weight equal (not equal) to zero.

On the basis of the last result, we have a problem: to construct the universal enveloping RB-algebra
of a variety Var for pre- and post-Var-algebras. Another related problem is the following: whether
the pairs of varieties (RBVar, preVar) and (RBλVar, postVar), λ 6= 0, are Poincaré–Birkhoff–Witt
(PBW)-pairs [32]. Here, by RBVar (RBλVar), we mean the variety of RB-algebras of variety Var and
weight λ equal (not equal) to zero.

The objectives stated above appear in the associative case in the comments of chapter V of the
monograph on RB-algebras by L. Guo [33] and were solved by the author in [34]. See also a brief
history of the subject for the associative case in [34].

The current work is devoted to the solution of the stated problems in the commutative case.
Although the main method of the solution in associative and commutative cases is similar, the technical
tools and the constructions are rather different, and it is hard to derive any of them from another.

In Section 2, we show the connections between RB-algebras and classical, modified and associative
versions of the Yang–Baxter equation; we also give preliminaries on pre- and post-commutative
algebras and PBW-pairs of varieties. Universal enveloping RB-algebras of pre-commutative (Section 3)
and post-commutative (Section 4) types are constructed. As corollaries, we state that the pair of
varieties (RBλCom, postCom) is a PBW-pair and that (RBCom, preCom) is not.

Throughout the paper, by variety, we mean a class of algebraic structures of the same signature
that is closed under the taking of homomorphic images, subalgebras and direct products [35].
Birkhoff’s theorem [36] states that a variety of algebras can be equivalently defined as the class
of all algebraic structures of a given signature satisfying a given set of identities. For example, the class
of all commutative RB-algebras forms the variety. On the other hand, the class of all commutative
RB-algebras could be considered as the category with algebras as objects and homomorphisms as
arrows. Thus, M. Aguiar [7] found the functor from the category of commutative RB-algebras of
weight λ = 0 (λ 6= 0) to the category of pre-commutative (post-commutative) algebras. Within the
paper, we are interested in its left adjoint functor. Finally, a variety can be considered as an operad [37],
a particular case of the notion of multicategory. From this point of view, identities and varieties of pre-
and post-algebras were investigated in [11,30].
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We comment on terminology used in the paper. The history of investigations into defining
identities for varieties of pre- and post-algebras can be roughly divided into two periods: the first came
before the principal work of C. Bai et al. [30] appeared on arXiv in 2011 (see also [11]; for dialgebras
and Koszul duals for pre-algebras, the breakthrough was made in 2008 [38]); the second period
has been going on since this work. During the first period, the names of the varieties of pre- and
post-algebras were in some sense chaotic (pre-Lie algebras, dendriform algebras, Zinbiel algebras,
post-Lie algebras, tridendriform algebras, and commutative tridendriform algebras). After the common
operadic foundation for all of these varieties appeared [30], it was logical to try to unify all of these
objects of the same “world”. In light of the names of pre-Lie [24] and pre-Poisson [7] algebras given by
M. Gerstenhaber and M. Aguiar respectively, the names of pre-Jordan, pre-alternative, pre-associative,
and pre-Malcev algebras [39–42] appeared. Similar occurred for post-algebras after the name of
post-Lie algebras was given by B. Vallette in [29]; for example, see [43]. This is why we prefer to name
dendriform algebras as pre-associative algebras and Zinbiel algebras as pre-commutative algebras
(analogously for the varieties of post-algebras).

2. Preliminaries

2.1. RB-Operator

We consider some well-known examples of RB-operators (see, e.g., [33]):

Example 1. Given an algebra A of continuous functions on R, an integration operator R( f )(x) =
x∫

0
f (t) dt is

a RB-operator on A of zero weight.

Example 2. Given an invertible derivation d on an algebra A, d−1 is a RB-operator on A of zero weight.

Example 3. Let A = {(a1, a2, . . . , ak, . . .) | ai ∈ F} be an infinite sum of the field F. An operator R defined as

R(a1, a2, . . . , ak, . . .) = (a1, a1 + a2, . . . ,
k
∑

i=1
ai, . . .) is a RB-operator on A of weight −1.

Further, if nothing else is specified, by RB-operator, we mean a RB-operator of zero weight.

2.2. Yang–Baxter Equation

We let g be a semisimple finite-dimensional Lie algebra over C. For r = ∑ ai ⊗ bi ∈ g⊗ g,
we introduce the classical Yang—Baxter equation (CYBE) given by A.A. Belavin and
V.G. Drinfel’d [5] as

[r12, r13] + [r12, r23] + [r13, r23] = 0 (2)

where
r12 = ∑ ai ⊗ bi ⊗ 1, r13 = ∑ ai ⊗ 1⊗ bi, r23 = ∑ 1⊗ ai ⊗ bi

are elements from U(g)⊗3.
A tensor r = ∑ ai ⊗ bi ∈ g⊗ g is called skew-symmetric if ∑ ai ⊗ bi = −∑ bi ⊗ ai. In [5,6], it was

shown that given a skew-symmetric solution of the CYBE on g, a linear map R : g → g defined as
R(x) = ∑〈ai, x〉bi is a RB-operator of zero weight on g. Here 〈·, ·〉 denotes the Killing form on g.

Example 4. Up to conjugation and a scalar multiple unique skew-symmetric solution of the CYBE on sl2(C)
is e⊗ h− h⊗ e [44]. The corresponding RB-operator is the following: R(e) = 0, R( f ) = 4h, R(h) = −8e.

We let A be an associative algebra; a tensor r = ∑ ai ⊗ bi ∈ A ⊗ A is a solution of the
AYBE [8,45,46] if

r13r12 − r12r23 + r23r13 = 0 (3)
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where the definition of r12, r13, r23 is the same as for CYBE.

