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Abstract: A ubiquitous observation for finite-dimensional Nichols algebras is that as a graded algebra
the Hilbert series factorizes into cyclotomic polynomials. For Nichols algebras of diagonal type
(e.g., Borel parts of quantum groups), this is a consequence of the existence of a root system and
a Poincare-Birkhoff-Witt (PBW) basis basis, but, for nondiagonal examples (e.g., Fomin–Kirillov
algebras), this is an ongoing surprise. In this article, we discuss this phenomenon and observe
that it continues to hold for the graded character of the involved group and for automorphisms.
First, we discuss thoroughly the diagonal case. Then, we prove factorization for a large class of
nondiagonal Nichols algebras obtained by the folding construction. We conclude empirically by
listing all remaining examples, which were in size accessible to the computer algebra system GAP
and find that again all graded characters factorize.
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1. Introduction

A Nichols algebra B(M) over a finite group is a certain graded algebra associated with a
given Yetter–Drinfel’d module over this group. For example, the Borel subalgebras u±q (g) of the
Frobenius–Lusztig kernels uq(g) are finite-dimensional Nichols algebras over quotients of the root
lattice of g as an abelian group. Nichols algebras are in fact braided Hopf algebras enjoying several
universal properties.

In this article, we discuss the following curious phenomenon that is apparent throughout the
ongoing classification of finite-dimensional Nichols algebras: the graded dimension or Hilbert series
of any finite-dimensional Nichols algebra known so far factorizes as a polynomial in one variable
into the product of cyclotomic polynomials. The root system theory and PBW-basis of Nichols
algebras developed by [1,2] precisely explains a factorization of B(M) as graded vector space
(even Yetter–Drinfel’d module) into Nichols subalgebras of rank 1 associated with each root.
This explains the complete factorization for Nichols algebras over abelian groups. However, for Nichols
algebras over nonabelian groups, the Nichols subalgebras of rank 1 may still be large complicated
algebras, so the root system cannot explain the complete factorization of the Hilbert series that
we observe.

A very bold assumption could be that the complete factorization points to the existence of a
somehow finer root system. For a large family of examples, this is literally the case, as we will prove
(see below). This should be the most important message of the present article.

Another key interest of the present article is to moreover consider the entire graded character of
the group acting on the Nichols algebra (the Hilbert series is the graded character at the identity).
As empirical data, Section 4 contains a list of all known finite-dimensional Nichols algebras of rank 1
that were accessible to us in size by GAP.
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We calculate in each case the graded characters and verify that these characters again factorize
completely into cyclotomic polynomials. We also point to examples, where there is no associated
factorization as graded G-representations.

A very interesting class of examples is the Fomin–Kirillov algebra [3] associated with a Coxeter
group. For the Coxeter groups S2,S3,S4,S5,D4, the Fomin–Kirillov algebras are of finite dimension 2,
12, 576, 8,294,400, 64. These quadratic algebras independently appeared as the first Nichols algebras
over nonabelian groups [4], associated with the conjugacy class(es) of reflections in the Coxeter group.
Since they are built on a single conjugacy class (resp. 2), their generalized root system is trivial A1

(resp. A2).
For Sn, n ≥ 6, it is an important open problem whether the respective Nichols algebras are

finite-dimensional and coincide with the Fomin–Kirillov algebras. Already, Fomin and Kirillov pointed
out that, in this case, the graded dimension does not factorize into cylcotomic factors and suspect this
to rule out finite dimension altogether.

The main goal of this article is to study systematically factorization mechanisms beyond the root
system. It has been shown in a series of joint papers of the second author [5–7] that the existence of such
a complete factorization into cyclotomic polynomial implies strong bounds on the number of relations
in low degree in the Nichols algebra. On the other hand, the first author has obtained in [8] new
families of Nichols algebras over nonabelian groups, where we can now indeed prove the factorization
of graded characters: they are constructed from diagonal Nichols algebras by a folding technique and,
from this, they retain a finer root system (e.g., A2n−1 inside Cn). This includes the Fomin–Kirillov
algebra over D4, which has a finer root system A2 × A2 inside A2. A recent classification [9] for rank
>1 shows that the folding construction already exhausts all finite-dimensional Nichols algebras of rank
>3 over finite groups.

We do not know whether a similar construction produces the remaining known examples of
Nichols algebras of small rank over nonabelian groups, let alone Nichols algebras over non-semisimple
Hopf algebras. The first author has recently studied a construction of such Nichols algebras in [10],
and, again, the factorization follows from a by-construction finer root system.

The content of this article is as follows:

In Section 2, we review graded traces and basic facts about graded traces on finite-dimensional
Nichols algebras, including additivity and multiplicativity with respect to the representations,
rationality, and especially Poincaré duality. All of these facts have appeared in literature, and we
gather them here for convenience.

In Section 3, we study factorization mechanisms for Nichols algebras, and hence for their graded
traces and especially their Hilbert series. The root system ∆+ of a Nichols algebra B(M) in the sense
of [1,2] directly presents a factorization of B(M) as a graded Yetter–Drinfel’d module: this completely
explains the factorization of the graded trace of an endomorphism Q that respects the root system grading.

For Nichols algebras over abelian groups, we use the theory of Lyndon words to significantly
weaken the assumption on Q. On the other hand, we give an example of an endomorphism (the outer
automorphism of A2 containing a loop) where this mechanism fails; a factorization of the graded trace
is nevertheless observed and can be tracked to the surprising existence of an alternative “symmetrized”
PBW-basis. The formulae appearing involve the orbits of the roots under Q and are in resemblance to
the formulae given in [11] Section 13.7 for finite Lie groups.

For Nichols algebras over nonabelian groups, the root system factorization discussed above
still applies, but is too crude in general to explain the full observed factorization into cyclotomic
polynomials. Most extremely, the large Nichols algebra of rank 1 have a trivial root system. A large
family of examples is constructed by the folding construction of the first author in [12]. Here, the
complete factorization can again be tracked back to a finer PBW-basis.

Finally, we give results on the divisibility of the Hilbert series derived by the second author in [13].
By the freeness of the Nichols algebra over a sub-Nichols algebra [14,15], one can derive a divisibility of
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the graded trace trg by that of a sub-Nichols algebra. Moreover, in many cases, there is a shift-operator
ξx for some x ∈ G, which can be used to prove that there is an additional cyclotomic divisor of the
graded trace. This holds in particular for x ∈ G commuting with g.

Section 4 finally displays a table of graded characters for all known examples of finite-dimensional
Nichols algebras of nonabelian group type and rank 1, which were computationally accessible to us.
We observe that, again, all graded characters factorize in these examples.

2. Hilbert Series and Graded Traces

2.1. The Graded Trace trQ
V

In the following, we suppose V =
⊕

n≥0 Vn to be a graded vector space with finite-dimensional
layers Vn. We frequently call a linear map Q : V → V an operator Q. We denote the identity operator
by 1V = ⊕n≥01Vn and the projectors to each Vn by Pn. An operator Q is called graded if one of the
following equivalent conditions is fulfilled:

• Q is commuting with all projections Pn;
• Q preserves all layers Vn.

We denote the restriction of a graded operator Q : V → V to each Vn by Qn ∈ End(Vn).
An operator Q is called algebra operator resp. Hopf algebra operator, if V is a graded algebra resp.
Hopf algebra and Q is an algebra resp. Hopf algebra morphism.

Definition 1. For a graded vector space V with finite-dimensional layers, we define

• the grading operator E ∈ End(V) as E|Vn = n;
• the exponentiated grading operator tE ∈ End(V)[[t]] as the End(V)-valued formal power series

tE = ∑n≥0 tn · Pn, so tE|Vn = tn.

We thereby define the graded dimension or Hilbert series

tr
(

tE
)
= ∑

n≥0
dim(Vn)tn =: H(t).

If V is finite-dimensional, then H(t) is a polynomial with well-defined value at t = 1 the total
dimension of V.

Definition 2. For V a graded vector space with finite-dimensional layers and Q a graded operator, define the
graded trace of Q as the power series

trQ
V (t) := tr

(
tEQ

)
= ∑

n≥0
tn · tr (Qn) .

Obviously, the graded trace is linear in Q and the graded trace of the identity Q = 1V is again the
Hilbert series.

Example 1. For V, the graded algebras

k[x]/(xN) resp. k[x],

the graded dimensions are

(N)t := 1 + t + . . . tN−1 =
1− tN

1− t
resp. (∞)t := 1 + t + . . . =

1
1− t

.
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For V, the free algebra in K variables, the graded dimension is

∑
n

Kntn =
1

1− Kt
.

In particular, for a finitely generated algebra, the graded trace of any algebra operator converges in some
neighbourhood of t = 0.

Remark 1. If A is an infinite-dimensional algebra, then trQ
A is known to be a rational function if one of the

following holds (see e.g., [16]):

• A is commutative and finitely generated;
• A is right noetherian with finite global dimension;
• A is regular.

Lemma 1. For graded vector spaces V, W with finite-dimensional layers, the sum V ⊕W and product V ⊗W
again are graded vector spaces with finite-dimensional layers. The codiagonal grading by definition implies

tEV⊕W = tEV ⊕ tEW and tEV⊗W = tEV ⊗ tEW .

Then, the following properties for the graded trace hold immediately from the respective properties of the trace:

trQ⊕R
V⊕W(t) = trQ

V (t) + trR
W(t) and trQ⊗R

V⊗W(t) = trQ
V (t) · trR

W(t) .

We conclude by two important examples of algebras, where the graded dimensions factorize
nicely into the cyclotomic polynomials (N)t above:

Example 2. Let W be a Weyl group acting on V = Cn having positive roots Φ+. Then, a standard fact in
invariant theory states [11] Section 2.4:

P := C[V]/C[V]W ∼= C[I1, . . . In],

where the homogeneous polynomials Ik have fundamental degrees d1, . . . , dn, fulfilling ∑k dk = n + |Φ+| and
∏k dk = |W|. This isomorphism clearly implies that the Hilbert series factorizes as follows:

HP(t) =
n

∏
k=1

1
1− tdk

=
n

∏
k=1

(∞)tdk .

This implies the following formula, which is important, e.g., for the order of Lie groups over finite fields [11]
Section 2.9: Let CW be the group ring of a Weyl group graded by the length of reduced expressions. Then,

HCW(t) =
n

∏
k=1

1− tdk

1− t
=

n

∏
k=1

(dk)t.

As an example for W = Sn, we have dk = k and this yields

HCS3 = (1)t(2)t(3)t = (1 + t)(1 + t + t2) = 1 + 2t + 2t2 + t3.

