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Abstract: The scale of an endomorphism of a totally disconnected, locally compact group G is defined
and an example is presented which shows that the scale function is not always continuous with
respect to the Braconnier topology on the automorphism group of G. Methods for computing the scale,
which is a positive integer, are surveyed and illustrated by applying them in diverse cases, including
when G is compact; an automorphism group of a tree; Neretin’s group of almost automorphisms of a
tree; and a p-adic Lie group. The information required to compute the scale is reviewed from the
perspective of the, as yet incomplete, general theory of totally disconnected, locally compact groups.
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1. Introduction

Let G be a totally disconnected, locally compact (t.d.l.c.) group. A fundamental theorem about
t.d.l.c. groups, proved by van Dantzig in the 1930s, see [1] and ([2] Theorem II.7.7), asserts that G has
a base of neighbourhoods of the identity consisting of compact open subgroups. These subgroups
are important for the definition of the scale of endomorphisms α : G → G, which is a positive integer
gauging the action of α. The precise definition is given in Section 2. Computing the scale is a problem
which, as will be seen in examples, depends very much on a description of the group G and of the
endomorphism α (the examples in fact treat inner automorphisms), and one way to evaluate our
understanding of general t.d.l.c. groups is whether we can carry out this computation.

Sections 3 and 4 describe two approaches to computing the scale and use them in examples.
The first approach is the ‘spectral radius formula’ given by Rognvaldur Möller in [3], and the second
uses the structure theorem given in [4,5] for compact open subgroups at which the scale is attained.
One of the examples in Section 4 is a p-adic Lie group and it is seen that the scale may be computed
in terms of eigenvalues in the Lie algebra and minimising subgroups in terms of eigenvectors.
This observation, together with the spectral radius formula, results about the scale such as in [6],
and applications of scale techniques to answer questions about t.d.l.c. groups which are answered in
the connected case with approximation by Lie group methods [7,8], indicate that scale techniques may
substitute for Lie methods in some circumstances. Motivation for developing improved methods for
computing the scale is provided by these considerations.

Throughout the paper, End(G) will denote the monoid of continuous endomorphisms of G;
Aut(G) will be the group of automorphisms of G; and Inn(G) the group of inner automorphisms of G.

2. The Scale of an Endomorphism

The scale was defined first for inner automorphisms of a t.d.l.c. group in [4,5] and the definition
was extended to endomorphisms in [9]. For this definition, note that, if V is a compact open subgroup
of G and α a continuous endomorphism, then α(V) ∩V is an open subgroup of the compact group
α(V) and hence the index [α(V) : V ∩ α(V)] is finite.
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Definition 1. Let α ∈ End(G). The scale of α is the positive integer

s(α) := min {[α(V) : V ∩ α(V)] | V ≤ G compact and open} .

Any V at which the minimum is attained is minimising for α.

The scale and related concepts have been used in papers such as [7,8,10] to answer questions
concerning t.d.l.c. groups. Many applications apply results to the scale function on G induced by the
conjugation map G → Inn(G). For this scale function, we have the following, which is proved in [4].

Theorem 1. The scale function s : G → N is continuous for the group topology on G and the discrete topology
on N.

This theorem is used in [10] to answer a question of K. H. Hofmann about the structure of t.d.l.c.
groups. Ideas from the proof of the theorem have also been used to answer questions about the
Chabauty space of closed subgroups of a t.d.l.c. group in [11,12].

It is a natural question whether the scale function is continuous with respect to the group topology
with which Aut(G) is usually equipped, namely, the Braconnier topology, see [13]. That is not the case,
however, as may be seen as follows.

Example 1. Let G = (K((t))2,+) be the additive group of the 2-dimensional vector space over the field K((t))
of formal Laurent series over the finite field K and let α be the automorphism α( f , g) = (t f , t−1g). Then,
s(α) = |K|. Define, for each n ∈ Z, αn( f , g) = ( f (n), g(n)) where

f (n) =
n

∑
k=−∞

fk−1tk +
∞

∑
k=n+1

fktk and g(n) =
n−1

∑
k=−∞

gk+1tk + fntn +
∞

∑
k=n+1

gktk.

Then, it may be verified that αn → α in the Braconnier topology as n→ ∞ but s(αn) = 1 for every n.

The lack of continuity of the scale might be remedied by considering the coarsest group topology,
T say, on Aut(G) finer than the Braconnier topology and for which the scale is continuous. (It has
been pointed out by Christian Rosendal that, when G is second countable, T cannot be Polish if it is
strictly finer than the Braconnier topology.) It would be desirable to have a more direct definition of
T . Even more desirable would be to have a directly defined topology on End(G) for which T is the
subspace topology on Aut(G). In analogy with the ring of operators on a normed space and its open
group of invertible operators, we might also ask whether Aut(G) open in this topology?

3. Möller’s “Spectral Radius” Formula

The scale may be calculated without finding a minimising subgroup.

Theorem 2. [Spectral radius] Let V be any compact open subgroup of G and α be in End(G). Then, the scale
of α is equal to

s(α) = lim
n→∞

[αn(V) : αn(V) ∩V]
1
n .

This formula is referred to as the “spectral radius formula” because of the similarity with the
formula of the same name for linear operators on normed spaces. It turns out that the scale of an
element x in a t.d.l.c. group G is exactly the spectral radius of the operator of translation by x on a
certain normed convolution algebra on G, see [14]. The formula was proved for automorphisms by
R. G. Möller in ([3] Theorem 7.7) and extended to endomorphisms in [9, Proposition].

The spectral radius formula is illustrated by the next two examples.
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Example 2. Let Tq+1 be the regular tree in which every vertex has valency q + 1 and let G = Aut(Tq+1). It
may be seen that G is a topological group under the topology of pointwise convergence on vertices and that for
each vertex, v, in Tq+1 the stabiliser stabG(v) is open. Since, moreover, stabG(v) isomorphic as a topological
group to the iterated wreath product Sq+1 o Sq o Sq o . . . and is therefore profinite, it follows that G is a locally
compact group. It is a totally disconnected group because, for each pair x 6= y ∈ G we may choose v ∈ V(Tq+1)

with x.v 6= y.v and then the sets U1 = {g ∈ G | g.v = x.v} and U2 = {g ∈ G | g.v 6= x.v} are an open
partition of G with x ∈ U1 and y ∈ U2.