Proposition 1 ([7]). Let r = ∑ ai ⊗ bi be a solution of the AYBE on an associative algebra A. A linear map
R : A→ A defined as R(x) = ∑ aixbi is a RB-operator on A of zero weight.

Example 5 ([45]). Up to conjugation, transpose and a scalar multiple all nonzero solutions of the AYBE on
M2(C) are (e11 + e22)⊗ e12, e12 ⊗ e12, e22 ⊗ e12, and e11 ⊗ e12 − e12 ⊗ e11.

In 1983 [6], M.A. Semenov-Tyan-Shansky introduced the modified Yang–Baxter equation (MYBE).
Letting L be a Lie algebra and R be a linear map on L, then the MYBE is

R(x)R(y)− R(R(x)y + xR(y)) = −xy (4)

It is easy to check that R is a solution of the MYBE if and only if 1/2(R + id) is a RB-operator on
L of weight −1. Thus, there is one-to-one correspondence between the set of solutions of the MYBE
and RB-operators of weight −1.

2.3. PBW-Pair of Varieties

In [32], the notion of a PBW-pair that generalizes the relation between associative and Lie algebras
given by the famous Poincaré–Birkhoff–Witt theorem was introduced.

We let V , W be varieties of algebras and ψ : V → W be such a functor that maps A ∈ V
to ψ(A) ∈ W , preserving A as a vector space but changing the operations on A. The universal
enveloping algebra U(A) is an image of A of the left adjoint functor to ψ. Defining on U(A) a natural
ascending filtration, we obtain the associated graded algebra gr U(A).

A pair of varieties (V ,W) with the functor ψ : V → W is called a PBW-pair if gr U(A) and
U(Ab A) are isomorphic as elements of W . Here Ab A denotes the vector space A with trivial
multiplication operations.

2.4. Free Commutative RB-Algebra

We consider one of the possible constructions of free commutative RB-algebras from [13], which is
based on shuffle algebra.

We let A be a commutative algebra over the field F. We denote by�+(A) the vector space
∞
⊕

n=0
A⊗n.

We define the bilinear operation � on �+(A) as follows: a � b for a = a1 ⊗ . . . ⊗ am ∈ A⊗m and
b = b1 ⊗ . . .⊗ bn ∈ A⊗n equals the sum of all tensors of the length m + n whose tensor factors are
exactly ai and bj, i = 1, . . . , m, j = 1, . . . , n; moreover, the initial orders of ai and bj are preserved.

We give an explicit definition of the product a � b by induction on m + n. If at least one of the
numbers m or n equals 0, for example, n = 0, then we define a � b as a multiplication of the scalar
b ∈ F on the tensor a. For m + n = 2, we define a � b = a⊗ b + b⊗ a. For m + n > 2,

a � b =


a1 ⊗ b + b1 ⊗ (a1 � (b2 ⊗ . . .⊗ bn)), m = 1, n ≥ 2

a1 ⊗ ((a2 ⊗ . . .⊗ am) � b1) + b1 ⊗ a, m ≥ 2, n = 1

a1 ⊗ ((a2 ⊗ . . .⊗ am) � b) + b1 ⊗ (a � (b2 ⊗ . . .⊗ bn)), m, n ≥ 2

(5)

Example 6. Calculating (a1 ⊗ a2) � (b1 ⊗ b2), we have C2
4 = 6 summands:

(a1 ⊗ a2) � (b1 ⊗ b2) = a1 ⊗ (a2 � (b1 ⊗ b2)) + b1 ⊗ ((a1 ⊗ a2) � b2)

= a1 ⊗ a2 ⊗ b1 ⊗ b2 + a1 ⊗ b1 ⊗ a2 ⊗ b2 + a1 ⊗ b1 ⊗ b2 ⊗ a2

+ b1 ⊗ a1 ⊗ a2 ⊗ b2 + b1 ⊗ a1 ⊗ b2 ⊗ a2 + b1 ⊗ b2 ⊗ a1 ⊗ a2
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We consider a tensor product�(A) = A⊗�+(A) of algebras 〈A, ·〉 and 〈�+(A), �〉. We define
a linear map R on�(A) as follows:

R(a0 ⊗ a) =

{
1⊗ a0 ⊗ a, a ∈ A⊗n, n ≥ 1

1⊗ a0a, a ∈ F

In [13], it was proved that the RB-subalgebra of �(A) generated by A ⊗ 1 is isomorphic to
RBCom(A), a free commutative RB-algebra generated by A. A free commutative RB-algebra generated
by a set X could be constructed as�(F[X]) [13]. We denote the free commutative RB-algebra of weight
λ generated by a set X as RBλVar〈X〉. In short, an algebra RB0Var〈X〉 is denoted as RBVar〈X〉.

In [13], quasi-shuffle algebra was used for the construction of a free commutative RB-algebra of
nonzero weight.

In [2], P. Cartier proved that a linear basis T of RBλVar〈X〉 could be constructed by induction:

— all monomials from F[X] lie in T;
— if u ∈ T, then R(u), R(u)w ∈ T for a monomial w from F[X].