Example 3. The cohomology ring of a Lie group has the addition structure of a skew-commutative Hopf algebra
(this observation by Hopf in 1941 was actually the beginning of the subject) and it factorizes accordingly into
terms k[x] and k[x]/x2. For example, the Hilbert series of the compact unitary groups is

HH∗(SU(n+1))(t) = (2)t3(2)t5 . . . (2)t2n+1 e.g.,HH∗(SU(3))(t) = 1 + t3 + t5 + t8.
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Observe the symmetry called Poincaré duality.

For affine Lie algebras (and other vertex algebras), the graded traces and characters of
representations (via Weyl character formula) are of utmost importance and they typically can be easily
shown to factorize.

Finally, we briefly discuss examples arising from physics:

Example 4. Interprete V as a space of states, graded by the energy, with grading operator E the Hamilton
operator. Then, the Boltzmann factor (e−β)E is the (unnormalized) probability measure on V at inverse
temperature β, and a similar role is played by (e−

i
h̄ ∆)E in quantum field theory. In particular, the Hilbert series

tr
(
tE) is the partition function and the normalized graded trace of an operator Q is the expectation value

〈Q〉 := tr (ρ Q) =
tr
(
tEQ

)

tr (tE) .

For example, a free boson in dimension 1 has a state space V consisting of all differential polynomials in a
function φ, so dim(Vn) is the number of partitions p(n). Taking the differentials ∂k+1φ in degree k as a set of
algebra generators, then the graded dimension factorizes

∞

∑
n=0

p(n)tn = tr
(

tE
)
=

∞

∏
k=0

(∞)tk =
t1/24

η(t)
.

2.2. Poincaré Duality

A finite-dimensional Nichols algebra (in fact, any finite-dimensional graded Hopf algebra) exhibits
a remarkable Poincaré Duality dim(Hk) = dim(HL−k), where Hk is the subspace of degree k and L is
the largest degree (see, e.g., [4] Rem. 2.2.4). This is visible at the level of Hilbert series by

H(t) = tL · H(t−1).

We easily generalize this argument to the calculation of graded traces of algebra operators in
Nichols algebras:

Lemma 2. Let B(M) be a finite-dimensional Nichols algebra with top degree L and integral Λ. Let Y
be an arbitrary algebra automorphism of B(M) and the scalar λY ∈ k× such that YΛ = λY · Λ. Then,
tr (Y) = λY · tr

(
Y−1).

Proof. Let {bj}j∈J and {b∗j }j∈J be two bases of B(M) with b∗i bj = δij · Λ for all i, j ∈ J. Then, it
holds that

tr (Y) ·Λ = ∑
j∈J

(
Yb∗j

)
bj = Y ∑

j∈J
b∗j
(

Y−1bj

)
= Y

(
tr
(

Y−1
)
·Λ
)

= tr
(

Y−1
)
·YΛ = λY · tr

(
Y−1

)
·Λ .

Corollary 1. Let B(M) be a finite-dimensional Nichols algebra with top degree L and integral Λ. Let Q be an
arbitrary algebra automorphism of B(M) and the scalar λQ ∈ k× such that QΛ = λQ ·Λ. Then,

trQ
B(M)

(t) = λQ · tL · trQ−1

B(M)
(t−1).



Axioms 2017, 6, 32 6 of 24

Proof. We apply Lemma 2 to Y = tEQ and λY = tLλQ:

trQ
B(M)

(t) = tr
(

tEQ
)

= tLλQ · tr
((

tEQ
)−1

)
= tLλQ · tr

(
Q−1

(
t−1
)E
)

= tLλQ · tr
((

t−1
)E

Q−1
)

= λQ · tL · trQ−1

B(M)
(t−1).

The special case Q = Q−1 = 1M recovers the Poincaré dualityH(t) = tL · H(t−1) of the Hilbert
series, and therefore dimB(M)l = dimB(M)L−l for all l.

2.3. An Example for Factorization Only in the Trace

As a toy example, we want to present a type of graded representations that exhibits a seemingly
paradoxical property: their graded characters factor nicely, whereas the representations themselves
do not. We will encounter this property in the case of Nichols algebras of non-abelian group type of
rank 1.

Example 5. Let G be the dihedral group G = D4 = 〈a, b : a4 = b2 = e, ab = ba3〉. It acts on its
group algebra by conjugation kG (the action factors through D4/Z(D4) ∼= Z2

2. It also preserves the following
Z-graduation:

kG = Link(e, a2) ⊕ Link(a, b, a3, a2b) · t ⊕ Link(ab, a3b) · t2.

The action then has graded characters χ(e) = χ(a2) = 2(1 + t)2, χ(a) = χ(b) = 2(1 + t),
and χ(ab) = 2(1 + t2). Denote by 1 = X++ the trivial G-representation, and with X±± the other
one-dimensional representations factorizing through Z2

2. Then, kG is isomorphic to

(1⊕ 1) ⊕ (1⊕ X+− ⊕ 1⊕ X−+) · t ⊕ (1⊕ X−−) · t2

as a graded G-representation. While the graded characters factor nicely, the representation itself does not.

3. Graded Traces and Hilbert Series over Nichols Algebras

In this section, we study factorization mechanisms for Nichols algebras, and hence for their
graded traces and especially their Hilbert series.

The root system ∆+ of a Nichols algebra B(M), introduced in Section 3.1 Theorem 1, directly
presents a factorization of B(M) as graded vectorspace:

⊗

α∈∆+

B(Mα)
∼−→ B(M).

Note, however, that, over nonabelian groups, the root system factorization is too crude in general
to explain the full observed factorization into cyclotomic polynomials; especially for the rank 1 cases
in the next section, the factorization obtained this way is trivial.

Nevertheless, we will start in Section 3.2 by demonstrating a factorization of the graded trace of
an endomorphism Q that stabilizes a given axiomatized Nichols algebra factorization, such as the root
system above:

Corollary 2. Let B(M) be a Nichols algebra with factorization Wα, α ∈ ∆+ and Q an algebra operator that
stabilizes this factorization. Then,

trQ
B(M)

(t) = ∏
α∈∆+

trQα

B(Mα)
(t) .
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In Section 3.3, we focus on Nichols algebras over abelian groups. The preceding corollary
immediately gives an explicit trace product formula for endomorphisms Q stabilizing the root system,
in terms of cylcotomic polynomials. In particular, it shows the complete factorization of their Hilbert series.

Using the theory of Lyndon words, we are able to weaken the assumptions on Q to only normalize
the root system, i.e., acting on it by permutation. We give such examples where Q interchanges two
disconnected subalgebras in the Nichols algebra, as well as the outer automorphism of a Nichols
algebra of type A3. The authors expect that a more systematic treatment via root vectors will carry
over to endomorphisms normalizing the root system of a non-abelian Nichols algebra as well.

In Section 3.4, we present an example of a Nichols algebra of type A2 and an endomorphism
Q induced by its outer automorphism that fails the normalizing condition on the non-simple root.
Note that, in contrast to the A3-example above, there is an edge flipped by the automorphism, which
is called a “loop” in literature (e.g., [17], p. 47ff). Nevertheless, one observes a factorization of the
graded trace of Q, and, in this example, this can be traced back to a surprising and apparently new
“symmetrized” PBW-basis.

In Section 3.5, we start approaching Nichols algebras over nonabelian groups, where one observes
astonishingly also factorization of graded traces into cyclotomic polynomials. This cannot be explained
by the root system alone and might indicate the existence of a finer root system, which is not at the
level of Yetter–Drinfel’d modules.

We can indeed give a family of examples constructed as covering Nichols algebras by the first
author [12]. By construction, these Nichols algebras possess indeed such a finer root system of different
type (e.g., E6 → F4). In these examples, the root systems lead to a complete factorization, but this
mechanism does not seem to easily carry over to the general case.

3.1. Nichols Algebras over Groups

The following notions are standard. We summarize them to fix notation and refer to [18] for a
detailed account.

Definition 3. A Yetter–Drinfel’d module M over a group G is a G-graded vector space over k denoted by
layers M =

⊕
g∈G Mg with a G-action on M such that g.Mh = Mghg−1 . To exclude trivial cases, we call M

indecomposable iff the support {g | Mg 6= 0} generates all G and faithful iff the action is.

Note that, for abelian groups, the compatibility condition is just the stability of the layers Mg

under the action of G.
The notion of a Yetter–Drinfel’d module automatically brings with it a braiding τ on M—in fact,

each group G defines an entire braided category of G-Yetter–Drinfel’d modules with graded module
homomorphisms as morphisms (e.g., [19], Def. 1.1.15).

Lemma 3. Consider τ : M⊗M→ M⊗M, v⊗w 7→ g.w⊗ v ∈ Mghg−1 ⊗Mg for all v ∈ Mg and w ∈ Mh.
Then, τ fulfills the Yang–Baxter-equation

(id⊗ τ)(τ ⊗ id)(id⊗ τ) = (τ ⊗ id)(id⊗ τ)(τ ⊗ id),

turning M into a braided vector space.

In the non-modular case, the structure of Yetter–Drinfel’d modules is well understood
([19] Section 3.1) and can be summarized in the following three lemmata:
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Lemma 4. Let G be a finite group and let k be an algebraically closed field whose characteristic does not divide
#G. Then, any finite-dimensional Yetter–Drinfel’d module M over G is semisimple, i.e., decomposes into simple
Yetter–Drinfel’d modules (the number is called rank of M):

M =
⊕

i
Mi.

Lemma 5. Let G be a finite group, g ∈ G arbitrary and χ : G→ k the character of an irreducible representation V
of the centralizer subgroup Cent(g) = {h ∈ G | gh = hg}. Define the Yetter–Drinfel’d module Oχ

g = M(g, χ)

to be the induced G-representation kG⊗kCent(g) V. It can be constructed more explicitly as follows:

• Define the G-graduated vector space by

Oχ
g =

⊕

h∈G

(
Oχ

g
)

h with
(
Oχ

g
)

h :=

{
V, for g-conjugates h ∈ [g],

{0}, else.

• Choose a set S = {s1, . . . sn} of representatives for the left Cent(g)-cosets G =
⋃

k sk Cent(g). Then, for
any g-conjugate h ∈ [g], there is precisely one sk with h = skgs−1

k .
• For the action of any t ∈ G on any vh ∈

(
Oχ

g
)

h for h ∈ [g] determine the unique si, sj, such that
sigs−1

i = h and sjgs−1
j = tht−1. Then, s−1

j tsi ∈ Cent(g) and using the given Cent(g)-action on V, we

may define t.vh := (s−1
j tsi.v)tht−1 .