Every automorphism of G is inner. This may be shown, see [15], by observing that{
stabG(v) | v ∈ V(Tq+1)

}
is a set of maximal compact open subgroups of G on which each automorphism,

α say, acts, and that the tree Tq+1 may be reconstructed from this set of subgroups. The action of α on{
stabG(v) | v ∈ V(Tq+1)

}
thus induces an automorphism, xα, of Tq+1 and it may be seen that α is equal to the

inner automorphism of conjugation by xα.
Consider x ∈ G and the inner automorphism αx : g 7→ xgx−1. Let U = Gv for some vertex v. As described

in [15], there are two cases: x could have finite orbits in Tq+1, in which case it is called elliptic; or x could have
infinite orbits in Tq+1, in which case it is called hyperbolic.

x is elliptic. In this case, {αn
x(U) | n ≥ 0} = {stabG(xn.v) | n ≥ 0} is finite and hence the set of indices

[αn
x(U) : αn

x(U) ∩U] is bounded. Then,

s(x) = lim
n→∞

[αn
x(U) : αn

x(U) ∩U]
1
n = 1.

x is hyperbolic. In this case, x is a translation along a geodesic path `, where a vertex w is on ` if the distance
from w to x.w is a minimum. Let this minimum distance be d, so that x translates ` by distance d. Let w
be the closest vertex on ` to the given vertex v. Then, x.w is the closest vertex on ` to x.v and the path from
v→ w→ x.w→ x.v is the shortest path from v to x.v and has length d + 2c, where c is the distance from v
to `. Since the index [stabG(u1) : stabG(u1) ∩ stabG(u2)] is equal to (q + 1)qd(u1,u2)−1 for any two vertices u1

and u2, as may be seen by an application of the Orbit-Stabiliser Theorem, it follows that

[αn
x(U) : αn

x(U) ∩U] = [stabG(xn.v), stabG(xn.v) ∩ stabG(v)] = (q + 1)qdn+2c−1.

Hence

s(x) = lim
n→∞

(
(q + 1)qdn+2c−1

) 1
n
= qd.

Example 3. Let G = FZ, where F is a non-trivial finite group, and equip G with the product topology and the
pointwise product. Then, G is a compact group. Hence every endomorphism of G has scale 1 because G itself is a
compact subgroup invariant under the endomorphism.

Let α the shift automorphism α( f )n = fn+1. Consider the subgroup

UK =
{

f ∈ FZ | f (k) = 1F for 0 ≤ k < K
}

.

An easy calculation shows that

[αn(UK) : αn(UK) ∩UK] =

{
|F|n, if 0 ≤ n ≤ K

|F|K, if n > K
.

Hence we find, as expected, that
s(α) = lim

n→∞
|F|

K
n = 1.

4. Identifying Minimising Subgroups

Minimising subgroups have a structural characterisation which may be used to calculate the scale.
Moreover, the proof of this characterisation involves a procedure for finding minimising subgroups.
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The characterisation and the procedure for finding minimising subgroups will now be described and
then illustrated in several examples.

The characterisation of minimising subgroups for α ∈ End(G) involves the following two
subgroups defined for any compact and open subgroup V of G.

V+ = {x ∈ V | ∃{xn}n∈N ⊂ V with x0 = x and xn = α(xn+1) for each n ∈ N} (1)

V− = {x ∈ V | αn(x) ∈ V for all n ∈ N} .

The sequence {xn}n∈N appearing in the definition of V+ is a “history” of x as α is iterated and
the condition for x to be in V+ is that this history is contained in V. This history need not be unique
because α need not be injective, and it is not required that all histories of x lie in V. The condition for x
to be in V− is that the “future” of x when α is iterated should lie in V.

In what follows, it is important to note that α(V+) ≥ V+. Hence,
⋃

n∈N αn(V+) is an increasing
union of subgroups of G and is therefore itself a subgroup.

Theorem 3 (The structure of minimising subgroups). Let α ∈ End(G) and V be a compact open subgroup
of G. Then, V is minimising for α if and only if

TA: V = V+V−
TB1: V++ :=

⋃
n∈N αn(V) is closed and

TB2: the sequence of integers
{
[αn+1(V+) : αn(V+)] | n ∈ N

}
is constant.

In this case, s(α) = [α(V+) : V+].

Definition 2. A subgroup V is tidy above for α, if it satisfies condition TA; tidy below if it satisfies
conditions TB1 and TB2; and is tidy if it is tidy above and below.

The condition TB2 is redundant if α is injective because it follows from the other conditions in
that case. Hence, this condition did not appear in [4], which deals with automorphisms only.

4.1. The Tidying Procedure

This section describes a three-step procedure which takes as input a general compact open
subgroup, U, and produces a subgroup tidy for α. The procedure is given effect by the following
three propositions.

Proposition 1 (Step 1). Let U ≤ G be compact and open and α ∈ End(G). Then, there is N ∈ N such that
the subgroup U−N =

⋂N
n=0 α−n(U) is tidy above for α. For this N, we have

[α(U−N) : α(U−N) ∩U−N ] ≤ [α(U) : α(U) ∩U].

Remark 1. The proof of the proposition involves forming the decreasing sequence of subgroups {Uk}k∈N, where

Uk = {u ∈ U | ∃u0, u1, . . . , uk ∈ U with un = α(un+1) for 0 ≤ n < k and u0 = u} . (2)

Then,
⋂

k∈N Uk = U+ and N is the first k such that Uk ⊂ U+(U ∩ α−1(U)). That such k exists follows
from compactness of Uk and the fact that U+(U ∩ α−1(U)) is an open neighbourhood of U+. This step involves
cutting down U to the subgroup U−N and motivates the name ‘tidy above’ for the factorisation property satisfied
by U−N .