We use the linear basis of RBλCom〈X〉 of P. Cartier [2] and refer to it as a standard basis. Given a
word u from the standard basis, the number of appearances of the symbol R in the notation of u is
called the R-degree of the word u, with denotation degR(u). We also define the degree of u as follows:

deg(u) =


n, u = xi1 xi2 . . . xin , xij ∈ X

1, u = R(p)

n + 1, u = R(p)xi1 . . . xin , xij ∈ X

2.5. Pre-Commutative Algebra

A pre-commutative algebra is an algebra whose product satisfies the identity

(x1 � x2 + x2 � x1) � x3 = x1 � (x2 � x3) (6)

A free pre-commutative algebra generated by a linear space V can be constructed [23] as a reduced
tensor algebra T̄(V) = ⊕n≥1V⊗n with the product

v1 ⊗ v2 ⊗ . . .⊗ vp � vp+1 ⊗ . . .⊗ vp+q = ((v1 ⊗ v2 ⊗ . . .⊗ vp) � (vp+1 ⊗ . . .⊗ vp+q−1))⊗ vp+q

where � is defined by Equation (5).

2.6. Post-Commutative Algebra

A post-commutative algebra is a linear space endowed with two bilinear products � and ⊥ such
that ⊥ is associative and commutative and the following identities are fulfilled:

(x � y + y � x + x ⊥ y) � z = x � (y � z)

x � (y ⊥ z) = (x � y) ⊥ z, (x � y) ⊥ z = y ⊥ (x � z)
(7)

A free post-commutative algebra can be constructed with the help of quasi-shuffle algebra [27].

2.7. Embedding of Loday Algebras into RB-Algebras

The common definition of the varieties of pre- and post-Var-algebra for a variety Var can be found
in [30,31].

Given a commutative algebra B with a RB-operator R of zero weight, the space B with respect to
the operation

x � y = R(x)y (8)
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is a pre-commutative algebra.
Given a commutative algebra 〈B, ·〉 with a RB-operator R of weight 1, we have that 〈B,�, ·〉 is

a post-commutative algebra, where the product� is defined by Equation (8). The case of a RB-operator
R of any nonzero weight λ is reduced to the case of weight 1 as follows: the map 1

λ R is a RB-operator
of weight 1.

Given a pre-commutative algebra 〈C,�〉, a universal enveloping commutative RB-algebra U of
C is a universal algebra in the class of all commutative RB-algebras of zero weight such that there
exists an injective homomorphism from C to U(R). Analogously, we define a universal enveloping
commutative RB-algebra of a post-commutative algebra. The common denotation of a universal
enveloping algebra is the following: URB(C).

Theorem 1 ([11]).

(a) Any pre-Var-algebra can be embedded into its universal enveloping RB-algebra of the variety Var and zero
weight.

(b) Any post-Var-algebra can be embedded into its universal enveloping RB-algebra of the variety Var and
nonzero weight.

Following Theorem 1, we have the natural question: what does a linear basis of a universal
enveloping RB-algebra of a pre- or post-Var-algebra look like for a variety Var? In the case of associative
pre- and post-algebras, the question appears in [33] and was solved in [34]. The current article is
devoted to answering the question in the commutative case.

We apply the following method to construct a universal enveloping RB-algebra. Let X be a
linear basis of a pre-commutative algebra C. We define a basis of the universal enveloping URB(C)
as a certain subset E of the standard basis of RBCom〈X〉, closed under the action of a RB-operator.
By induction, we define a commutative product ∗ on the linear span of E and prove its associativity.
Finally, we prove the universal property of the algebra Span{E}.

In the case of post-commutative algebras, as was mentioned above, we consider a universal
enveloping commutative RB-algebra of weight 1.

3. Universal Enveloping Rota–Baxter Algebra of Pre-Commutative Algebra

Within this section, we construct a universal enveloping RB-algebra of an arbitrary
pre-commutative algebra 〈C,�〉.

We let B be a linear basis of C. We consider the algebra A = F[B]/I, where I is the ideal in F[B]
generated by the set B′ = {(b � a)c− (b � c)a, a, b, c ∈ B}. Here the expressions b � a and b � c,
a, b, c ∈ B, equal the results of the products in C. As B is the linear basis of C, the expressions are linear
combinations of elements of B. We denote by · the product in A.

We denote by C(B) the set of all monomials in F[B]. As a result of Gröbner theory, there exists a set
E0 ⊂ C(B) such that its image Ē0 ⊂ A = F[B]/I is a linear basis of A; moreover, for any decomposition
of an element v ∈ E0 into a concatenation v = v1v2 of nonempty v1, v2, we have v1, v2 ∈ E0. Indeed,
the Buchberger Theorem [47] (Theorem 4) states that there exists such a set Irr ⊂ C(B) that a + I,
a ∈ Irr, is a linear basis of the quotient algebra F[B]/I and Irr is closed under the taking of subwords.
Roughly speaking, Irr is chosen as the subset of C(B) of all monomials that are not divided by some
“forbidden” monomials (for the last form, the set is called the Gröbner basis of I). If a monomial
w ∈ S(B) satisfies this property, then all its nonempty subwords also satisfy the property.

An element v = R(u) of the standard basis is called good if v is neither of the view R(b) nor
R(R(x)b) for all b ∈ B and some x. For example, if the elements R(R(x)aa), R(R(cd)e f ), R(y),
and R(bb) for some a, b, c, d, e, f ∈ B and x, y 6∈ B are the elements of the standard basis, then all of
them are good. The answer to the question of whether the elements listed above lie in the standard
basis depends on the choice of x, y and on the product in the pre-commutative algebra C. The product
directly influences the set E0; thus we cannot yet say whether aa, bb, cd or e f lie in E0.
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We define by induction Envelope-words (E-words), a subset of the standard basis of RBCom〈B〉:

(1) elements of E0 are E-words of type 1;
(2) given an E-word u, we define R(u) as an E-word of type 2;
(3) given an E-word x, we define R(x)w for w ∈ E0 as an E-word of type 3 if R(x) is good.