Then, Oχ
g is simple as a Yetter–Drinfel’d module and Oχ

g and Oχ′
g′ are isomorphic if and only if g and g′

are conjugate and χ and χ′ are isomorphic.

If χ is the character of a one-dimensional representation (V, ρ), we will identify χ with the action ρ.
In positive characteristics, we will restrict to dim V = 1, where the character determines its representation.

Lemma 6. Let G be a finite group and let k be an algebraically closed field whose characteristic does not divide
#G. Then, any simple Yetter–Drinfel’d module M over G is isomorphic to some Oχ

g for some g ∈ G and
a character χ : G → k of an irreducible representation V of the centralizer subgroup Cent(g).

Example 6. For finite and abelian G over algebraically closed k with char K - #G, we have one-dimensional
simple Yetter–Drinfel’d modules Mi = Oχi

gi = xik and hence the braiding is diagonal (i.e., τ(xi ⊗ xj) =

qij(xj ⊗ xi)) with braiding matrix qij := χj(gi).

Definition 4. Consider the tensor algebra TM, i.e., for any homogeneous basis xi ∈ Mgi , the algebra of words
in all xi. We may uniquely define skew derivations on this algebra, i.e., maps ∂i : TM→ TM by ∂i(1) = 0,
∂i(xj) = δij1, and ∂i(ab) = ∂i(a)b + (gi.a)∂i(b).

Definition 5. The Nichols algebra B(M) is the quotient of TM by the largest homogeneous ideal I invariant
under all ∂i, such that M ∩ I = {0}.

In specific instances, the Nichols algebra may be finite-dimensional. This is a remarkable phenomenon

(and the direct reason for the finite-dimensional truncations of

12

Definition 3.7. Consider the tensor algebra TM , i.e. for any homogeneous
basis xi ∈Mgi the algebra of words in all xi. We may uniquely define skew
derivations on this algebra, i.e. maps ∂i : TM → TM by ∂i(1) = 0,
∂i(xj) = δij1, and ∂i(ab) = ∂i(a)b+ (gi.a)∂i(b).

Definition 3.8. The Nichols algebra B(M) is the quotient of TM by the
largest homogeneous ideal I invariant under all ∂i, such that M ∩ I = {0}.

In specific instances, the Nichols algebra may be finite-dimensional. This
is a remarkable phenomenon (and the direct reason for the finite-dimensional
truncations of Uq(g) for q a root of unity):

Example 3.9. Take G = Z2 and M = Me ⊕ Mg the Yetter-Drinfel’d
module with dimensions 0 + 1 i.e. q11 = −1, then x2 ∈ I and hence the
Nichols algebra B(M) = k[x]/(x2) has dimension 2.

More generally a 1-dimensional Yetter-Drinfel’d module with qii ∈ kn a
primitive n-th root of unity has Nichols algebra B(M) = k[x]/(xn).

Example 3.10. Take G = Z2 and M = Me ⊕ Mg the Yetter-Drinfel’d
module with dimensions 0 + 2 i.e. q11 = q22 = q12 = q21 = −1 then

B(M) = k〈x, y〉/(x2, y2, xy + yx) =
∧
M

In the abelian case, Heckenberger (e.g [14]) introduced q-decorated dia-
grams, with each node corresponding to a simple Yetter-Drinfel’d module
decorated by qii, and each edge decorated by τ2 = qijqji and edges are
drawn if the decoration is 6= 1; it turns out that this data is all that is
needed to determine the respective Nichols algebra.

Theorem 3.11. [17] Let B(M) be a Nichols algebra of finite dimension
over an arbitrary group G, then there exists a root system ∆ ⊂ ZN with
positive roots ∆+ and a truncated basis of monomials in xα ∈ B(M)|α|.
Namely, the multiplication in B(M) is an isomorphism of graded vec-
torspaces B(M) ∼=

⊗
α∈∆+ B(Mα).

Example 3.12. Let M be the diagonally bradided vector space with basis
x1, x2 and braiding qij fulfilling q11 = q22 = q12q21 = −1. The associated
diagram is:

Direct calculations of the quantum symmetrizer (or general results of
Kharchenko) directly show that the following relations hold

[x2, [x1, x2]τ ]τ = [x1, [x1, x2]τ ]τ = 0

Define the nonzero element x3 := [x1, x2]τ 6= 0 in degree 2, then we consider
the three 1-dimensional braided subspaces of the Nichols algebra

x1k, q11 = −1 x2k, q22 = −1 x3k, q33 = (q11q12)(q22q21) = −1

(g) for q a root of unity):

Example 7. Take G = Z2 and M = Me⊕Mg the Yetter–Drinfel’d module with dimensions 0+ 1 i.e., q11 = −1,
then x2 ∈ I and hence the Nichols algebra B(M) = k[x]/(x2) has dimension 2.

More generally, a one-dimensional Yetter–Drinfel’d module with qii ∈ kn a primitive n-th root of
unity has Nichols algebra B(M) = k[x]/(xn).
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Example 8. Take G = Z2 and M = Me ⊕ Mg the Yetter–Drinfel’d module with dimensions 0 + 2 i.e.,
q11 = q22 = q12 = q21 = −1, then

B(M) = k〈x, y〉/(x2, y2, xy + yx) =
∧

M.

In the abelian case, Heckenberger (e.g., [2]) introduced q-decorated diagrams, with each node
corresponding to a simple Yetter–Drinfel’d module decorated by qii, and each edge decorated by
τ2 = qijqji and edges are drawn if the decoration is 6= 1; it turns out that this data is all that is needed
to determine the respective Nichols algebra.

Theorem 1. Let B(M) be a Nichols algebra of finite dimension over an arbitrary group G; then, there exists a
root system ∆ ⊂ ZN with positive roots ∆+ and a truncated basis of monomials in xα ∈ B(M)|α|. Namely, the
multiplication in B(M) is an isomorphism of graded vector spaces B(M) ∼= ⊗

α∈∆+ B(Mα) [20].

Example 9. Let M be the diagonally braided vector space with basis x1, x2 and braiding qij fulfilling
q11 = q22 = q12q21 = −1. The associated diagram is:

Direct calculations of the quantum symmetrizer (or general results of Kharchenko) directly show that the
following relations hold:

[x2, [x1, x2]τ ]τ = [x1, [x1, x2]τ ]τ = 0.

Define the nonzero element x3 := [x1, x2]τ 6= 0 in degree 2; then, we consider the three one-dimensional
braided subspaces of the Nichols algebra

x1k, q11 = −1, x2k, q22 = −1, x3k, q33 = (q11q12)(q22q21) = −1.

The corresponding Nichols algebras B(xik) = k[xi]/(x2
i ) are subalgebras of B(M). It turns out that the

commutator and truncation relations are defining and the Nichols algebra is eight-dimensional with a PBW-Basis
xi

1xj
2xk

3 with i, j, k ∈ {0, 1}. This can be formulated as: multiplication in B(M) yields a bijection of N-graded
vector spaces:

B(M) ∼= B(x1k)⊗B(x2k)⊗B(x3k) = k[x1]/(x2
1)⊗ k[x2]/(x2

2)⊗ k[x3]/(x2
3).

This Nichols algebra appears as the positive part of a quantum group u√−1(sl3) and has a root system of
type A2 with three roots α1, α2, α3 := α1 + α2.

In the same sense, over abelian G for aij, any proper Cartan matrix of a semisimple Lie algebra is

realized for braiding matrix qijqji = q
−aij
ii .

However, several additional exotic examples of finite-dimensional Nichols algebras exist that possess
unfamiliar Dynkin diagrams, such as a multiply-laced triangle, and where Weyl reflections may

connect different diagrams (yielding a Weyl groupoid). Heckenberger completely classified all Nichols
algebras over abelian G in [2].

Also over nonabelian groups, much progress has been made:

• Andruskiewitsch, Heckenberger, and Schneider studied the Weyl groupoid in this setting as well
and established a root system and a PBW-basis for finite-dimensional Nichols algebras in [1].

• By detecting certain “defect” subconfigurations (e.g., so-called type D), most higher symmetric
and all alternating groups and later many especially sporadic groups were totally discarded
(Andruskiewitsch et al. [21,22], etc.).

• On the other hand, finite-dimensional indecomposable examples over nonabelian groups were
discovered—first, Nichols algebras of type A2 over the group D4 and of rank 1 over S3, S4, S5

(Schneider et al. [4]), some examples of rank 1 over various groups [23], as well as infinite families
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of large-rank Nichols algebras of Lie type constructed in [12] via diagram folding over central
extensions of abelian groups.

• Recently, in [9], Heckenberger and Vendramin have classified all finite-dimensional indecomposable
Nichols algebras of rank >1, thereby discovering several new Nichols algebras in rank 2 and
3. The case of rank 1 remains open. All examples in rank >3 turn out to be the foldings in the
previous bullet.

3.2. A First Trace Product Formula

In the following we want to use the root system ∆+ of a Nichols algebra B(M) to derive a trace
product formula.

Definition 6. A factorization of a Nichols algebra B(M) of a braided vectorspace is a collection of braided
vector spaces (Mα)α∈∆+ with some arbitrary index set ∆+, such that:

• All Mα ⊂ B(M) are braided subspaces and are homogeneous with respect to the N-grading of B(M).
• The multiplication in B(M) induces a graded isomorphism of braided vector spaces µB(M):⊗

α∈∆+ B(Mα)
∼−→ B(M).

An operator Q on B(M) is said to stabilize the factorization iff QMα ⊂ Mα for all α ∈ ∆+. In this
case, we denote by Qα := Q|B(Mα) the restriction. Q is said to normalize the factorization iff for each α ∈ ∆+

there is a β ∈ ∆+ with QMα ⊂ Mβ. In this case, Q acts on ∆+ by permutations and we denote the shifting
restriction Qα→β := Q|Mα with image in Mβ = MQα.

Example 10. The root system Wα, α ∈ ∆+ of a Nichols algebra B(M) of a Yetter–Drinfel’d module M
(see Section 3.1) is the leading example of a factorization.

A factorization of a Nichols algebra can be used to derive a product formula of the trace and
graded trace of some operator Q. A first application is:

Lemma 7. Let B(M) be a Nichols with factorization Mα, α ∈ ∆+ and Q an algebra operator that stabilizes
this factorization. Then, the trace of Q is tr (Q) = ∏α∈∆+ tr (Qα).