The next two steps involve ensuring that the group is ‘tidy below’ by including in it the compact
subgroup identified in the next proposition.
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Proposition 2 (Step 2). Suppose that V ≤ G is tidy above for α and define

LV = {x ∈ G | ∃m, n ∈ N with x ∈ αm(V+) and αn(x) ∈ V−} .

Then, LV is compact and α-stable.

Local compactness of G is again important in the proof of this proposition.
The third proposition combines V with LV to form a subgroup that is tidy for α. It is not enough to

simply multiply the two subgroups because that might not be a subgroup. The subgroup generated by
V and LV might not be compact, and so that method of combining the subgroups will not work either.

Proposition 3 (Step 3). Suppose that V ≤ G is tidy above for α and define

Ṽ = {x ∈ V | xLV ⊂ LVV} and W = ṼLV .

Then W is “a compact open subgroup of G that is tidy for α” and

[α(W) : α(W) ∩W] ≤ [α(V) : α(V) ∩V].

4.2. Tidy Subgroups Are Minimising and Conversely

These three steps take a general compact open subgroup and modify it to produce a tidy subgroup.
The next result implies that this subgroup is minimising for α.

Theorem 4. The index [α(W) : α(W) ∩W] is the same for all compact open subgroups tidy for α.

To prove the claim that tidy subgroups are minimising, suppose that the compact open subgroup U
is minimising and apply the tidying procedure to U. Then, the subgroup W so produced is tidy and
[α(W) : α(W) ∩W] ≤ [α(U) : α(U) ∩U]. Since U was already minimising, we conclude that W is
minimising and hence so are all subgroups tidy for α.

That all minimising subgroups are tidy may be seen by noting that the inequalities in
Propositions 1 and 3 are equalities if and only if the group already satisfies the relevant tidiness
condition. Hence, if U is already minimising, the tidying procedure does not alter it and U is
therefore tidy.

4.3. Tidy Subgroups and the Scale in Examples

Theorem 3 and the notion of tidy subgroup will now be illustrated by using them to compute the
scale for the same automorphisms as in the previous section, as well as for some additional examples.

Example 2 (Revisited), let G = Aut(Tq+1) and α = αx be an automorphism as before. The tidying
procedure will be applied with U = stabG(v) for an arbitrary vertex v in Tq+1. For this, note that
αn

x(U) = stabG(xn.v).
Since αx is an automorphism, and is in particular injective, the subgroup Uk defined as in

Equation (2), is equal to
⋂k

j=0 αj(U) and the subgroup U+ defined as in Equation (1) is equal
to
⋂∞

j=0 αj(U). Hence, Uk is the fixator of the vertices v, x.v, . . . , xk.v and U+ is the fixator of
the vertices xn.v, n ∈ N. As before, the cases when x is elliptic and when it is hyperbolic are
treated separately.

x is elliptic. The orbit xn.v, n ∈ Z is finite and so there is k such that {v, x.v, . . . , xk.v} is equal to this
orbit. Choosing N = k, we then have that U+ = Uk and it is easily seen that U− is equal to this
subgroup as well. Hence, putting

V = Uk = stabG(v) ∩ stabG(x.v) ∩ · · · ∩ stabG(xk.v),
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we have that αx(V) = V = V+ = V−. Hence, V is tidy above. It follows that V++ = V as well and is
closed. Therefore, V is tidy for αx. Of course,

[αx(V) : αx(V) ∩V] = [V : V] = 1.

x is hyperbolic. As before, let ` be the axis for x, suppose that x translates along ` through distance d,
let c be the distance from v to `, and let w be the vertex on ` that is closest to v. In addition, denote the
neighbour of w closest to x.v by w+ and the neighbour of w closest to x−1.v by w−.

The subgroup U itself is not tidy for αx. To see this, note that since U+ fixes all vertices xn.v
with n ≥ 0, it fixes w and w+ as well. Similarly, U− fixes w and w−. Hence U 6= U+U− if v 6= w
and U is not tidy above. The same conclusion holds even when v = w because, while U acts as the full
permutation group Sq+1 on the q + 1 neighbours of w, U+ and U− each fix one of the neighbours and
Sq+1 is not equal to the product of two such subgroups. We see too that, since x fixes every vertex on
the path from v to x.v, the same calculation as in the earlier discussion yields that

[αx(U) : αx(U) ∩U] = (q + 1)qd+2c−1, (3)

which is strictly greater than qd. Hence, U is not minimising.

Step 1 The subgroup U−1 = U ∩ α−1
x (U) is tidy above however. Setting V = U−1, we have that V

fixes all vertices on the path from w to x−1.w. Hence, the Tits independence property for Aut(Tq+1)

implies that V = H+H−, where H+ and H− are the fixators in V of the components S+ and S−
of Tq+1 formed when the path from w to x−1.w is deleted and containing x−1.w and w respectively.
Since H± ≤ V±, it follows that V is tidy above. The index we are interested in may be calculated to be

[αx(V) : αx(V) ∩V] =

{
(q− 1)qd+c, if v 6∈ `

qd, if v ∈ `
, (4)

which is strictly less than that found in (3). However, it is not the minimum value calculated using the
spectral radius formula unless v happens to lie on `, or q = 2 and c = 1. The second and third steps of
the tidying procedure must therefore be implemented to find a minimising subgroup.

Carrying out these steps will require labelling some more vertices of Tq+1. Denote the set of q + 1
neighbours of w by N(w) and similarly for x−1.w. Recall that w+ and w− are neighbours of w on `,
and denote by wo the neighbour of w lying on the path from v to w. Then x−1.w+, x−1.w− and x−1.wo

are neighbours of x−1.w: x−1.w+ is the neighbour closest to w; x−1.w− is closest to x−2.w; and x−1.wo

lies on the path from x−1.v to x−1.w. The subgroup V found in the previous paragraph fixes all vertices
on ` between w and x−1.w as well as the vertices on the paths joining v to w and x−1.v to x−1.w, that is,
all vertices on the path from v to x−1.v. In particular, V acts on N(w) by fixing wo and w− and as the
full symmetric group on N(w) \ {wo, w−}; and acts on N(x−1.w) by fixing x−1.wo and x−1.w+ and as
the full symmetric group on N(x−1.w) \ {x−1.wo, x−1.w+}.