Example 7. Given an E-word x and w1, w2 ∈ C(B), the element of the standard basis R(R(x)w1)w2 is an
E-word if

(a) w1, w2 ∈ E0;
(b) R(x) is good (otherwise R(x)w1 is not an E-word);
(c) the length of w1 is greater than 1 (otherwise R(R(x)w1) is not a good E-word).

Theorem 2. The set of all E-words forms a linear basis of universal enveloping commutative RB-algebras of C.

Lemma 1. Let D denote a linear span of all E-words. One can define such a bilinear commutative operation as
∗ on the space D that has the following properties (labels k–l below denote the types of factors in the product
v ∗ u; i.e., v is an E-word of type k and u is an E-word of type l):

1–1: Given v, u ∈ E0, we have
v ∗ u = v · u (9)

1–2: Given v = w′a ∈ E0, a ∈ B, and w′ ∈ E0 ∪ {∅}, an E-word u = R(p) of type 2, we have

v ∗ u =


w′ · (b � a), u = R(b), b ∈ B

R(x)(w′ · (b � a))− R(x ∗ R(b))w′a, u = R(R(x)b), b ∈ B

R(p)w′a, otherwise

(10)

(If w′ = ∅, by w′ · (b � a), we mean b � a.)
1–3: Given v = w1 ∈ E0, an E-word u = R(x)w2 of type 3, w2 ∈ E0, we have

v ∗ u = R(x)(w1 · w2) (11)

2–2: Given E-words v = R(p) and u = R(s) of type 2, we have

v ∗ u = R(R(p) ∗ s + R(s) ∗ p) (12)

2–3: Given an E-word v = R(x) of type 2 and E-word v = R(y)w, w = w′a ∈ E0, w′ ∈ E0 ∪∅, a ∈ B,
of type 3, we have

v ∗ u =


R(y)(w′ · (b � a)), x = b ∈ B

(R(y) ∗ R(z))(w′ · (b � a))− (R(y) ∗ R(z ∗ R(b)))w x = R(z)b, b ∈ B

(R(y) ∗ R(x))w, otherwise

(13)

3–3: Given E-words v = R(x)w1, and u = R(y)w2, w1, w2 ∈ E0, of type 3, we have

v ∗ u = (R(x) ∗ R(y))(w1 · w2) (14)

Proof. We define the operation ∗ with the prescribed conditions for E-words v, u by induction on
r = degR(v) + degR(u). For r = 0, we define v ∗ u = v · u, v, u ∈ E0, which satisfies the condition 1–1.

For r = 1, we define v ∗ u as follows:
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1–2: Given v = w1 = w′1a ∈ E0, a ∈ B, an E-word u = R(w2) of type 2, w2 ∈ E0, we have

v ∗ u =

{
w′1 · (b � a), w2 = b ∈ B

R(w2)w1, otherwise

1–3: Given v = w1 ∈ E0, an E-word u = R(w2)w3 of type 3, w2 ∈ E0 \ B, w3 ∈ E0, v ∗ u =

R(w2)(w1 · w3),
for r > 1, we define v ∗ u as follows:
1–2: Given v = w′a ∈ E0, a ∈ B, w′ ∈ E0 ∪ {∅}, an E-word u = R(p) of type 2, we have

v ∗ u =

{
R(x)(w′ · (b � a))− R(x ∗ R(b))w′a, u = R(R(x)b), b ∈ B

R(p)w′a, otherwise

It is correct to write R(x ∗ R(b))w′a. Indeed, as p = R(x)b is an E-word, R(x) is good. We have
three variants: x = w ∈ E0, deg(w) ≥ 2, x = R(p), or x = R(p)w′, w′ ∈ E0. In all cases, x ∗ R(b) is a
sum of E-words of the form different from c, R(s)c for c ∈ B.

1–3, 2–2, 2–3, and 3–3 are given by Equations (11)–(14), respectively.
We prove that the definition of the product by Equation (13) is correct. By the reasons stated

above, R(z ∗ R(b)) is a sum of good E-words of type 2. Thus, it is remains to check that R(p) ∗ R(s) is a
sum of good E-words of type 2, provided that R(p) and R(s) also are. In fact, it is enough to verify that
R(R(p) ∗ s) is a sum of good E-words of type 2. Considering three variants of s, we state the last fact.

We set the product u ∗ v in the cases 2–1, 3–1, and 3–2 equal to v ∗ u.

Lemma 2. The space D with the operations ∗ and R is a RB-algebra.

Proof. This follows from Equation (12).

Lemma 3. The relation R(b) ∗ a = b � a holds in D for every a, b ∈ B.

Proof. This follows from Lemma 1, the first case of Equation (10).

Lemma 4. The operation ∗ on D is commutative and associative.

Proof. The commutativity follows from Lemma 1.
Given E-words x, y, z, we prove associativity:

(x, y, z) = (x ∗ y) ∗ z− x ∗ (y ∗ z) = 0

by inductions on two parameters: first, on the summary R-degree r of the triple x, y, z, and second,
on the summary degree d of x, y, z.

For r = 0, we have (x, y, z) = (x · y) · z− x · (y · z) = 0, x, y, z ∈ E0, as the product · is associative
in the algebra A.

Let r > 0 and suppose that associativity for all triples of E-words with the smaller total R-degree
is proven. Consider d = 3.

2–1–1: Let x = R(p), y = a, z = c, a, c ∈ B.

(a) Let x = R(b), b ∈ B. Recall that A = F[B]/I for I = 〈(d � a)c− (d � c)a, a, d, c ∈ B〉. Define a
map ` : F[B]→ A on monomials as follows:

` (aw) = (b � a) · w (15)
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where b � a is a product in C and is equal to a linear combination of elements of B. The map ` is
well-defined because of the view of I.