Proof. We evaluate the trace in the provided factorization: let Q act diagonally on the tensor product⊗
α∈∆+ B(Mα) by acting on each factor via the restriction Qα, which is possible because Q was assumed

to stabilize this factorization. The action of an algebra operator Q commutes with the multiplication
µB(M) so the traces of Q acting on each sides coincide. The trace on a tensor product is the product of
the respective traces and hence we get

tr
(

Q|B(M)

)
= tr

(
Q|⊗

α∈∆+ B(Mα)

)
= ∏

α∈∆+

tr
(

Q|B(Mα)

)
= ∏

α∈∆+

tr (Q|α) .

To calculate the graded trace with the preceding lemma, first note that tE is a graded algebra
automorphism, so if Q fulfills the conditions of the lemma, so does Y = tEQ. Hence, we find
trQ
B(M)

= tr(tEQ) = tr(Y):

Corollary 3. Let B(M) be a Nichols algebra with factorization Wα, α ∈ ∆+ and Q an algebra operator that
stabilizes this factorization. Then,

trQ
B(M)

(t) = ∏
α∈∆+

trQα

B(Mα)
(t) .
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Example 11. Let the braided vector space M = x1k⊕ x2k be defined by qij =

(
−1 −1
+1 −1

)
. Then, the diagonal

Nichols algebra B(M) is of standard Cartan type A2 and possesses a factorization ∆+ = {α1, α2, α12} with

Mα1 = x1k, Mα2 = x2k, Mα12 = x12k, x12 := [x1, x2]q := x1x2 + x2x1 .

All braidings are −1, hence B(xα) ∼= k[xα]/(x2
α). This implies that the multiplication in B(M) is an

isomorphism of graded vector spaces:

µB(M) : k[x1]/(x2
1)⊗ k[x2]/(x2

2)⊗ k[x12]/(x2
12)
∼= B(M)

This shows that the Hilbert seriesH(t) = tr1
B(M)(t) is

tr1
B(M)(t) = tr1

B(Mα1 )
tr1
B(Mα2 )

tr1
B(Mα12 )

= (1 + t)(1 + t)(1 + t2)

= 1 + 2t + 2t2 + 2t3 + t4.

Example 12. In the previous example of a Nichols algebra B(M), let Q ∈ End(M) be defined by Qx1 := x1

and Qx2 := −x2. This map preserves the braiding and hence extends uniquely to an algebra automorphism on
B(M), in particular, Qx12 = Q(x1x2 + x2x1) = −(x1x2 + x2x1) = −x12 holds. A direct calculation yields:

trQ
B(M)

(t) = tr
(

Q|1B(M)

)
+ t · tr (Q|x1,x2) + t2 · tr (Q|x1x2,x12)

+ t3 · tr (Q|x1x12,x2x12) + t4 · tr (Q|x1x2x12)

= tr
(

1
)
+ t · tr

(
1 0
0 −1

)
+ t2 · tr

(
−1 0
0 −1

)

+ t3 · tr
(

1 0
0 −1

)
+ t4 tr

(
1
)

= 1− 2t2 + t4.

The product formula returns for the same trace:

trQ
B(M)

(t) = trQ
B(Mα1 )

(t) · trQ
B(Mα2 )

(t) · trQ
B(Mα12 )

(t) = (1 + t)(1− t)(1− t2).

In the next section, we study the special case of a diagonal Nichols algebra, and we will also study
examples of operators Q, which neither stabilize nor normalize the root system. However, their graded
trace is still factorizing, which indicates the existence of alternative PBW-basis. We will construct such
for the case N = 2, q =

√
−1.

3.3. Nichols Algebra over Abelian Groups

We now restrict our attention to the Nichols algebra B(M) of a Yetter–Drinfel’d module M of
rank n over an abelian group

15

Example 3.17. Let the braided vector space M = x1k⊕ x2k be defined by

qij =

(
−1 −1
+1 −1

)
. Then the diagonal Nichols algebra B(M) is of standard

Cartan type A2 and possesses a factorization ∆+ = {α1, α2, α12} with

Mα1 = x1k, Mα2 = x2k, Mα12 = x12k, x12 := [x1, x2]q := x1x2+x2x1 .

All braidings are −1, hence B(xα) ∼= k[xα]/(x2
α). This implies that the

multiplication in B(M) is an isomorphism of graded vector spaces:

µB(M) : k[x1]/(x2
1)⊗ k[x2]/(x2

2)⊗ k[x12]/(x2
12) ∼= B(M)

This shows that the Hilbert series H(t) = tr1
B(M)(t) is

tr1
B(M)(t) = tr1

B(Mα1 ) tr1
B(Mα2 ) tr1

B(Mα12 ) = (1 + t)(1 + t)(1 + t2)

= 1 + 2t+ 2t2 + 2t3 + t4

Example 3.18. In the previous example of a Nichols algebra B(M), let
Q ∈ End(M) be defined by Qx1 := x1 and Qx2 := −x2. This map preserves
the braiding and hence extends uniquely to an algebra automorphism on
B(M), in particular, Qx12 = Q(x1x2 + x2x1) = −(x1x2 + x2x1) = −x12

holds. A direct calculation yields:

trQB(M)(t) = tr
(
Q|1B(M)

)
+ t · tr (Q|x1,x2) + t2 · tr (Q|x1x2,x12)

+ t3 · tr (Q|x1x12,x2x12) + t4 · tr (Q|x1x2x12)

= tr
(
1
)

+ t · tr
(

1 0
0 −1

)
+ t2 · tr

(
−1 0
0 −1

)

+ t3 · tr
(

1 0
0 −1

)
+ t4 tr

(
1
)

= 1− 2t2 + t4

The product formula returns for the same trace:

trQB(M)(t) = trQB(Mα1 )(t) · tr
Q
B(Mα2 )(t) · tr

Q
B(Mα12 )(t) = (1 + t)(1− t)(1− t2)

In the next section, we study the special case of a diagonal Nichols alge-
bra, we will also study examples of operators Q, that do neither stabilize
nor normalize the root system. However, their graded trace is still fac-
torizing, which indicates the existence of alternative PBW-basis. We will
construct such for the case N = 2, q =

√
−1.

3.3. Nichols algebra over abelian groups. We now restrict our atten-
tion to the Nichols algebra B(M) of a Yetter-Drinfel’d module M of rank
n over an abelian group G and k = C. This means M is diagonal i.e. the
sum of 1-dimensional braided vector spaces xik. According to [14], B(M)
possesses an arithmetic root system ∆+ that can be identified with a set of

and k =
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The product formula returns for the same trace:

trQB(M)(t) = trQB(Mα1 )(t) · tr
Q
B(Mα2 )(t) · tr

Q
B(Mα12 )(t) = (1 + t)(1− t)(1− t2)

In the next section, we study the special case of a diagonal Nichols alge-
bra, we will also study examples of operators Q, that do neither stabilize
nor normalize the root system. However, their graded trace is still fac-
torizing, which indicates the existence of alternative PBW-basis. We will
construct such for the case N = 2, q =

√
−1.

3.3. Nichols algebra over abelian groups. We now restrict our atten-
tion to the Nichols algebra B(M) of a Yetter-Drinfel’d module M of rank
n over an abelian group G and k = C. This means M is diagonal i.e. the
sum of 1-dimensional braided vector spaces xik. According to [14], B(M)
possesses an arithmetic root system ∆+ that can be identified with a set of

. This means M is diagonal i.e., the sum of 1-dimensional
braided vector spaces xik. According to [2], B(M) possesses an arithmetic root system ∆+ that can be
identified with a set of Lyndon words L in n letters, with word length corresponding to the grading
in the Nichols algebra. Such a Lyndon word corresponds to iterated q-commutators in the letters xi
according to iterated Shirshov decomposition of the word.

For any positive root α ∈ ∆+, we denote by Nα the order of the self-braiding χ(α, α) = qα,α.
It is known that this determines B(xα) = k[xα]/(xNα

α ) and we denote by |α| the length of the Lyndon
word resp. the degree of the root vector xα in the Nichols algebra grading.
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We further denote by gα the G-grading of xα, extending the G-grading of M on simple roots.
Moreover, we denote the scalar action of any g ∈ G on xα by α(g) = χM(gα, g) ∈ k×, extending the
G-action of M on simple roots. We frequently denote (N)t = 1 + t + . . . tN−1 = 1−tN

1−t .

Lemma 8. Let Q be an algebra operator on a diagonal Nichols algebra B(M) that stabilizes the root system,
i.e., for all α ∈ ∆+ the root vector xα is an eigenvector to Q with eigenvalue λα ∈ k. Then, the product formula
of Corollary 3 reads as follows:

trQ
B(M)

(t) = ∏
α∈∆+

(Nα)λαt|α| .

Especially for the action of a group element g ∈ G, we get

trg
B(M)

(t) = ∏
α∈∆+

(Nα)α(g)t|α| .

Proof. The factorization follows from Corollary 3. We yet have to verify the formula on each factor
Wα = B(xα) = k[xα]/(xNα

α ). Wα has a basis xk
α for 0 ≤ k < Nα with degrees k|α|. By assumption, Q

acts on xα via the scalar λα and by multiplicativity on xk
α by λk

α. Altogether:

trQ
B(xα)

=
Nα−1

∑
k=0

λk
α · tk|α| =

Nα−1

∑
k=0

(λα · t|α|)k = (Nα)λα |α| .

Example 13. Let the braided vector space M = x1k ⊕ x2k be defined by qij =

(
q2 q−1

q−1 q2

)
with q a

primitive 2N-th root of unity. Then, the diagonal Nichols algebra B(M) is of standard Cartan type A2

and possesses a factorization ∆+ = {α1, α2, α12} with Mα1 = x1k, Mα2 = x2k, and Mα12 = x12k, where
x12 := [x1, x2]q := x1x2− q−1x2x1. This implies that the multiplication in B(M) is an isomorphism of graded
vector spaces:

µB(M) : B(M) ∼= B(Mα1)⊗B(Mα2)⊗B (Mα12)

∼= k[x1]/(xN
1 )⊗ k[x2]/(xN

2 )⊗ k[x12]/(xN
12) .

This obviously agrees with the Hilbert series in Lemma 8:

H(t) = tr1B(M)
B(M)

(t) =
3

∏
i=1

tr
1B(Mαi )

B(Mαi )
(t) = (N)t(N)t(N)t2 .