Step 2 The definition of LV in Proposition 2 implies that y belongs to this subgroup if αn
x(y) ∈ V for

all but finitely many n. Hence, tree automorphisms in LV fix all the vertices of ` and all vertices on
paths joining xn.v to ` except for finitely many n. The action of LV on N(w) thus fixes w+ and w− and
permutes vertices in N(w) \ {w−, w+} arbitrarily; and its action on N(x.w) fixes x−1.w− and x−1.w+

and permutes vertices in N(x.w) \ {x−1.w+, x−1.w−} arbitrarily. That the closure of LV is compact as
claimed in Proposition 2 may be seen by observing that this closure is the fixator of all vertices on `.

Step 3 That the product LVV is not a group may be seen by considering its action on N(w). While V
and LV both fix w, we have that LV fixes w+ and w− and acts as Sym(N(w)) \ {w−, w+}) on the
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remaining vertices in N(w); and V fixes wo and w− and acts as Sym(N(w)) \ {wo, w−}) on the
remaining vertices; but the product

Sym(N(w)) \ {w−, w+})Sym(N(w) \ {wo, w−})

is not a subgroup of Sym(N(w)). In the present example, 〈LV , V〉 is compact and equal to
the fixator of the path from w to x−1.w, which is tidy for αx. We shall see, however, that the
procedure described in Proposition 3 produces a different tidy subgroup. According to this
procedure, define Ṽ = {g ∈ V | gLV ⊂ LVV}. To determine Ṽ, we apply the following lemma about
finite permutation groups to the subgroups Sym(N(w)) \ {wo, w−}) and Sym(N(w)) \ {w+, w−})
of Sym(N(w)) \ {w−}).

Lemma 1. Let Sq denote the permutation group Sq = Sym({1, 2, . . . , q}). Then,{
π ∈ stabSq(1) | πstabSq(q) ⊂ stabSq(q)stabSq(1)

}
= stabSq(1, q).

Proof. Note that no permutation in stabSq(q)stabSq(1) sends 1 to q. On the other hand, if π ∈ stabSq(1)
and does not fix q, then there is j ∈ {2, . . . , q− 1} such that π(j) = q and there is σ ∈ stabSq(q) such
that σ(1) = j. Then πσ(1) = q and is not in stabSq(q)stabSq(1).

It follows from Lemma 1 that

Ṽ ⊂
{

g ∈ V | g fixes wo, w− and w+
}
∩
{

g ∈ V | g fixes x−1.wo, x−1.w− and x−1.w+
}

.

Since elements of V fix wo, w−, x−1.w+ and x−1.wo already,

Ṽ ⊂
{

g ∈ V | g fixes w+ and x−1.w−
}

.

It is easily seen that all elements of V fixing w+ and x−1.w− belong to Ṽ. Hence Ṽ = stabV(w+)∩
stabV(x−1.w−). Then,

W = LVṼ = stabG(w+) ∩ stabG(x−1.w−),

that is, elements of W fix all vertices on the axis ` between x−1.w− and w+.
To compute the scale of αx using this tidy subgroup W, observe that αx(W) fixes all vertices on `

between w− and x.w+ and αx(W) ∩W fixes all vertices between x−1.w− and x.w+. The distance on `

between x−1.w− and w− is d, and the orbit of x−1.w− under αx(W) therefore has order qd. Hence,

s(αx) = [αx(W) : αx(W) ∩W] = qd.

Regular trees are a particular type of building—see [16] for the definition—and automorphism
groups of locally finite buildings are totally disconnected, locally compact groups. The calculation
of the scale in terms of geometric data describing the building could also be carried out by a similar
approach to that used for trees.

Example 3 (Revisited), let G = FZ for some finite group F and α be the shift automorphism
as before. It has already been remarked that G is compact and invariant under α and so s(α) = 1.
When the tidying procedure is applied with U = G there is no change: in Step 1, we have N = 0 and
so V = U in the next step; in Step 2, LV = V; and in Step 3, Ṽ = V and W = V = U.

The tidying procedure will be illustrated by applying it to the compact open subgroup

UX =
{

f ∈ FZ | f (k) = 1F for all k ∈ X
}

,
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where X is a finite subset of Z. When X = {0, 1, . . . , K− 1}, we recover the subgroup UK considered
previously.

Step 1 Since α is an automorphism, the group (UX)n defined in Proposition 1 is equal to
⋂n

k=0 αk(UX)

and the number N whose existence is guaranteed by the proposition depends on X.
In the case when X = {0, 1, . . . , K− 1} the subgroup UX = UK is already tidy above and N = 0.

To see this, note that

(UK)+ =
{

f ∈ FZ | f (k) = 1F if k < K
}

and (UK)− =
{

f ∈ FZ | f (k) = 1F if k ≥ 0
}

.

In this case, we have [α(UK) : α(UK) ∩UK] = |F|.
For another case, suppose that X = {0, 1, 5, 6, 7, 8}. Then,

αn(UX) =
{

f ∈ FZ | f (k) = 1F if k ∈ X− n
}

.