We check that ` (I) = 0. By Equation (6) and the definition of I,

b ∗ ((d � a)cu− (d � c)au) = (b � (d � a)) · cu− (b � (d � c)) · au

= u · ((b � (d � a)) · c− (b � (d � c)) · a)
= u · (((b � d + d � b) � a) · c− ((b � d + d � b) � c) · a) = 0

Thus, the map ` can be considered as a map ` : A → A, and it coincides on E0 with the map
z→ R(b) ∗ z. Finally,

(x, y, z) = (R(b), a, c) = (b � a) · c− R(b) ∗ (a · c) = (b � a) · c− b ` ac = 0

(b) The case x = R(R(y)b), b ∈ B, can be derived from (a).
(c) If x is good, then associativity follows from Lemma 1.

1–2–1: Let x = a, y = R(u), z = c, a, c ∈ B. If y is good, the associativity follows from
Equations (10) and (11).

Let y = R(b), b ∈ B. We have (x, y, z) = (b � a) · c− (b � c) · a = 0, as we deal with the product
in A.

Let y = R(R(u)b), b ∈ B. On the one hand,

(x ∗ y) ∗ z = (a ∗ R(R(u)b)) ∗ c

= (R(u)(b � a)− R(u ∗ R(b))a) ∗ c = R(u)((b � a) · c)− R(u ∗ R(b))(a · c)

On the other hand,

x ∗ (y ∗ z) = a ∗ (R(R(u)b)) ∗ c)

= a ∗ (R(u)(b � c)− R(u ∗ R(b))c) = R(u)((b � c) · a)− R(u ∗ R(b))(a · c)

Associativity follows directly.
2–2–1: Let x = R(u), y = R(v), z = a ∈ B. If y is good, then associativity follows from

Equations (10) and (12).

(a) Let y = R(c), c ∈ B.

(a1) If x = R(b), b ∈ B, then by Equation (6),

(x, y, z) = R(R(b) ∗ c + b ∗ R(c)) ∗ a− R(b) ∗ (c � a)

= R(b � c + c � b) ∗ a− (b � (c � a))

= ((b � c + c � b) � a)− (b � (c � a)) = 0

(a2) If x = R(R(p)b), b ∈ B, then compute

(x, y, z) = (R(R(p)b) ∗ R(c)) ∗ a− R(R(p)b) ∗ (c � a)

= R(R(R(p)b) ∗ c) ∗ a + R(R(p)b ∗ R(c)) ∗ a + R(p ∗ R(b)) ∗ (c � a)− R(p)(b � (c � a))

= R(R(p)(b � c)) ∗ a− R(R(p ∗ R(b))c) ∗ a + R(R(R(p)c) ∗ b) ∗ a

+ R(R(p ∗ R(c))b) ∗ a + R(p ∗ R(b)) ∗ (c � a)− R(p)(b � (c � a))

= R(p)((b � c) � a)− R(p ∗ R((b � c)))a + R((p ∗ R(b)) ∗ R(c))a− R(p ∗ R(b))(c � a)

+ R(R(p)(c � b)) ∗ a− R(R(p ∗ R(c))b) ∗ a + R(p ∗ R(c))(b � a)− R((p ∗ R(c)) ∗ R(b))a

+ R(p ∗ R(b)) ∗ (c � a)− R(p)(b � (c � a)) (16)
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Substituting the equalities

R(R(p)(c � b)) ∗ a = R(p)((c � b) � a)− R(p ∗ R(c � b))a

R(R(p ∗ R(c))b) ∗ a = R(p ∗ R(c))(b � a)− R((p ∗ R(c)) ∗ R(b))a

into Equation (16) and applying Equation (6) and the equality (p, R(b), R(c)) = 0 holding
by induction on r, we obtain zero.

(a3) Let x be good; then

(x, y, z) = R(R(u)c + u ∗ R(c)) ∗ a− R(u)(c � a) (17)

Calculating R(R(u)c) ∗ a in Equation (17) by Equation (10), we obtain (x, y, z) = 0.

(b) Let y = R(R(t)c), c ∈ B.

(x, y, z) = (R(u) ∗ R(R(t)c)) ∗ a− R(u) ∗ (R(R(t)c) ∗ a)

= R(R(u) ∗ R(t)c) ∗ a + R(u ∗ R(R(t)c)) ∗ a− R(u) ∗ (R(t)(c � a)− R(t ∗ R(c))a)

= R(R(R(u) ∗ t)c) ∗ a + R(R(u ∗ R(t)) ∗ c) ∗ a + R(u ∗ R(R(t)c)) ∗ a + R(R(u) ∗ (t ∗ R(c))) ∗ a

+ R(u ∗ R(t ∗ R(c))) ∗ a− R(R(u) ∗ t)(c � a)− R(u ∗ R(t)) ∗ (c � a) (18)

The expression R(R(u) ∗ t)e), e ∈ B, is well-defined; this easily follows from the fact that R(t) is
good. We give the first summand of the right-hand side (RHS) of Equation (18):

R(R(R(u) ∗ t)c) ∗ a = R(R(u) ∗ t)(c � a)− R((R(u) ∗ t) ∗ R(c)) ∗ a

and substitute this into Equation (18). Applying the equality (R(u), t, R(c)) = 0, which holds by
the inductive assumption on r, we have, by case (a),

(x, y, z) = R(R(u ∗ R(t)) ∗ c) ∗ a + R(u ∗ R(t) ∗ R(c)) ∗ a− R(u ∗ R(t)) ∗ (c � a)

= (R(u ∗ R(t)), R(c), a) = 0

2–1–2: Associativity follows from case 2–2–1.
2–2–2: By induction, we have

(R(x), R(y), R(z)) = R((R(x), R(y), z) + (R(x), y, R(z)) + (x, R(y), R(z)) = 0 (19)

Let d > 3. The proof for the cases 2–1–1, 1–2–1, 2–2–1, 2–1–2, and 2–2–2 is analogous to that
stated above.