Let us now apply the formula of Lemma 8 to calculate the graded trace of the action of group elements
(which stabilize the root system): we realize the braided vector space M as a Yetter–Drinfel’d module over
G := Z2N ×Z2N = 〈g1, g2〉, such that x1 is g1-graded and x2 is g2 graded, with suitable actions:

g1x1 = q2x1, g1x1 = q2x1, g1x2 = q−1x2, g2x1 = q−1x1 .

Then, we get for the action of each group element gk:

trgk
B(M)

(t) = ∏
α∈{α1,α2,α12}

trgk
B(Mα)

= (N)q2t(N)q−1t(N)qt2 .

We now look at graded traces of automorphisms Q, where Q does not stabilize the root system.
We restrict ourselves to diagonal Nichols algebras B(M), so we may use the theory of Lyndon words.
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The PBW-basis consists of monotonic monomials

[u1]
n1 [u2]

n2 . . . [uk]
nk , with u1 > u2 > . . . > uk, ∀ui ∈ L .

The PBW-basis carries the lexicographic order < and, by [18], (Remark after Thm 3.5) this is the
same as the lexicographic order of the composed words un1

1 un2
2 . . . unk

k . For a sequence of Lyndon words
~u = (u1, . . . uk), not necessarily monotonically sorted, we define [~u] := [u1][u2] . . . [uk]. In particular,
sorted sequences correspond to the PBW-basis. For any sequence of Lyndon words ~u, denote by ~u sort

its monotonic sorting.

Lemma 9. (a) For any sequence of Lyndon words ~u, not necessarily monotonically sorted, we have
[~u] = q · [~u sort] + smaller, where q 6= 0 and “smaller” denotes linear combinations of PBW-elements
lexicographically smaller than the PBW-element [~u sort].

(b) Let σ ∈ Sk and u1 > u2 > · · · > uk ∈ L; then,

[uσ(1)]
nσ(1) [uσ(2)]

nσ(2) . . . [uσ(k)]
nσ(k) = qσ · [u1]

n1 [u2]
n2 . . . [uk]

nk

+ smaller ,

where qσ is the scalar factor associated with the braid group element σ̂ ∈ Bk, which is the image of σ under
the Matsumoto section. Explicitly q(i,i+1) = χ(deg(xui ), deg(xui+1))

nini+1 in the notation of [18] and
general qσ are obtained by multiplying such factors along a reduced expression of σ.

Proof. Claim (a): We perform induction on the multiplicity of the highest appearing Lyndon word:
thus, for a fixed w ∈ L, N ∈ N, suppose that the claim has been proven for all sequences ~u′ with u′i ≤ w
and strictly less then N indices i with u′i = w.

Consider then a sequence ~u with ui ≤ w and precisely N indices i with ui = w. We perform a
second induction on the index i of the leftmost appearing w = ui:

• If w = u1, we may consider the sequence ~u1̂ := (u2, . . . uk) having strictly less w-multiplicity.
By induction hypothesis, [~u1̂] = [~u sort

1̂
] + smaller. Since ~u sort = (w,~u sort

1̂
), the assertion then also

holds for ~u.
• Otherwise, let ui+1 = w be the leftmost appearance of w, especially ui < ui+1 = w. By [18]

Prop. 3.9, we then have [ui][ui+1] = q · [ui+1][ui] + smaller, where q 6= 0 and “smaller” means
products of Lyndon words [vl ] with ui < v < ui+1 = w. Thus, all products [u1] . . . smaller . . . [uk]

contain w with a multiplicity less then ~u; by induction hypothesis, these are a linear combination
of PBW-elements lexicographically strictly smaller then [~u sort]. The remaining summand
[u1] . . . [ui+1][ui] . . . [uk] has w = ui+1 in a leftmore position and the claim follows by the second
induction hypothesis.

Claim (b): We proceed by induction on the length of σ ∈ Sk, which is the length of any reduced
expression for σ. For σ = id, we are done, so assume for some i that uσ(i) < uσ(i+1); hence,
σ = (σ(i), σ(i + 1))σ′ with σ′ shorter.

Again, by [18] Prop. 3.9, we have:

[uσ(i)][uσ(i+1)] = χ(deg(xui ), deg(xui+1)) · [uσ(i+1)][uσ(i)] + smaller .

Moreover, for any sequences of Lyndon words ~a,~b, claim (a) proves that [~a] · smaller · [~b] is a
linear-combination of PBW-elements lexicographically smaller than [~u]. Hence, inductively,

[uσ(i)]
nσ(i) [uσ(i+1)]

nσ(i+1) = χ(deg(xui ), deg(xui+1))
nσ(i)nσ(i+1)

· [uσ(i+1)]
nσ(i+1) [uσ(i)]

nσ(i) + smaller .
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By the same argument (again using claim (a)), we may multiply both sides with the
remaining factors:

[u1]
n1 . . . [uσ(i)]

nσ(i) [uσ(i+1)]
nσ(i+1) . . . [uk]

nk

= χ(deg(xui ), deg(xui+1))
nσ(i)nσ(i+1)

· [u1]
n1 . . . [uσ(i+1)]

nσ(i+1) [uσ(i)]
nσ(i) . . . [uk]

nk + smaller .

We may now use the induction hypothesis on σ′, which is shorter.

Theorem 2. Let B(M) be a finite-dimensional Nichols algebra over a Yetter–Drinfel’d module M over an
abelian group G. Let Q be an automorphism of the graded algebra V = B(M) permuting the roots QVα = VQα

and denote the action on root vectors by

Qxα =: λQ(α)xQα, λQ : ∆+ → k .

On any orbit A ∈ OQ (∆+) , all orders nα of xα coincide for α ∈ A and we denote this value by
NA. Similarly, all degrees α coincide and we denote the sum over the orbit in slight abuse of notation
|A| = |α| · #A. Then,

trQ
VA

(t) = ∏
A∈OQ(∆+)

(NA)qA(Q)λQ(A)t|A|

with the q-symbol (N)t := 1 + t + . . . + tN−1 = 1−tN

1−t and q(Q) ∈ k× the scalar braiding factor of Q acting
as an element of B|A| on A, as in the preceding lemma.

Proof. We start with the factorization along the root system

trQ
V (t) = ∏

A∈OQ(∆+)

trQ
VA

(t), VA :=
⊗

α∈A
Vα,

with Qxα =: λQ(α)xQα as assumed. The action of Q on monomials ⊗α∈Axkα
α ∈ VA can be calculated

using the previous lemma:

Q
⊗

α∈A
xkα

α =
⊗

α∈A
λQ(α)

kα xkα
Qα = ∏

α∈A
λQ(α)

kα ·
⊗

α∈A
xkα

Qα

= qA(Q)k ⊗

α∈A
xkα

α + smaller ,

where q(Q) ∈ k× denotes the scalar braiding factor of Q acting as an element of B|A| on A. The trace

over trQ
VA

may be evaluated in this monomial basis and the only contributions come from monomials
with all kα equal:

Q
⊗

α∈A
xk

α = qA(Q)k ∏
α∈A

λQ(α)
k ·
⊗

α∈A
xk

Qα = λQ(A)k ·
⊗

α∈A
xk

Qα .

Thus, we can calculate the trace in terms of q-symbols: We sum up the scalar action factors
qA(Q)kλQ(A)k on all Q-fixed basis elements

⊗
α∈A xk

Qα for k < NA and multiply by the level:

trQ
VA

(t) =
NA−1

∑
k=0

qA(Q)kλQ(A)k · tk ∑α∈A |α| =
NA−1

∑
k=0

(
qA(Q)λQ(A)

)ktk|A|
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for NA := Nα and |A| := |α| · #A as in the assertion independent of α. Therefore,

trQ
VA

(t) =
NA−1

∑
k=0

(
qA(Q)λQ(A)t|A|

)k
= (NA)qA(Q)λQ(A)t|A| ,

trQ
V (t) = ∏

A∈OQ(∆+)

trQ
VA

(t) = ∏
A∈OQ(∆+)

(NA)qA(Q)λQ(A)t|A| .

We now give examples where this formula can be applied. Note that the normalizing-condition
seems to be very restrictive and the examples below crucially rely on exceptional behaviour for
q = −1. Nevertheless, we obtain nontrivial examples, such as Aq=−1

3 , and will use the previous
formula systematically in the last subsection in conjunction with the finer root system presented in the
examples there.

Example 14. Let q be a primitive 2N-th root of unity and M a Yetter–Drinfel’d module with braiding matrix

corresponding to A1 ∪ A1 and qij =

(
q2 −1
−1 q2

)
. Extend Q : x1 ↔ x2 to an algebra automorphism of

B(M). Note that any other off-diagonal entries a, a−1 would let Q fail to preserve the braiding matrix. We have
B(M) ∼= k[x1]/(xN

1 ) ⊗ k[x1]/(xN
1 ) and explicitly calculate Qxi

1xj
2 = xi

2xj
1 = (−1)ijxj

1xi
2. Hence, all

contributions to the graded trace are balanced monomials with i = j, yielding

trQ
B(M)

(t) =
N−1

∑
i=0

(−1)i2 t2i =
N−1

∑
i=0

(−1)it2i = (N)−t2 .

Example 15. Consider again the A2 example M = x1k⊕ x2k with qij =

(
q2 q−1

q−1 q2

)
and q a primitive

2N-th root of unity. Consider in this case the diagram automorphism Q : x1 ↔ x2 again. In the theory of Lie
algebra foldings, the flipped edge x1x2 is called a loop. We easily calculate that, in such cases, the standard
root system is never normalized by Q, since q 6= −1: Qx12 = Q(x1x2 − q−1x2x1) = x2x1 − q−1x1x2 =

−q−1(x1x2 − qx2x1) 6= x12. We will discuss this example and its factorization in the next subsection.

Example 16. Consider the braiding matrix

qij =



−1 i −1

i −1 i
−1 i −1


 ,

which gives rise to a Nichols algebra of type A3 and hence a root system

B(M) ∼= k[x1]/(x2
1) ⊗ k[x2]/(x2

2) ⊗ k[x3]/(x2
3)

⊗ k[x12]/(x2
12) ⊗ k[x32]/(x2

32) ⊗ k[x1(32)]/(x2
1(32))

(these are choices), with

x12 = x1x2 − ix2x1, x32 = x3x2 − ix2x3, x123 = x1x32 + ix32x1 .
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Notice that, for the specific choice of q2 = −1, by chance, we also have

x3(12) := x3x12 + ix12x3 = x3x1x2 − ix3x2x1 + ix1x2x3 + x2x1x3

= −x1x3x2 − ix3x2x1 + ix1x2x3 − x2x3x1

= − (x1x3x2 − ix1x2x3 + ix3x2x1 + x2x3x1) = −x1(32) .