Hence, α(UX) ∩UX =
{

f ∈ FZ | f (k) = 1F if k ∈ X ∪ (X− 1)
}

. In other words,

α(UX) =
{

f ∈ FZ | f (k) = 1F if k ∈ {−1, 0, 4, 5, 6, 7}
}

and

α(UX) ∩UX =
{

f ∈ FZ | f (k) = 1F if k ∈ {−1, 0, 1, 4, 5, 6, 7, 8}
}

and [α(UX) : α(UX) ∩UX ] = |F|2. Moreover,

(UX)+ =
{

f ∈ FZ | f (k) = 1F if k < 9
}

and (UK)− =
{

f ∈ FZ | f (k) = 1F if k ≥ 0
}

and (UX)+(UX)− 6= UX . Similar calculations apply for (UX)1 = α(UX) ∩UX and (UX)2 = α2(UX) ∩
α(UX) ∩UX . However,

(UX)3 =
{

f ∈ FZ | f (k) = 1F if − 3 ≤ k ≤ 8
}

,

which is tidy above, and [α((UX)3) : α((UX)3) ∩ (UX)3] = |F|.

Steps 2 and 3 For any subgroup UX with X 6= ∅ we have

LUX =
{

f ∈ FZ | f (k) = 1F for all but finitely many k
}

and LUX UX = G.
Lie groups over local fields are totally disconnected and locally compact as well, and the scale of

elements in such groups, that is, of inner automorphisms of the groups, was computed by H. Glöckner
in [17]. His were the first calculations of the scale for groups that went beyond the basic cases seen in
the previous examples.

Example 4. Let G be a Lie group over the field Qp of p-adic numbers. Glöckner does not use the tidying
procedure to find subgroups tidy for x (that is, for αx) but instead describes V+ and V− directly in terms of the
normal form of the Lie algebra automorphism Adx and calculates s(x) in terms of eigenvalues of Adx (in a
finite extension of Qp). This correspondence between the scale and tidy subgroups on one hand and eigenvalues
and eigenspaces on the other is evidence that scale techniques are a substitute for Lie algebra techniques when
studying t.d.l.c. groups that are not Lie groups over local fields.

The main ideas in [17] may be sketched as follows. Assume that V is tidy for x, then V++ is closed and
so is a Lie subgroup of G. Moreover, V+ is an open subgroup of V++ and s(x) = ∆(Ix), where Ix is the
automorphism of V++ induced by conjugation by x and ∆ is the module function on automorphisms. The
module of this automorphism of V++ is then equal to the module of the automorphism L(Ix) induced on the Lie
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algebra of V++. Glöckner then describes this Lie algebra as a subalgebra of L(G) (the Lie algebra of G) in what
he calls the contraction decomposition of Adx. This decomposition applies to any linear automorphism φ of a
finite-dimensional vector space, L, over a local field of characteristic 0, and expresses L as

L = Lp ⊕ L0 ⊕ Lm

where

Lp :=
{

y ∈ L : φ−k(y)→ 0 as k→ ∞
}

Lm :=
{

y ∈ L : φk(y)→ 0 as k→ ∞
}

and

L0 :=
{

y ∈ L : {‖φk(y)‖}k∈Z is bounded
}

.

Glöckner bases this decomposition on a variation on ([18] Lemma 3.4). Applying it when L is the Lie
algebra of G and φ = Adx, he finds that Lp ⊕ L0 is a subalgebra isomorphic to the Lie algebra of V++. Using
this decomposition, Glöckner shows in ([17] Corollary 3.6) that, if G is a Lie group over a local field, K, of
characteristic 0 and x is in G, then

s(x) = ∏
|λi |≥1

|λi|,

where λi are the roots of the characteristic polynomial of Adx in a splitting field, K′, for this polynomial and | · |
is the unique extension to K′ of absolute value on K.

Glöckner thus reduces the computation of the scale to finding eigenvalues and avoids the need to find tidy
subgroups. He gives more explicit formulæ for the scale on linear algebraic groups. The formulæ and their
relation to the methods for computing the scale previously discussed may be illustrated with the case when the
group is GL(2,Qp) and the element x has the property that its characteristic polynomial splits over Qp, in which
case there is a basis for Q2

p with respect to which x has a diagonal matrix with entries λ1, λ2, the eigenvalues
of x. Consider the compact, open subgroup U = GL(2,Zp). Note that the condition that U is a group forces the
determinant of each element of U to have p-adic absolute value equal to 1.

Applying powers of αx to U yields that

αn
x(U) =

{(
a (λ1λ−1

2 )nb
(λ−1

1 λ2)
nc d

)
: a, b, c, d ∈ Zp, |ad− bc|p = 1

}

=

{(
a p−knb

pknc d

)
: a, b, c, d ∈ Zp, |ad− bc|p = 1

}
, (5)

where |λ1λ−1
2 | = pk. Thus, if k = 0, then αx(U) = U and s(αx) = s(x) = 1. Suppose that k > 0. (The case

when k < 0 is similar.) Then,

αn
x(U) ∩U =

{(
a b

pknc d

)
: a, b, c, d ∈ Zp, |ad− bc|p = |ad|p = 1

}

and it may be calculated that
[αn

x(U) : αn
x(U) ∩U] = (p + 1)pkn−1.

Hence, by Theorem 2, s(x) = limn→∞

(
(p + 1)pkn−1

) 1
n
= pk = |λ1λ−1

2 |, which is the same value as
given in the last example in ([17] Corollary 3.6).

The subgroup U is not tidy above for αx when k > 0 because, as follows from (5),

U+ =

{(
a b
0 d

)
: a, b, d ∈ Zp, |ad|p = 1

}
and U− =

{(
a 0
c d

)
: a, c, d ∈ Zp, |ad|p = 1

}
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and the element u =

(
0 1
1 0

)
belongs to U but not to U+U−.

Step 1 of the tidying procedure. The subgroup

V = U ∩ αx(U) =

{(
a b

pkc d

)
: a, b, c, d ∈ Zp, |ad|p = 1

}

may be verified to be tidy above by showing that every element of V is the product of an upper triangular and a
lower triangular matrix. Proposition 1 thus holds with N = 1 in this case.

