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Abstract:



Aggregation functions are mathematical operators that merge given data in order to obtain a global value that preserves the information given by the data as much as possible. In most practical applications, this value is expected to be between the infimum and the supremum of the given data, which is guaranteed only when the aggregation functions are idempotent. Ordered weighted averaging (OWA) operators are particular cases of this kind of function, with the particularity that the obtained global value depends on neither the source nor the expert that provides each datum, but only on the set of values. They have been classified by means of the orness—a measurement of the proximity of an OWA operator to the OR-operator. In this paper, the concept of orness is extended to the framework of idempotent aggregation functions defined both on the real unit interval and on a complete lattice with a local finiteness condition.
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1. Introduction


Aggregation functions [1] are a family of operators that allow us to fuse data—either quantitative or qualitative—in order to obtain a global value that captures the information of the given data as faithfully as possible.



These functions have been widely used in decision making [2,3], where it is necessary to merge the different opinions of several experts, or in image processing tasks [4], where the values of different pixels must be fused in order to obtain a single one.



OWA (Ordered weighted averaging) operators, defined by Yager in [5] for real values, are a kind of aggregation function that include the most widely used ones, such as the arithmetic mean or the order statistics. An OWA operator is simply a weighted average of data which have been previously ordered in a descending way. The main property of OWA operators is the symmetry, which makes them independent of the order in which the data are provided.



Real OWA operators have been classified by Yager in [6] by means of the orness—a measurement of their proximity to the OR-operator. In this way, the orness of the OR-operator is 1, while the orness of the AND-operator is 0 and the orness of the arithmetic mean is equal to [image: there is no content].



In [7], OWA operators have been extended from [image: there is no content] to a complete lattice [image: there is no content] endowed with both a t-norm T and a t-conorm S. The concept of orness has also been generalized to this kind of operator in two ways. On the one hand, a qualitative orness has been defined for OWA operators when the lattice L is finite [4]. On the other hand, when the lattice satisfies a weaker locally-finiteness condition, each OWA operator may be assigned a quantitative orness [8].



The present paper analyzes the possibility of extending both concepts of orness to the wider set of all the aggregation functions lying between the AND and the OR-operators, for which the measurement of their proximity to the OR-operator has sense. These aggregation functions—not necessarily symmetric—are precisely those that are idempotent (see Remark 1). Such maps will be the object of our study when they are defined both on the real case and on some lattices that satisfy the necessary conditions of finiteness.



The extension of the concept of orness to all of the idempotent aggregation functions makes it possible to classify two wide classes of operators: the class consisting of all the Choquet integrals defined on the real unit interval on the one hand, and all the discrete Sugeno integrals defined on an appropriate lattice on the other hand.



The rest of the paper is organized as follows. Section 2 presents the preliminary concepts that will be used further. In Section 3, Yager’s concept of orness is extended to idempotent aggregation functions defined on the real unit interval. Section 4 generalizes the concept of qualitative orness to idempotent aggregation functions defined on finite lattices. The extension of the concept of quantitative orness to this kind of function is analyzed in Section 5 where they are defined on lattices with a local finiteness condition. The paper finishes with some conclusions and references.




2. Preliminaries


In this paper, [image: there is no content] denotes a complete lattice (i.e., a partially ordered set in which all subsets have both a supremum and an infimum). The least element of L is denoted by [image: there is no content] and the greatest one by [image: there is no content]. When L is finite, we will refer to [image: there is no content] as a finite bounded lattice. In some cases, we will require the lattice [image: there is no content] to be distributive, which means that any of the following two equivalent properties holds:


a∧(b∨c)=(a∧b)∨(a∧c)for any a,b,c∈La∨(b∧c)=(a∨b)∧(a∨c)for any a,b,c∈L











A map [image: there is no content] (resp. [image: there is no content]) is said to be a t-norm (resp. t-conorm) on [image: there is no content] if it is commutative, associative, increasing in each component, and has a neutral element [image: there is no content] (resp. [image: there is no content]). For any [image: there is no content], [image: there is no content] will be used to denote [image: there is no content].



Throughout this paper, [image: there is no content] will denote a complete lattice endowed with a t-norm and a t-conorm.



Recall that an n-ary aggregation function is a map [image: there is no content] such that:

	(i)

	
[image: there is no content] whenever [image: there is no content] for [image: there is no content].




	(ii)

	
[image: there is no content] and [image: there is no content].









The function M is said to be idempotent if [image: there is no content] for every [image: there is no content]. Besides, M is said to be symmetric if for every permutation [image: there is no content] of the set [image: there is no content], the equality [image: there is no content] holds for every [image: there is no content].



For example, the AND-operator, the OR-operator and, for [image: there is no content] (or [image: there is no content]) the arithmetic mean are symmetric idempotent aggregation functions.