Consider the diagram automorphism Q : x1 ↔ x3 that preserves the braiding matrix and hence gives rise
to an algebra automorphism of B(M). We show that it normalizes the chosen factorization:

Qx12 = Q(x1x2 − ix2x1) = x3x2 − ix2x3 = x32 ,

Qx32 = x12 ,

Qx1(32) = Q(x1x32 + ix32x1) = x3x12 + ix12x3 = x3(12) = −x1(32) .

Hence, our product formula yields for the graded trace of Q:

trQ
B(M)

(t) = trQ
〈x2〉(t) · tr

Q
〈x1x3〉(t) · tr

Q
〈x12x32〉(t) · tr

Q
〈x1(32)〉

(t)

= (2)t · (2)−t2 · (2)−t4 · (2)−t3 .

3.4. A Non-Normalizing Example with Alternative PBW-Basis

Consider Example 15 in the previous subsection, which is not normalized, for q = −i. We first
calculate the graded trace directly on the basis xi

1xj
2xk

12 with i, j, k ∈ {0, 1}:

trQ
B(M)

(t) = tr
(

Q|1B(M)

)
+ t · tr

(
Q|x1,

x2

)
+ t2 · tr

(
Q|x1x2,

x12

)

+ t3 · tr
(

Q|x1x12,
x2x12

)
+ t4 · tr (Q|x1x2x12)

= tr
(

1
)
+ t · tr

(
0 1
1 0

)
+ t2 · tr

(
−i −2i
i i

)

+ t3 · tr
(

0 −i
i 0

)
+ t4 tr

(
1
)

= 1 + t4.

We observe that, in this case, we have the following symmetric analog to a PBW-basis, which
explains this graded trace: Denote x+ := x1 + x2 and x− := x1 − x2. Then, these elements have a
common power:

y := x2
+ = −x2

− = x1x2 + x2x1, z := x4
+ = x4

− = 2x1x2x1x2.

Moreover, we have the relation r := x+x−y = (−x1x2 + x2x1)(x1x2 + x2x1) = −x1x2x1x2 +

x2x1x2x1 = 0 and up to r the elements xi
+xj
−ykzl form a basis. More precisely, we have an alternative

presentation for the Hilbert series

H(t) =
(2)t(2)t(2)t2(2)t4

(2)t4
= 1 + 2t + 2t2 + 2t3 + t4

that could be reformulated on the level of graded vector spaces:

B(rk) → B(M) → B(x+k) ⊗ B(x−k) ⊗ B(yk) ⊗ B(zk) .
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This factorization with relation is stabilized by the action of Q (x+, y, z even and x−, r odd), from
which we conclude with the formula of Lemma 8:

trQ
B(M)

=
(2)t(2)−t(2)t2(2)t4

(2)−t4
= 1 + t4 .

3.5. Factorization Mechanism for Large Rank over Nonabelian Groups

We shall finally consider a family of examples over nonabelian groups obtained by the first author
in [12]: for a finite-dimensional semisimple simply-laced Lie algebra g with a diagram automorphism
σ, consider the diagonal Nichols algebra B(M) of type g. We define a covering Nichols algebra B(M̃)

over a nonabelian group G (an extraspecial 2-group) and with folded Dynkin diagram gσ. The covering
Nichols algebra is isomorphic to B(M) as an algebra; however, there exist nondiagonal Doi twists,
which leave the Hilbert series invariant.

The root system of B(M̃) is gσ, but because the root spaces Mα are mostly two-dimensional,
this cannot explain the full factorization of the Hilbert series. The old factorization along the g-root
system is not a factorization into sub-Yetter–Drinfel’d modules, but nevertheless still shows the
full factorization.

Example 17. Let G = D4 = 〈a, b | a4 = b2 = 1〉 the dihedral group and consider the Nichols algebra
B(Oχ

b ⊕ O
ψ
ba), where the centralizer characters are χ(b) = −1, ψ(ab) = −1, and χ(a2) = ψ(a2) = 1

(respectively, χ(a2) = ψ(a2) = −1 for the nondiagonal Doi twist). This was the first known example for
a finite-dimensional Nichols algebra in [4] and it is known to be of type A2. We have B(Oχ

b ⊕ O
ψ
ba)
∼=

B(Oχ
b )⊗B(Oψ

ba)⊗B([Oχ
b ,Oψ

ba]) with respective Hilbert series H(t) = (2)2
t · (2)2

t · (2)2
t2 . From the root

system, we can only explain the factorization into three factors. However, this Nichols algebra is the covering
Nichols algebra of a diagonal Nichols algebra of type A2 ∪ A2 and, from this presentation, we may read off the
full factorization in an inhomogeneous PBW-basis:

B(Oχ
b ⊕O

ψ
ba)
∼= (B(xb + xa2b)⊗B(xab + xa3b)⊗B([xb + xa2b, xab + xa3b]))

⊗ (B(xb − xa2b)⊗B(xab − xa3b)⊗B([xb − xa2b, xab − xa3b]))

⇒ H(t) =
(
(2)t(2)t(2)t2

)
·
(
(2)t(2)t(2)t2

)
.

3.6. Factorization by Sub-Nichols-Algebras

During this subsection, let k be an arbitrary field, G a finite group and consider a
rank-1-Yetter–Drinfel’d module M := Oχ

g for some g ∈ G and a one-dimensional representation
χ of Cent(g). Denote the conjugacy class of g in G by X. Define the enveloping group

Env(X) := 〈gx, x ∈ X | gxgy = gxyx−1 gx〉 .

The Nichols algebra B(M) is naturally graded by Env(X). Now, π : Env(X) � Zk := Z/kZ,
gx 7→ 1 for all x ∈ X establishes Zk as a canonical quotient of Env(X) for all k ∈ N.

The original group G is another quotient of Env(X), and this induces an action of Env(X)

on B(M).
Denote the generators of the Nichols algebra by ex := x⊗ 1 and by e∗x the dual base.
Define qx,y for x, y ∈ X ⊂ G by c(ex ⊗ ey) = qx,y exyx−1 ⊗ ex and mx ∈ N minimal such that

1 + qx,x + q2
x,x + . . . + qmx−1

x,x = 0 for all diagonal elements qx,x. As we only consider rank one, mx does
not depend on x, and we call m = mx the order of q. Throughout this section, assume that each
coefficient qx,y is an (not necessarily primitive) m-th root of unity.
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In [13], the second author derived divisibility relations for the Hilbert series of Nichols algebras
by an analysis of the modified shift

ξx : B(M)→ B(M), v 7→ (∂
op
x )m−1(v) + ex v

and similar maps, where x ∈ X is arbitrary and ∂
op
x = (e∗x ⊗ id)∆ is the opposite braided derivation.

For each x ∈ X, ξx is a linear isomorphism, leaving ker ∂y invariant for all y ∈ X \ {x}, where
∂y = (id⊗ e∗y)∆ is the braided derivation. If Ξ is the group generated by all ξx, x ∈ X, the orbit of
1 ∈ B(M) under Ξ linearly spans B(M). Finally, let π : Env X � H be some group epimorphism,
such that π(gx)m = e. Then, ξx maps the B(M)-layer of degree h to the layer of degree π(gx)h for
all h ∈ H (see [13], Proposition 9). For us, the relevant quotient H of Env X will not be G, but Zm as
chosen above.

In addition, for each x, y ∈ X, ξx satisfies gy ◦ ξx = qy,x · ξy.x ◦ gy, where we identify gy with the
action of gy on B(M):

gy.(ex · v) = qy,x ey.x · (gy.v),

and gy.(∂op
x (v)) = (e∗x ⊗ gy)∆(v) = q−1

y,x(e
∗
y.x ⊗ id)(gy ⊗ gy)∆(v)

= q−1
y,x · ∂op

y.x(gy.v) ,

thus gy ◦ (∂op
x )m−1 = q(−1)·(m−1)

y,x · (∂op
y.x)

m−1 ◦ gy = qy,x · (∂op
y.x)

m−1 ◦ gy

for all v ∈ B(M) (the second equality is due to e∗y.x(gy.ez) = qy,zδy.x,y.z = qy,zδx,z = qy,x · δx,z =

qy,x · e∗x(ez)).

Lemma 10. Let λ be a k-th root of unity (not necessarily primitive). Let M be some finite-dimensional graded
vector space and Q ∈ Aut M. Consider Zk = Z/kZ as a quotient of Z, then M has a Zk-grading. With respect
to this grading, tr Q|M([j+1]k) = λ tr Q|M([j]k) for all j ∈ Z if and only if the Z-graded character trQ

M(t) is
divisible by (k)λt.

Proof. This is a straightforward generalization of Lemma 6 of [13]: given a polynomial p, denote with
pj the coefficient of tj in p(t) (or zero if j < 0). Set bj := tr Q|M(j).

“⇒”: Choose pj := 0 for each j ∈ Z<0 and pj := bj − ∑k−1
i=1 λi pj−i, hence bj − λbj−1 = pj −

λk pj−k = pj − pj−k. Let d ∈ N0 be such that d · k is larger than the top degree of M. Summation of the
previous equation then yields for each 0 ≤ l ≤ k − 1 the telescoping sum

∑
0≤ j≤ d

bjk+l − λ · ∑
0≤ j≤ d

bjk+l−1 = − pl−k + pdk+l .

The two sums on the left-hand side sum to tr Q|M([l]k) and tr Q|M([l−1]k), respectively, so by
assumption, the left hand side is zero. pl−k is zero by definition (l − k < 0), hence pdk+l is zero. This
proves that p is a polynomial, and from bj = ∑k−1

i=0 λi pj−i follows trQ
M(t) = (k)λt · p(t).

“⇐”: Let trQ
M(t) = (k)λt · p(t) for some polynomial p. We have bj = ∑k−1

i=0 λi pj−i and therefore
for each [l]k ∈ Zk

tr Q|M([l]k) = ∑
j ∈ N0,

j ≡ l (mod k)

tr Q|M(j) = ∑
j ∈ N0,

j ≡ l (mod k)

k−1

∑
i=0

λi pj−i = ∑
j∈N0

λl−j pj ,

from which follows tr Q|M([l+1]k) = λ · tr Q|M([l]k).
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Theorem 3. Let G be a finite group, G′ ⊂ G a proper subgroup, and h ∈ G′ be arbitrary. Let χ be a
one-dimensional representation of CentG(h), and let χ′ be its restriction to CentG′(h) = CentG(h) ∩ G′.
Set M := Oχ

h and M′ := Oχ′
h . Set X and X′ to be the conjugacy classes of h in G and G′, respectively.