Steps 2 and 3 It may also be verified that

V++ =

{(
a b
0 d

)
: b ∈ Qp, a, d ∈ Zp, |ad|p = 1

}
,

which is a closed subgroup of GL(2,Qp), and hence that V is also tidy below. That the tidying procedure
terminates after the first step in this case is no accident: it is shown in ([19] Theorem 3.2) that that occurs for
any automorphism α for which the contraction subgroup,

con(α) = {y ∈ G : αn(y)→ 1G as n→ ∞} ,

is closed and it is shown in ([18] Theorem 3.5) that that is always so for automorphisms of p-adic Lie groups.
Glöckner has also calculated the scale in some cases for linear groups over a skew field, K, with positive

characteristic, see [20]. He shows that, if x is a diagonalisable element in GL(n, K), SL(n, K), PGL(n, K) or
PSL(n, K), then the scale is given by the same formula as in the characteristic 0 case. He does so by writing
down tidy subgroups for αx. In particular, he shows that, if the diagonal entries in x are in order of decreasing
modulus, then certain compact, open subgroups may be written as the product of their subgroup of upper
triangular matrices with their subgroup of lower triangular matrices and that this implies tidiness above.
Tidiness below is again satisfied automatically, as in the previous paragraph, because contraction subgroups for
inner automorphisms are closed.

More is known about p-adic Lie groups than for general t.d.l.c. groups but a key question remains
unanswered even for these groups. If an element x in a t.d.l.c. group satisfies that s(x) = 1 = s(x−1),
then subgroups tidy for x are normalised by x and, conversely, if U is normalised by x, then s(x) =
1 = s(x−1). A t.d.l.c. group G is uniscalar if s(x) = 1 for every x ∈ G and it is shown in [21], relying
on a result in [22], that a p-adic Lie group that is compactly generated and uniscalar has a compact,
open normal subgroup. There are uniscalar t.d.l.c. groups having no compact, open normal subgroups
which are compactly generated, see [23], and which are topologically simple, see [24]. However,
no examples are known of uniscalar t.d.l.c. groups which are topologically simple and compactly
generated, or which are topologically simple (of necessity not compactly generated) and p-adic Lie.

Another significant class of t.d.l.c. groups are the groups of almost automorphisms of trees
introduced by Yu. Neretin, [25,26], and shown to be simple by C. Kapoudjian, [27]. Neretin groups
are also studied in [28], where it is shown that they do not contain a lattice, and the notation used
here conforms with that paper. The papers [29], on abstract commensurators, and [30], on ‘germs of
automorphisms’ are also relevant. Neretin’s groups are also the inspiration for the simple groups
acting on trees recently constructed in [31].

Example 5. An almost automorphism of an infinite, locally finite tree T is a bijection on the vertices
of T which preserves all but finitely many edge relations. The set of almost automorphisms forms a group
under composition of bijections. This group has two subgroups which are important for this discussion: the
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group Aut(T ) of automorphisms of T ; and the group FSym(V) of finite permutations of the vertices of T . Fix a
vertex v in T and let U = stabAut(T )(v). Then, U is a compact group under the subspace topology of Aut(T )
and each almost automorphism of T commensurates some open subgroup of U to another open subgroup. Hence,

{xV | x an almost automorphism and V an open subgroup of U}

is a sub-base of a group topology on the group of almost automorphisms of T . Since U is open in this topology,
the group of almost automorphisms is then a locally compact group. Since non-trivial elements of FSym(V)

cannot be in U, the subgroup FSym(V) is closed in this topology and is easily seen to be normal as well. (It may
be seen that FSym(V) is the quasi-centre of the group of almost automorphisms, see [32] for the definition.)
The quotient of the group of almost automorphisms by FSym(V) is therefore a locally compact group which will
be denoted by AAut(T ). It is this quotient group which will from now on be referred to as the group of almost
automorphisms of T .

Alternative but equivalent definitions of AAut(T ) are used elsewhere. For example, in [28], two almost
automorphisms of T are defined to be equivalent if they agree on the complement of some finite subtree of T
and AAut(T ) is defined to be the set of equivalence classes of almost automorphisms. Since each finite set of
vertices in T spans a finite subtree, this is the same as the equivalence relation of two almost automorphisms
agreeing modulo FSym(V). Almost automorphisms of T may be seen to be equivalent if and only if the actions
they induce on the boundary, ∂T , of the tree agree. The group AAut(T ) may thus be defined in terms of its
action on ∂T . In these terms, AAut(T ) is the full group of the action on Aut(T ) on ∂T .

Almost automorphisms of the rooted tree Tq,r, in which the root has r children and every other vertex
has q children, have been studied extensively. In this notation, Neretin’s group of almost automorphisms
is AAut(T2,2). The group AAut(Tq,r) has the Higman–Thompson group Gq,r, see [33,34], as a dense subgroup
and elements of Gq,r may be represented (non-uniquely) as pairs, (F1,F2), of finite rooted subtrees of Tq,r,
see [33] or ([35] Section 3) for example. Since the scale is continuous, it therefore suffices, in order to compute
the scale on AAut(Tq,r), to compute it for elements represented by such pairs of finite trees. This calculation
is intricate and the general case is not described in full detail here. Instead, the ideas will be illustrated by the
calculation of s(x) for one element x in G2,2 < AAut(T2,2). Note, however, that this example only displays
some of the intricacies arising in the calculation of the scale on AAut(Tq,r).

Let x be the element of G2,2 (also known as Thompson’s group V) described by the pair of trees (F1,F2) in
Figure 1. When G2,2 is embedded in AAut(T2,2), this element denotes the almost automorphism which sends the
vertices labelled 1, . . . , 6 in the tree on the left to the vertices with the corresponding labels 1′, . . . , 6′ in the tree
on the right and copies across the subtrees below each of these vertices. Thus, the subtree of F1 whose root is the
vertex on level 3 and labelled 1 is raised to a subtree with root on level 2, the subtrees with roots on level 3 and
labelled 2 and 3 are copied across to two other subtrees with roots on level 3, the subtrees with roots on level 4
and labelled 4 and 5 are raised to subtrees with roots on level 2 and 3 respectively, and the subtree with root on
level 1 and labelled 6 is lowered to a vertex on level 3.
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1 2 3 4 5

6
v

F1

1′
2′ 3′

4′
5′ 6′

F2

Figure 1. Pair of trees for the element x of Thompson’s group V.