3–2–1: Let x = R(u)w1, y = R(t), z = w2 = aw′2 ∈ E0, a ∈ B. If t = b ∈ B, then by induction on d,

(x ∗ y) ∗ z = ((R(u) ∗ R(b)) ∗ w1) ∗ w2 = ((R(u) ∗ R(b)) ∗ w2) ∗ w1

x ∗ (y ∗ z) = R(u)(w1 · (b � a) · w′2) = (R(u) ∗ (R(b) ∗ w2)) ∗ w1

Therefore, (x, y, z) = (R(u), R(b), w2) ∗ w1 = 0 by induction on d.
Let y = R(R(v)b), b ∈ B. We calculate

(x ∗ y) ∗ z = ((R(u) ∗ (R(R(v)b))) ∗ w1) ∗ w2 (20)
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x ∗ (y ∗ z) = R(u)w1 ∗ (R(R(v)b) ∗ w2)

= R(u)w1 ∗ (R(v)((b � a) · w′2)− R(v ∗ R(b))w2)

= (R(u) ∗ R(v))((b � a) · w′2 · w1)− (R(u) ∗ R(v ∗ R(b))(w1 · w2) (21)

Applying induction on d for the first summand of the RHS of Equation (21), we rewrite

(R(u) ∗ R(v))((b � a) · w′2 · w1) = (R(u) ∗ R(v)) ∗ ((R(b) ∗ w2) ∗ w1)

= ((R(u) ∗ R(v)) ∗ (R(b) ∗ w2)) ∗ w1 = ((R(u) ∗ R(v)) ∗ R(b)) ∗ (w1 · w2)

Analogously, the RHS of Equation (20) equals

((R(u) ∗ (R(R(v)b))) ∗ w1) ∗ w2 = (R(u) ∗ (R(R(v)b)) ∗ (w1 · w2)

Finally, we have

(x ∗ y) ∗ z− x ∗ (y ∗ z)

= (R(u) ∗ (R(R(v)b)) ∗ (w1 · w2) + (R(u) ∗ R(v ∗ R(b))(w1 · w2)− ((R(u) ∗ R(v)) ∗ R(b)) ∗ (w1 · w2)

= −(R(u), R(v), R(b)) ∗ (w1 · w2) = 0

If y = R(t) is good, then

(x ∗ y) ∗ z = ((R(u) ∗ R(t))w1) ∗ w2 = (R(u) ∗ R(t))w1w2 = (R(u)w1) ∗ (R(t)w2) = x ∗ (y ∗ z)

3–1–2: The proof is analogous to that in case 2–1–2.
2–3–1: Associativity follows from cases 2–2–1 and 2–1–1.
3–1–1, 1–3–1, 3–3–1, and 3–1–3: Associativity follows from Equations (9) and (11).
3–3–2: Let x = R(u1)w1, y = R(u2)w2, and z = R(u3). If z is not good, then the proof follows

from the procedure in cases 1–1–2 and 2–2–2. Supposing z is good, on the one hand,

(x ∗ y) ∗ z = ((R(u1) ∗ R(u2))w1w2) ∗ R(u3) = ((R(u1) ∗ R(u2)) ∗ R(u3)) ∗ w1w2

On the other hand, applying induction on d, we derive

x ∗ (y ∗ z) = (R(u1)w1) ∗ ((R(u2) ∗ R(u3)) ∗ w2)

= (R(u1)w1 ∗ (R(u2) ∗ R(u3))) ∗ w2 = (R(u1) ∗ (R(u2) ∗ R(u3))) ∗ w1w2

Thus, associativity follows from case 2–2–2.
3–2–2, 3–2–3 and 2–3–2: Associativity follows by the same inductive reasons as in case 3–3–2.
3–3–3: Associativity follows from Equations (14) and (19), and associativity of the product

in A.

Proof of Theorem 2. We prove that the algebra D ⊂ RBCom〈B〉 is the universal enveloping algebra
of the pre-commutative algebra C; that is, it is isomorphic to the algebra

URBCom(C) = RBCom〈B|b � a = R(b)a, a, b ∈ B〉

By construction, the algebra D is generated by B. Thus, D is a homomorphic image of URBCom(C).
As the equality

(b � a)c = R(b)ac = R(b)ca = (b � c)a
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holds on URBCom(C), the RB-algebra URBCom(C) can be considered as a homomorphic image of
RBCom〈B|(b � a)c = (b � c)a, a, b, c ∈ B〉. It is well-known [33] that algebras RBCom〈B〉 and
RBCom(F[B]) coincide. Thus,

RBCom〈B|(b � a)c = (b � c)a, a, b, c ∈ B〉 ∼= RBCom(F[B])/J ∼= RBCom(A)

where J is the RB-ideal in RBCom(F[B]) generated by the set B′ = {(b � a)c = (b � c)a, a, b, c ∈ B},
and as above, A = F[B]/I, I = 〈B′〉id / F[B], and RBCom(A) = RBCom〈E0|w1w2 = w1 · w2〉.
Thus, URBCom(C) is a homomorphic image of RBCom(A).

The basis S of RBCom(A) [33] can be constructed by induction: first, E0 ⊂ S; second, if u ∈ S,
then Rk(R(u)w) ∈ S for w ∈ E0, k ≥ 0.