Let g ∈ Env(X′) be arbitrary and identify g with its actions on B(M) and B(M′).
(1) Then, trg

B(M)
(t) is divisible by trg

B(M′)(t).
(2) Assume there is some x ∈ X, such that g ◦ ξx = λ · ξx ◦ g for some m-th root of unity λ, where m is

the order of q. Then, trg
B(M)

(t) is divisible by (m)λt · trg
B(M′)(t).

Proof. Set K :=
⋂

x∈X′ ker ∂x.
(1) B(M) is free as a B(M′)-module, so there is a linear isomorphism B(M) ∼= K ⊗B(M′)

mediated by multiplication (e.g., [14,15]). K and B(M′) are both closed under the action of
Env(X′) (K is closed because X′ is closed under conjugation). Therefore, B(M) ∼= K ⊗B(M′) as
Env(X′)-representations and trg

B(M)
(t) = trg

K(t) · tr
g
B(M′)(t).

(2) We show that trg
K(t) is divisible by (m)λt. Set Kj := K ∩B(M)j (layer j of B(M) with j ∈ Zm).

The modified shift operator ξx establishes a linear isomorphism between Kj and Kj+1 for each j ∈ Zm.
Let B be a basis for Kj and B′ := ξx(B), and denote with v∗ the dual basis element corresponding to
v ∈ B for the basis B and v ∈ B′ for the basis B′, respectively. Then,

tr g|Kj+1 = ∑
v∈B′

v∗(g.v) = ∑
b∈B

b∗(ξ−1
x gξx(b)) = λ ∑

b∈B
b∗(g.b) = λ tr g|Kj

holds. Apply Lemma 10.

The condition g ◦ ξx = λ · ξx ◦ g of part (2) of Theorem 3 is fulfilled for gx = xg and λ =

qy1,x . . . qys ,x with g = gy1 . . . gys , y1, . . . , ys ∈ X.

Example 18. Choose G′ = S3 ⊂ G = S4 and h ∈ G′ a transposition, so X and X′ are the conjugacy classes of
transpositions. Choose χ and χ′ to be the alternating representations of G and G′. Their Nichols algebras will
appear again in Sections 4.6 and 4.1, respectively. Choose g = (1 2) and x = (3 4). Then, g and x commute,
and Theorem 3 explains why trg

B(M)
(t) = (2)4

−t(3)
2
t (2)t4 contains the factor (2)−t · trg

B(M′)(t) = (2)3
−t(3)t.

4. Calculations for Small Rank-1 Nichols Algebras

The following results have been calculated with the help of GAP [24] in a straightforward way:
first, calculate a linear basis for the given Nichols algebra; then, generate the representing matrix of the
action of each element of the conjugacy class X, which also generates G, and then calculate the graded
traces of all conjugacy classes.

The Nichols algebra of Section 4.4 admits a large dimension of 5184. For this size, it was not
possible for us to calculate all matrices we needed. In this special case, we made use of Corollary 1,
so we could restrict our matrix calculations to the lower half of grades and compute the full graded
trace by Poincaré duality.

The Nichols algebras of dimensions 326,592 and 8,294,400 are computationally not yet accessible
with this method.

4.1. dim M = 3, dimB(M) = 12

Let G = S3 and g = (1 2) representing the conjugacy class of transpositions. The centralizer of g
is isomorphic to Z/2Z, and we choose χ to be its alternating representation (otherwise the Nichols
algebra is infinite-dimensional). Then, the Nichols algebra B(Oχ

g ) is generated by x(12), x(13), x(23)
with relations x2

(ij) = 0 and some higher relations. This Nichols algebra was studied in [4] and is
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also the Fomin–Kirillov algebra for the Coxeter group S3. It was shown to have finite dimension
12 = 1 + 3 + 4 + 3 + 1 and a basis in each grade is

1, x(12), x(13), x(23), x(12)x(13), x(23)x(12), x(12)x(23), x(13)x(12),

x(12)x(13)x(12), x(12)x(23)x(12), x(13)x(23)x(13) x(12)x(13)x(12)x(23) =: Λ.

G acts by conjugation with signs. The graded traces can be calculated and factorized by hand:
obviously, the graded dimension is

tre
B(M)(t) = 1 + 3t + 4t2 + 3t3 + 1t4 = (1 + t)2(1 + t + t2) = (2)2

t (3)t.

The element g fixes (up to sign) only elements in degrees e, (12), so the only contributions to the
trace come from 1, x(12), x(13)x(23)x(13), Λ. Thereby,

tr(1 2)
B(M)

(t) = 1− t− t3 + t4 = (1− t)2(1 + t + t2) = (2)2
−t(3)t.

Similarly (and using the relations in degree 2), one calculates

tr(1 2 3)
B(M)

(t) = 1− 2t2 + t4 = (1− t)2(1 + t)2 = (2)2
−t(2)

2
t .

From this (or directly), we can calculate the decomposition into irreducible G-representations in
each degree. If we denote the trivial irreducible, alternating, and standard representations of

26

G acts by conjugation with signs. The graded traces can be calculated
and factorized by hand: Obviously the graded dimension is

treB(M)(t) = 1 + 3t+ 4t2 + 3t3 + 1t4 = (1 + t)2(1 + t+ t2) = (2)2
t (3)t

The element g fixes (up to sign) only elements in degrees e, (12), so the only
contributions to the trace come from 1, x(12), x(13)x(23)x(13),Λ. Thereby

tr
(1 2)
B(M)(t) = 1− t− t3 + t4 = (1− t)2(1 + t+ t2) = (2)2

−t(3)t

Similarly (and using the relations in degree 2) one calculates

tr
(1 2 3)
B(M)(t) = 1− 2t2 + t4 = (1− t)2(1 + t)2 = (2)2

−t(2)2
t

From this (or directly), we can calculate the decomposition into irre-
ducible G-representations in each degree. If we denote the trivial irre-
ducible, alternating, and standard representations of G = S3 by T , A, and
S of dimension 1, 1, 2, respectively, we find

B(Oχg ) ∼= T ⊕ (A⊕ S)t ⊕ 2St2 ⊕ (A⊕ S)t3 ⊕ Tt4

∼= (T ⊕ At) ⊗ (T ⊕ St ⊕ St2 ⊕ At3)

as G-representation. The factorization in line 2 results from a certain sub-
Nichols-algebra (see 3.6) and implies the factorizations

treB(M)(t) = (2)t · (2)t(3)t

tr
(1 2)
B(M)(t) = (2)−t · (2)−t(3)t

tr
(1 2 3)
B(M)(t) = (2)t · (2)2

−t(2)t

To understand the factorization of the remaining terms (2)t(3)t, (2)−t(3)t,
and (2)2

−t(2)t, this line of argument, however, fails, because T ⊕ St ⊕
St2 ⊕ At3 does not factor into a tensor product of G-representations.
For g = e and g = (1 2), we may apply Theorem 3.28.(2) to explain the
additional factors (2)t and (2)−t, respectively, but this neither helps in
the case g = (1 2 3), nor to understand the origin of the factors (3)t for
g ∈ {e, (1 2)}.

If B(Oχg ) does not factor as a G-representation, one might think that it
may still factor as an 〈h〉G-representation for each h ∈ G, which would ex-
plain the factorization of the graded characters just as well. This, however,
is wrong: Take h = (1 2 3), which is of order 3. Let T be the trivial irre-
ducible representation, B one of the non-trivial irreducible representations,
and set C := B ⊗B. Then B(Oχg ) is

B(Oχg ) ∼= T ⊕ (T ⊕B ⊕ C)t ⊕ (2B ⊕ 2C)t2 ⊕ (T ⊕B ⊕ C)t3 ⊕ Tt4

∼= (T ⊕ Tt) ⊗ (T ⊕ (B ⊕ C)t ⊕ (B ⊕ C)t2 ⊕ Tt3)

= S3 by
T, A, and S of dimension 1, 1, 2, respectively, we find

B(Oχ
g ) ∼= T ⊕ (A⊕ S)t ⊕ 2St2 ⊕ (A⊕ S)t3 ⊕ Tt4

∼= (T ⊕ At) ⊗ (T ⊕ St ⊕ St2 ⊕ At3)

as G-representation. The factorization in line 2 results from a certain sub-Nichols-algebra
(see Section 3.6) and implies the factorizations

tre
B(M)(t) = (2)t · (2)t(3)t,

tr(1 2)
B(M)

(t) = (2)−t · (2)−t(3)t,

tr(1 2 3)
B(M)

(t) = (2)t · (2)2
−t(2)t.

To understand the factorization of the remaining terms (2)t(3)t, (2)−t(3)t, and (2)2
−t(2)t, this line

of argument, however, fails, because T ⊕ St ⊕ St2 ⊕ At3 does not factor into a tensor product of
G-representations. For g = e and g = (1 2), we may apply Theorem 3. (2) to explain the additional
factors (2)t and (2)−t, respectively, but this neither helps in the case g = (1 2 3), nor to understand the
origin of the factors (3)t for g ∈ {e, (1 2)}.

If B(Oχ
g ) does not factor as a G-representation, one might think that it may still factor as an

〈h〉G-representation for each h ∈ G, which would explain the factorization of the graded characters just
as well. This, however, is wrong: take h = (1 2 3), which is of order 3. Let T be the trivial irreducible
representation, B one of the non-trivial irreducible representations, and set C := B⊗ B. Then, B(Oχ

g ) is

B(Oχ
g ) ∼= T ⊕ (T ⊕ B⊕ C)t ⊕ (2B⊕ 2C)t2 ⊕ (T ⊕ B⊕ C)t3 ⊕ Tt4

∼= (T ⊕ Tt) ⊗ (T ⊕ (B⊕ C)t ⊕ (B⊕ C)t2 ⊕ Tt3)

as an 〈h〉G-representation and T ⊕ (B⊕ C)t⊕ (B⊕ C)t2 ⊕ Tt3 does not factor further.
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4.2. dim M = 3, dimB(M) = 432

Assume chark = 2 and k admits a primitive third root of unity ζ. Choose

G = 〈g1, g2 : g6
1, g6

2, (g1g2)
3, g2

1g−2
2 〉 ∼= Z3 × S3

and g = g1. The centralizer of g is 〈g1〉 ∼= Z3 × Z2. Choose χ(g1) = ζ. Then, B(Oχ
g )

is a faithful G-representation of dimension 432. G has nine conjugacy classes, and we choose
{e, g1, g2

1, g3
1, g4

1, g5
1, g1g2, g3

1g2, g5
1g2} as their representatives. Then, the graded characters of B(Oχ

g )

(not Brauer characters, but with values in k) are:

tr e
B(M)(t) = (2)6

t (3)
7
t , tr g1

B(M)
(t) = (2)7

t (3)
6
t (2)ζ2t,

tr
g2

1
B(M)

(t) = (2)7
t (3)

6
t (2)ζt, tr

g3
1

B(M)
(t) = (2)6

t (3)
7
t ,

tr
g4

1
B(M)

(t) = (2)7
t (3)

6
t (2)ζ2t, tr

g5
1

B(M)
(t) = (2)7

t (3)
6
t (2)ζt,

tr g1g2
B(M)

(t) = (2)10
t (2)10

ζt , tr
g3

1g2
B(M)

(t) = (2)10
t (2)10

ζ2t,

tr
g5

1g2
B(M)

(t) = (3)10
t .