Let U = Aut(T2,2), so that U is a compact, open subgroup of AAut(T2,2), and let Ũ be the subgroup of U
consisting of all automorphisms which fix the vertices labelled 1, . . . , 6 in F1. Then, xŨx−1 is the subgroup
of U consisting of all automorphisms fixing the vertices labelled 1′, . . . , 6′ in F2. Since Ũ and xŨx−1 are both
subgroups of U, it follows that U ∩ x−1Ux ≥ Ũ. The reverse inclusion may be verified by checking cases for
automorphisms not in Ũ. For example, if u ∈ Aut(T2,2) interchanges the two vertices on level 1 of the tree, then
x−1ux maps the vertices of F1 labelled 5 and 6, whose only common ancestor is the root, to vertices which have
the vertex labelled v as a common ancestor, and no such map is an automorphism of the tree. Hence,

[xUx−1 : xUx−1 ∩U] = [U : Ũ] = 32.

That this is not the minimum possible index will be seen by applying the tidying procedure to the
subgroup U.

Step 1 It turns out that U−1 = U ∩ x−1Ux = Ũ is tidy above for x. To see this, Remark 1 tells us that

it suffices to show that Ũ1 ⊆ Ũ+Ũ−1, where Ũ1 = Ũ ∩ xŨx−1 and Ũ−1 = Ũ ∩ x−1Ũx. For this, observe
that, since Ũ is the fixator of F1 and xŨx−1 is the fixator of F2, Ũ1 is the fixator of F1 ∪ F2, see Figure 2.
Furthermore, Ũ−1 is the fixator of the tree F† shown in Figure 3 because x maps the vertices 1†,. . . , 5† to the
vertices 1,. . . , 5; and Ũ+ is the fixator of the tree V+ shown in Figure 4. (V+ includes the infinite path spanned
by the images of the vertices 4 and 5 under positive powers of x. This is explained further in the next paragraph.)
It follows that Ũ+Ũ−1 is the fixator of the tree F† ∩ V+. This intersection is equal to F1 and so Ũ+Ũ−1 = Ũ,
which certainly contains Ũ1. Therefore, Ũ is tidy above. To be consistent with the notation of Section 4.1, Ũ will
now be denoted by V.

1 2 3 4 5

4′

5′ 6′

F1 ∪ F2

Figure 2. Ũ1 is the fixator of the tree F1 ∪ F2.
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1† 2† 3†
4 5

6

5†4†

F†

Figure 3. Ũ−1 is the fixator of the tree F†.

4∗ 5∗ 4‡ 5‡ 4† 5† 4 5

6

V−

1 2 3
54

4′
5′

4′′5′′

V+

Figure 4. Trees spanned by images of 4 and 5 under powers of x.

Steps 2 and 3 It further turns out that LV ≤ V, so that V (that is Ũ) is tidy below as well. To see this,

it suffices to show that, if v ∈ V+ and xNvx−N ∈ V− for some N > 0, then v ∈ V+ ∩V−.
By definition, V+ =

⋂
n≥0 xnVx−n. As x is iterated, the vertices 4 and 5 are pushed down two levels

of T2,2 at a time and their images are at a distance 1 from a half-line descending from the vertex 6, see Figure 4.
This half-line is part of an “axis” for x that is translated down through distance 2 by x. Since V fixes the
vertices 4 and 5, the given element v ∈ V+ fixes the tree V+ shown in Figure 4.

By definition, V− =
⋂

n≤0 xnVx−n. As x is iterated, the vertices 4 and 5 are carried across the tree until
they are the children 4‡ and 5‡ of vertex 2, and then pushed down one level of T2,2 at a time, their images being
at a distance 2 from a half-line descending from the vertex 1, see Figure 4. This half-line is part of an “axis” for x
that is translated up through distance 1 by x. Since V fixes the vertices 4 and 5, V− fixes the tree V−, shown
in Figure 4, which includes this half-line and all vertices within distance 2 of it. For the particular element v,
we have that xNvx−N ∈ V− and so v fixes all vertices in V− below level N. Since v is a tree automorphism,
it follows that v fixes all vertices on the half-line descending from vertex 1. However, it does not follow that v
fixes all images of vertices 4 and 5 above level N, and that must be shown in order to prove that v ∈ V+ ∩V−.
To show this, suppose for example that v interchanges the vertices 4† and 5†. Then, xvx−1 interchanges 4
and 5, and so xvx−1 is in Aut(T2,2) \V. However, x2vx−2 interchanges 4′ and 5′ and so is not in Aut(T2,2).
Similarly, xnvx−n does not belong to Aut(T2,2) for any n ≥ 2, which contradicts that xNvx−N ∈ V−. Hence, v
fixes the vertices 4† and 5†. Similar arguments show that v fixes all images of 4 and 5 in V−, and hence that
v ∈ V−, as claimed.
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Since every v ∈ V+ for which there is N ≥ 1 with xNvx−N ∈ V− must be in V+ ∩ V−, we have that
LV ≤ V and hence that V is tidy below for x. The scale of x is therefore equal to

[xVx−1 : xVx−1 ∩V] = [xŨx−1 : xŨx−1 ∩ Ũ] = 4.

Just as for automorphism groups of trees, the calculation of the scale of the non-uniscalar x ∈ AAut(T2,2)

involves identifying an ‘axis’ for x. This axis consists of two half-lines with finite trees attached, one of which
is translated through distance 2 and determines an attracting end for x, while the other is translated through
distance 1 and determines a repelling end. A dynamical description of the action of an almost automorphism may
be used in general for the calculation of the scale, although the dynamics can be more complicated as there may be
several (and different numbers of) attracting and repelling ends and the almost automorphism may permute some
of them. As seen here, the scale depends on more than just the speed with which the axis is translated towards or
away from the ends, but also on the “thickness” of the axis. A similar description of the dynamics of the action of
almost automorphisms is given in [36], which develops ideas in [37].