We define ψ as a homomorphism from RBCom〈B〉 to RBCom(A) mapping b to b + I for all b ∈ B.
We identify the algebra D with its image under ψ.

We show by Equation (8) that the complement E′ of the set of all E-words in the standard basis
of RBCom(A) is linearly expressed by E-words. Consequently, URBCom(C) is a homomorphic image
of D, and thus URBCom(C) and D are isomorphic. Applying the inductions on the R-degree and the
degree of basis words in RBCom(A), the relations

R(a)u =

{
u′(a � b), u = bu′, b ∈ B

R(R(a)t)u′ + R(aR(t))u′, u = R(t)u′

R(R(u)b)a = R(u)R(b)a− R(R(b)u)a = R(u)(b � a)− R(R(b)u)a, a, b ∈ B

we prove that the elements of E′ are linearly expressed by E-words.

Given a pre-commutative algebra C, U0(C) denotes a linear span of all E-words of zero R-degree
in URB(C).

Example 8. Let an algebra A be a direct sum of n copies of the field F. Consider A as a pre-commutative algebra
under the operations a � b = ab and a ≺ b = 0. From A2 = A, we conclude that U0(A) = A.

Example 9. Let B be an n-dimensional vector space over the field F with trivial operations a � b = a ≺ b = 0.
Thus, U0(B) = F[B].

Corollary 1. The pair of varieties (RBCom, preCom) is not a PBW-pair.

Proof. The universal enveloping commutative RB-algebra of finite-dimensional pre-commutative
algebras A and B (Examples 8 and 9) of the same dimension are not isomorphic; otherwise the spaces
U0(A) and U0(B) are isomorphic as vector spaces. However, we have

dim U0(A) = dim A = n < dim U0(B) = dim F[B] = ∞

Thus, the structure of universal enveloping commutative RB-algebra of a pre-commutative algebra
C depends on the operation � in C.

4. Universal Enveloping Rota–Baxter Algebra of Post-Commutative Algebra

In this section, we construct a universal enveloping RB-algebra of an arbitrary post-commutative
algebra 〈C,�,⊥〉. We let B be a linear basis of C.

We define by induction postEnvelope-words (pE-words), a subset of the standard basis of
RBCom〈B〉:

(1) elements of B are pE-words of type 1;
(2) given a pE-word u, we define R(u) as a pE-word of type 2;
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(3) given a pE-word u, we define R2(u)a for a ∈ B as a pE-word of type 3.

Example 10. For a, b, c ∈ B, the elements R(ab), R(R(a)b), R2(ab), and R(R2(a)b)c of the standard basis of
RBCom〈B〉 are not pE-words.

Example 11. For a, b, c ∈ B, the elements R(a), R2(a), R(R2(a)b), and R2(R2(a)b)c are pE-words.

Theorem 3. The set of all pE-words forms a linear basis of universal enveloping commutative RB-algebras of C.

Lemma 5. Let D denote a linear span of all pE-words. One can define such a bilinear commutative operation
as ∗ on the space D that has the following properties (labels k–l below denote the types of factors in the product
v ∗ u; i.e., v is a pE-word of type k and u is a pE-word of type l):

1–1: Given v = a, u = b, a, b ∈ B, we have

v ∗ u = a ⊥ b (22)

1–2: Given v = a ∈ B, a pE-word u = R(s) of type 2, we have

v ∗ u =


(b � a), u = R(b), b ∈ B

R2(x)(b � a)− R(R(x) ∗ R(b))a− R(R(x) ∗ b) ∗ a, u = R(R2(x)b), b ∈ B

R(s)a, otherwise

(23)

1–3: Given v = a ∈ B, a pE-word u = R2(x)b of type 3, b ∈ B, we have

v ∗ u = R2(x)(a ⊥ b) (24)

2–2: Given pE-words v = R(s), u = R(t) of type 2, we have

v ∗ u = R(R(s) ∗ t + R(t) ∗ s + s ∗ t) (25)

2–3: Given a pE-word v = R2(x)a of type 3 and pE-word u = R(y) of type 2, a ∈ B, we have

v ∗ u = R(R(x) ∗ R(y)) ∗ a (26)

3–3: Given pE-words v = R2(x)a, u = R2(y)b, a, b ∈ B, of type 3, we have

v ∗ u = (R(R(x)) ∗ R(R(y)))(a ⊥ b) (27)

Proof. The proof is analogous to the proof of Lemma 1.

Lemma 6. The algebra D is an enveloping commutative RB-algebra of weight 1 for C.

Proof. In general, the proof is analogous to the proof of Lemmas 2–4.

The key moment is to prove an associativity. We prove that (x, y, z) = (x ∗ y) ∗ z− x ∗ (y ∗ z) = 0
for a triple x, y, z of types k–l–m. We proceed by inductions on r = degR(x) + degR(y) + degR(z) and
on d = deg(x) + deg(y) + deg(z). We consider only the cases for which the proofs are technically
different from the proof of Lemma 4.