4.3. dim M = 4, dimB(M) = 36 or 72

Consider chark = 2, G = A4 and g = (1 2 3). The centralizer of g is isomorphic to Z3, and choose
χ to be the trivial irreducible representation. Then, B(Oχ

g ) is 36-dimensional with graded characters
(not Brauer characters):

tr e
B(M)(t) = (2)2

t (3)
2
t , tr (1 2 3)

B(M)
(t) = (2)4

t (3)t,

tr (1 2)(3 4)
B(M)

(t) = (2)2
t (3)

2
t , tr (1 3 2)

B(M)
(t) = (2)4

t (3)t.

In characteristic 6= 2, there is a very similar Nichols algebra of dimension 72: Assume chark 6= 2 and

G = 〈g1, g2 : g6
1, g6

2, [g3
1, g2], (g1g2)

3, (g1g2
2)

2〉 ∼= A4 ×Z2 .

Choose g = g1, then the centralizer is 〈g1〉 ∼= Z3 × Z2, to which we choose the representation
χ(g1) := −1. Then, the graded characters of B(Oχ

g ) are:

tr e
B(M)(t) = (2)3

t (3)−t(3)2
t , tr g1

B(M)
(t) = (2)3

−t(2)
2
t (3)−t(3)t,

tr
g2

1
B(M)

(t) = (2)2
−t(2)

3
t (3)−t(3)t, tr

g3
1

B(M)
(t) = (2)3

−t(3)
2
−t(3)t,

tr
g4

1
B(M)

(t) = (2)2
−t(2)

3
t (3)−t(3)t, tr

g5
1

B(M)
(t) = (2)3

−t(2)
2
t (3)−t(3)t,

tr
g4

1g2
2

B(M)
(t) = (2)3

t (3)
3
−t, tr

g2
1g2

B(M)
(t) = (2)3

−t(3)
3
t .

Consider the subgroup H := 〈g2
1, g2

2〉G ∼= A4 of G. The graded characters of the H-action
on B(Oχ

g ) are exactly those of the left column in the above list. If considered in characteristic 2,
these polynomials are divisible by the corresponding graded characters of the 36-dimensional Nichols
algebra, with (2)t(3)t as common quotient.

4.4. dim M = 4, dimB(M) = 5184

Assume chark 6= 2 and that k admits a primitive third root of unity ζ. Choose

G := 〈a, b : a3 = b3 = (ab)2〉 ∼= SL(2, 3)
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and g = a4. The centralizer of g is 〈a〉 ∼= Z6. Choose the representation χ(a) := −ζ. This leads to the
following graded characters of B(Oχ

g ):

tre
B(M)(t) = (2)4

t (2)
2
t2(3)4

t2 ,

tra
B(M)(t) = (2)4

t (2)
4
−t(2)

2
t2(2)ζt(2)2

−ζt(2)
3
ζ2t(2)

3
−ζ2t(2)−ζt3 ,

tra2

B(M)(t) = (2)4
t (2)

4
−t(2)

2
t2(2)3

ζt(2)
3
−ζt(2)

2
ζ2t(2)−ζ2t(2)ζ2t3 ,

tra3

B(M)(t) = (2)4
−t(2)

2
t2(3)4

t2 ,

tra4

B(M)(t) = (2)4
t (2)

4
−t(2)

2
t2(2)2

ζt(2)−ζt(2)3
ζ2t(2)

3
−ζ2t(2)ζt3 ,

tra5

B(M)(t) = (2)4
t (2)

4
−t(2)

2
t2(2)3

ζt(2)
3
−ζt(2)ζ2t(2)

2
−ζ2t(2)−ζ2t3 ,

trab
B(M)(t) = (2)4

t (2)
4
−t(3)

4
t2 .

In characteristic 2, G = A4 yields a Nichols algebra with the same Hilbert series. Some of the
above conjugacy classes merge in this case, because SL(2, 3) is a Z2-extension of A4, but apart from
that, the resulting graded characters are the same as above.

4.5. dim M = 5, dimB(M) = 1280

Choose
G := 〈a, b : a4, b4, ab3a2b2〉

and g := a. G is isomorphic to the GAP’s small group number 3 of size 20 [24], a semi-direct product
of Z5 and Z4. The centralizer of g is 〈a〉 ∼= Z4. Choose the representation χ(a) := −1. Then, B(Oχ

g ) is
a faithful G-representation of dimension 1280 with the following graded characters:

tre
B(M)(t) = (2)4

t (2)
4
t2(5)t, tra

B(M)(t) = (2)4
−t(2)

2
t (2)t2(2)t4(5)t,

tra2

B(M)(t) = (2)4
−t(2)

4
t (2)

2
t2(5)t, tra3

B(M)(t) = (2)4
−t(2)

2
t (2)t2(2)t4(5)t,

tra3b
B(M)(t) = (2)4

−t(2)
4
t (2)

4
t2 .

There appears a second, non-isomorphic (but dual) Nichols algebra if one chooses g := a3,
χ(a) := −1 instead (see Example 2.1 in [25]). It features the same graded characters as B(Oχ

a ) above.

4.6. dim M = 6, dimB(M) = 576

There are three pairwise non-isomorphic cases to consider with dim M = 6 and dimB(M) = 576.
First, choose G = S4 and g := (1 2). The centralizer of g is 〈(1 2), (3 4)〉 ∼= Z2/Z2. Choose the

representation with χ((1 2)) = −1 and χ((3 4)) = −1. The graded characters of B(Oχ
g ) are:

tre
B(M)(t) = (2)4

t (2)
2
t2 (3)2

t , tr(1 2)
B(M)

(t) = (2)4
−t(2)t4 (3)2

t ,

tr(1 2)(3 4)
B(M)

(t) = (2)4
t (2)

4
−t(3)

2
t , tr(1 2 3)

B(M)
(t) = (2)4

t (2)
4
−t(2)

2
t2 ,

tr(1 2 3 4)
B(M)

(t) = (2)2
t (2)

4
−t(2)t2 (3)2

t .

Now, choose the representation χ((1 2)) = −1, χ((3 4)) = 1 instead. Then, the graded characters
of B(Oχ

g ) are:

tre
B(M)(t) = (2)4

t (2)
2
t2 (3)2

t , tr(1 2)
B(M)

(t) = (2)2
t (2)

4
−t(2)t2 (3)2

t ,

tr(1 2)(3 4)
B(M)

(t) = (2)4
−t(2)

2
t2 (3)2

t , tr(1 2 3)
B(M)

(t) = (2)4
t (2)

4
−t(2)

2
t2 ,

tr(1 2 3 4)
B(M)

(t) = (2)2
t (2)

4
−t(2)t2 (3)2

t .
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Third, choose G = S4 and g := (1 2 3 4). The centralizer of g is 〈(1 2 3 4)〉 ∼= Z4. Choose the
representation χ((1 2 3 4)) = −1. Then, B(Oχ

g ) has the following graded characters:

tre
B(M)(t) = (2)4

t (2)
2
t2(3)2

t , tr(1 2)
B(M)

(t) = (2)2
t (2)

4
−t(2)t2(3)2

t ,

tr(1 2)(3 4)
B(M)

(t) = (2)4
t (2)

4
−t(3)

2
t , tr(1 2 3)

B(M)
(t) = (2)4

t (2)
4
−t(2)

2
t2 ,

tr(1 2 3 4)
B(M)

(t) = (2)4
−t(2)t4(3)2

t .

Note how the graded characters differ pairwise for these three cases, a simple way to see that the
three Nichols algebras obtained are non-isomorphic, not even as S4-representations, although the first
and the second case are twist-equivalent to each other [26].

4.7. Observations

From the examples of the previous sections, we derive the following observations, which may
help us in understanding the factorization of the Hilbert series and graded characters of any Nichols
algebra. A theory of the representations coming from a Nichols algebra should be able to explain all
of them.

1. The zeros of the graded characters of all examples above are n-th roots of unity, where n most
of the time is a divisor of #G, but not always: In Section 4.4, ninth roots of unity appear though
#G = 24; in Section 4.5, we have #G = 20, but tra

B(M)
(t) has an eighth root of unity. A deeper

understanding of why there are only roots of unity and which roots appear how often is eligible.
2. Each of the characters trg

B(M)
(t) with g 6= e includes a factor 1− t (or 1 + t in characteristic

2); therefore, the non-graded character trg
B(M)

(t)(1) vanishes. From this follows that all of the
above Nichols algebras are (seen as their respective G-representations) multiples of the regular
G-representation. The only exceptions to this are the 432-dimensional and the 72-dimensional
Nichols algebras of Sections 4.2 and 4.3, each of which admits a single non-trivial conjugacy class
with non-vanishing character.

3. The smallest common multiple p of the graded characters of a single Nichols algebra has
a surprisingly small degree. We want to point out that the quotient p/ trg

B(M)
(t) typically

is a polynomial whose roots have the same order as g has in G.
4. Although all of the characters factor nicely (see point (1)), there is no corresponding factorization

of the respective representations; we showed this in Section 4.1.

5. Conclusions

Quite often the factorization of the graded trace of a group acting on a finite-dimensional Nichols
algebra can be explained by finer root systems. However in the most interesting cases of rank 1 we
have no satisfying answer. We give these graded traces as empirical data and observe in particular that
the G-representations do not factorize. We view our preliminary results on one hand as motivation to
search for more systematic constructions of some of these Nichols algebras (even the Fomin Kirillov
algebra of dimension 12 over S3) in terms of folding, on the other hand some factorizations follow in
these cases from subalgebras, which also could be the general picture.
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