5. Computing in t.d.l.c. Groups

In the examples, computing the scale of the element or automorphism of G requires a description
of the element or automorphism, a description of a compact open subgroup, U say, of G and a method
for calculating the images of U under powers of the automorphism and forming their intersections.
The different ways in which these things are done depends on the different concrete representations
of G in each case.

It is a truism that computation in a group depends on the description of the group.
The computations may be at the level of an abstract group described by a presentation or, for some
classes of groups, through a concrete representation. For example, finite groups have concrete
representations as permutations (via Cayley’s Theorem) and also as matrices (via the regular
representation). Lie groups, too, have concrete representations as groups of isometries of symmetric
spaces and also as groups of matrices (via the Lie algebra). The two types of concrete representation
that exist in the cases of finite and Lie groups might be characterised as geometric and algebraic.
They correspond to the two ways of thinking evident in synthetic and analytic geometry and perhaps
too in analogue and digital computing.

Concrete descriptions of t.d.l.c. groups fit the pattern of being geometric or algebraic only to a
more limited extent. The automorphism groups of trees in Example 2 are described in geometric terms
and the scale is calculated in these terms as well, while the p-adic Lie groups in Example 4 are described
and their scale calculated in algebraic terms. Some geometric and algebraic realisations of other t.d.l.c.
groups, and the limitations of such represenations, are sketched in the next few paragraphs.

Many t.d.l.c. groups are defined geometrically as automorphism groups of buildings,
see [15,38,39], and semisimple Lie groups over local fields. Kac-Moody groups over finite fields may also
be represented as acting on buildings. Moreover, just as is the case for finite groups and Lie groups,
every compactly generated t.d.l.c. group has a geometric representation via an action on a Cayley–Abels
graph, [40,41]. Cayley–Abels graphs are unique only up to quasi-isometry however and, although they can
be used to derive bounds on integer invariants of t.d.l.c. groups, see ([30] Proposition 4.6) and [42,43],
they do not provide an effective method for performing precise calculations of invariants such as the
scale unless the graph structure is understood in as much detail as it is for buildings. The limitation of
the Cayley–Abels geometric representation therefore is that, unlike the cases of geometries for finite and
Lie groups, it is not well understood for general t.d.l.c. groups: no such graph has been described for
Neretin’s group for example.

The limitation of algebraic realisations (strictly conceived) is that t.d.l.c. groups such as Aut(Tq+1)

and Neretin’s group do not have finite-dimensional linear representations. However, there is a possible
substitute for algebraic realisations of these groups. The calculation of the scale on Neretin’s group
illustrated in Example 5 uses an approach that is not readily characterised as geometric or algebraic.
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Although the axes of translation featuring in the dynamical description of the almost automorphism
are geometric, the axes and translation distance alone do not determine the scale. The full information
required is encoded in the pair of finite trees representing the almost automorphism. This information
is combinatorial in nature and says how the almost automorphism commensurates the totally
disconnected compact group Aut(T2,2). Since abstract t.d.l.c. groups always contain a compact open,
and hence commensurated, subgroup, they may be realised concretely as groups of commensurators
quite generally, see [29,30,35]. Moreover, given any pair (G, H) such that H is a commensurated
subgroup of G, a t.d.l.c. group G̃, called the relative profinite completion, may be defined in which
the closure of H is a compact open subgroup of G̃, see [44] and the references therein. Examples of
such pairs include the group PSL(n,Z[1/p]) and its commenustared subgroup PSL(n,Z), in which
case the relative profinite completion is isomorphic to PSL(n,Qp); and the Baumslag–Solitar group
BS(m, n) := 〈a, t : tamt−1 = an〉 and commensurated subgroup 〈a〉, in which case the relative profinite
completion is described in [45].

These examples suggest that a suitable substitute for the adjoint representation might be to
represent t.d.l.c. groups concretely as commensurators. This idea is lent support by the fact that,
in p-adic Lie groups, locally normal subgroups (in the local structure theory developed in [46])
correspond to ideals in the Lie algebra, and that the scale (which is defined in terms of commensuration)
may be expressed in terms of eigenvalues. Representing general t.d.l.c. groups as commensurator
groups poses challenges comparable with those facing the use of Cayley–Abels graphs however.

A practical test of any description of a t.d.l.c. group is whether it facilitates calculation of the scale
and identification of tidy subgroups. Seeking descriptions which pass that test for more groups is a task
for further investigations. These investigations might guide a possible”classification” of topologically
simple t.d.l.c. groups in which the groups are arranged into types according to their best method of
concrete description. While linear representations largely suffice in the cases of Lie and finite groups,
that will not be the case for t.d.l.c. groups because automorphism groups of trees, Neretin’s group and
most Kac–Moody groups are not linear, and there may be many others yet to be discovered. Geometric,
linear and commensurator descriptions may all be required but it is not clear that they will suffice.

S. Smith has shown, see [47], how uncountably many simple discrete groups may be used
to produce uncountably many topologically simple, compactly generated t.d.l.c. groups. Smith’s
groups act on trees (not locally finite ones though) and so have a geometric description, modulo an
infinite discrete group, which facilitates calculation of the scale. There seems to be no reason that
there might not be other ways of constructing uncountable families of simple t.d.l.c. groups however.
These, presumably, would also be described modulo objects in some class known to be uncountable.
Arranging groups constructed in these ad hoc ways according to their method of concrete description,
and their local structure as defined in [46], may be the best that can be hoped for in the direction of
a classification.

Calculating the scale of an element of a t.d.l.c. group can use only a finite amount of information.
To calculate the scale, at least in principle, of any element in any compactly generated, topologically
simple t.d.l.c. group would, since there are uncountably many of them, entail describing the group
up to some finite approximation, or modulo information not relevant to the calculation, and then
identifying the element in it up to a finite approximation. It would ultimately be desirable to implement
this calculation in computer software. Indeed, it might be argued that such implementation would be
the benchmark of success for a theory of t.d.l.c. groups and a categorising, or sorting into types, of the
simple ones.
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