2–1–1: Consider the case x = R(b), y = a, z = c for a, b, c ∈ B. Then by Equation (7),

(x, y, z) = (R(b) ∗ a) ∗ c− R(b) ∗ (a ∗ c) = (b � a) ⊥ c− b � (a ⊥ c) = 0
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2–2–1:

(a) Let x = R(R2(p)b) be a pE-word of type 2, y = R(c), z = a; a, b, c ∈ B.

x ∗ (y ∗ z) = R(R2(s)b) ∗ (c � a)

= R2(s)(b � (c � a))− R(R(p) ∗ R(b)) ∗ (c � a)− R(R(s) ∗ b) ∗ (c � a) (28)

(x ∗ y) ∗ z = R(R(R2(s)b) ∗ c) ∗ a + R(R2(s)b ∗ R(c)) ∗ a + R(R2(s)(b ⊥ c)) ∗ a (29)

Applying induction on r, we give the more detailed RHS of Equation (29):

R(R(R2(s)b) ∗ c) ∗ a = R(R2(s)(b � c)− R(R(s) ∗ R(b)) ∗ c− R(R(s) ∗ b) ∗ c) ∗ a

= R2(s)((b � c) � a)− R(R(s) ∗ R(b � c)) ∗ a− R(R(s) ∗ (b � c)) ∗ a

− R(R(s) ∗ R(b)) ∗ (c � a) + R(R(s) ∗ R(b) ∗ R(c)) ∗ a + R(R(s) ∗ (b � c)) ∗ a

− R(R(s) ∗ b) ∗ (c � a) + R(R(s) ∗ (c � b)) ∗ a + R(R(s) ∗ (b ⊥ c)) ∗ a

= R(R(s) ∗ R(b) ∗ R(c)) ∗ a− R(R(s) ∗ R(b � c)) ∗ a

+ R(R(s) ∗ (c � b)) ∗ a + R(R(s) ∗ (b ⊥ c)) ∗ a

− R(R(s) ∗ R(b)) ∗ (c � a)− R(R(s) ∗ b) ∗ (c � a) + R2(s)((b � c) � a) (30)

R(R2(s)b ∗ R(c)) ∗ a = R(R(R2(s)c) ∗ b) ∗ a

+ R(R(R(s) ∗ R(c)) ∗ b) ∗ a + R(R(R(s) ∗ c) ∗ b) ∗ a

= R(R2(s)(c � b)) ∗ a− R(R(R(s) ∗ R(c)) ∗ b) ∗ a− R(R(R(s) ∗ c) ∗ b) ∗ a

+ R(R(s) ∗ R(c)) ∗ (b � a)− R(R(s) ∗ R(c) ∗ R(b)) ∗ a− R(R(s) ∗ (c � b)) ∗ a

+ R(R(s) ∗ c) ∗ (b � a)− R(R(s) ∗ (b � c)) ∗ a− R(R(s) ∗ (b ⊥ c)) ∗ a (31)

R(R2(s)(b ⊥ c)) ∗ a = R2(s) ∗ ((b ⊥ c) � a)−R(R(s) ∗ R(b ⊥ c)) ∗ a−R(R(s) ∗ (b ⊥ c)) ∗ a (32)

We give the second row of Equation (31) as

R(R2(s)(c � b)) ∗ a− R(R(R(s) ∗ R(c)) ∗ b) ∗ a− R(R(R(s) ∗ c) ∗ b) ∗ a

= R2(s)((c � b) � a)− R(R(s) ∗ R(c � b)) ∗ a− R(R(s) ∗ (c � b)) ∗ a

− R(R(s) ∗ R(c)) ∗ (b � a) + R(R(s) ∗ R(c) ∗ R(b)) ∗ a + R(R(s) ∗ (c � b)) ∗ a

− R(R(s) ∗ c) ∗ (b � a) + R(R(s) ∗ (b � c)) ∗ a + R(R(s) ∗ (b ⊥ c)) ∗ a (33)

Substituting Equation (33) into Equation (31), we obtain

R(R2(s)b ∗ R(c)) ∗ a=R2(s)((c � b) � a)−R(R(s) ∗ R(c � b)) ∗ a−R(R(s) ∗ (c � b)) ∗ a (34)

Subtracting Equation (28) from the sum of Equations (30), (32) and (34), we obtain zero by
induction.
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(b) x = R(u), y = R(R2(t)b), z = a; a, b ∈ B. Applying induction on r, we have

(x ∗ y) ∗ z = R(R(u) ∗ R2(t)b) ∗ a + R(u ∗ R(R2(t)b)) ∗ a + R(u ∗ R2(t)b) ∗ a

= R(R(u) ∗ R(t) + u ∗ R2(t) + u ∗ R(t)) ∗ (b � a)

− R((R(u) ∗ R(t) + u ∗ R2(t) + u ∗ R(t)) ∗ R(b)) ∗ a

− R((R(u) ∗ R(t) + u ∗ R2(t) + u ∗ R(t)) ∗ b) ∗ a

+ R(u ∗ R(R2(t)b)) ∗ a + R(u ∗ R2(t)b) ∗ a (35)

x ∗ (y ∗ z) = R(u) ∗ (R2(t) ∗ (b � a)− R(R(t) ∗ R(b))a− R(R(t) ∗ b) ∗ a)

= R(R(u) ∗ R(t) + u ∗ R2(t) + u ∗ R(t)) ∗ (b � a)

− R(R(u) ∗ R(t) ∗ R(b)) ∗ a− R(u ∗ R(R(t) ∗ R(b))) ∗ a− R(u ∗ R(t) ∗ R(b)) ∗ a

− R(R(u) ∗ R(t) ∗ b) ∗ a− R(u ∗ R(R(t) ∗ b)) ∗ a− R(u ∗ R(t) ∗ b) ∗ a (36)

Subtracting Equation (36) from Equation (35), we obtain zero by induction.

Proof of Theorem 3. The proof is analogous to the proof of Theorem 2.

Corollary 2. The pair of varieties (RBλCom, postCom) is a PBW-pair.

It is well known [14] that one can define a Hopf algebra structure on a free commutative
RB-algebra.

Problem 1. Does there exist a Hopf algebra structure on the universal enveloping commutative RB-algebra of a
pre- and post-commutative algebra?
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