Remark 1.

Note that by using property (i) of the definition of aggregation function, we have the following equivalence:


Misidempotent⟺inf{a1,…,an}≤LM(a1,…,an)≤Lsup{a1,…,an},forany(a1,…,an)∈Ln,








i.e., the aggregation function M is idempotent iff it lies in between the AND and the OR-operators. Indeed, if M is idempotent, inf{a1,…,an}=M(inf{a1,…,an},⋯,inf{a1,…,an})≤M(a1,⋯,an)≤M(sup{a1,…,an},⋯,sup{a1,…,an})=sup{a1,…,an}. Conversely, for any [image: there is no content], a=inf{a,…,a}≤M(a,⋯,a)≤sup{a,…,a}=a.





A particular case of idempotent symmetric aggregation functions are OWA operators, which were defined by Yager for values in the real unit interval [image: there is no content] as follows:



Definition 1

(Yager [5]). For each weighting vector [image: there is no content], with [image: there is no content], the map [image: there is no content] given by


[image: there is no content]








is called an ordered weighted averaging operator or OWA operator, where the n-tuple (aσ(1),⋯,aσ(n)) is a rearrangement of the set [image: there is no content] of inputs such that [image: there is no content].





Note that both the AND-operator and the OR-operator are some examples of OWA operators, provided respectively by the weighting vector [image: there is no content] and by the weighting vector [image: there is no content]. The arithmetic mean is also an OWA operator, provided by the weighting vector [image: there is no content].



OWA operators were generalized to complete lattices in [7] in the following way.



Definition 2.

Let [image: there is no content] be a complete lattice endowed with a t-norm and a t-conorm. A vector [image: there is no content] is said to be a distributive weighting vector if conditions [image: there is no content] and


T(a,S(α1,⋯,αn))=S(T(a,α1),⋯,T(a,αn))for any a∈L








are satisfied.





Definition 3

([7]). Let [image: there is no content] be a complete lattice endowed with a t-norm and a t-conorm. For each distributive weighting vector [image: there is no content], the n-ary OWA operator [image: there is no content] is defined by


[image: there is no content]








where for each [image: there is no content], the elements [image: there is no content] are calculated by means of the n-ary k-th statistics [image: there is no content] given below:

	
[image: there is no content]



	
[image: there is no content].



⋮



	
[image: there is no content].



⋮



	
[image: there is no content].










It is worth mentioning that when [image: there is no content] is a distributive lattice and the t-norm and t-conorm considered on L are, respectively, the meet and the join (i.e., [image: there is no content] and [image: there is no content]), OWA operators are particular cases of a wider class of idempotent aggregation functions: the discrete Sugeno integrals.



Definition 4

([9]). Let [image: there is no content] be a complete lattice, [image: there is no content] and let [image: there is no content] be the set of all the subsets of [image: there is no content].

	(i) 

	
An L-fuzzy measure on [image: there is no content] is a map [image: there is no content] with [image: there is no content], [image: there is no content] and [image: there is no content] whenever [image: there is no content].



In particular, if [image: there is no content], it is called a fuzzy measure [10,11].




	(ii) 

	
The discrete Sugeno integral [image: there is no content] is given by


Sμ(a1,…,an)=⋁⋀{ai∣i∈X}∧μ(X):X∈Pn.



















In fact, when L is a distributive complete lattice, a discrete Sugeno integral is an OWA operator if and only if it is symmetric (see [7]).




3. Orness for Idempotent Aggregation Functions Defined on the Real Unit Interval


The great deal of weighting vectors that can define an OWA operator on the real interval [image: there is no content] makes difficult the election for each particular situation.



With the purpose of classifying OWA operators defined on the real unit interval, in [6] Yager introduced an orness measure for each OWA operator [image: there is no content]. This measure depends only on the weighting vector [image: there is no content], in the following way:


[image: there is no content]



(1)







It is easy to check that the orness of each OWA operator is a real value situated between 0, corresponding to the AND-operator given by the infimum, and 1, corresponding to the OR-operator given by the supremum. In general, the orness is a measure of the proximity of each OWA operator to the OR-operator. For instance, the orness of the arithmetic mean, provided by the weighting vector [image: there is no content], is equal to [image: there is no content].



In order to extend this concept to any idempotent aggregation function, note that for any OWA operator [image: there is no content], we can write


[image: there is no content]








which leads to the following generalization.



Definition 5.

Let [image: there is no content] be an idempotent aggregation function. Define


[image: there is no content]













Remark 2.

(i) Since F always takes values in [image: there is no content], it is clear that [image: there is no content] Moreover, the orness of the AND-operator is equal to 0, whereas the orness of the OR-operator is 1.



(ii) It is immediate to see that [image: there is no content] if [image: there is no content] (with the pointwise order). However, as Example 1 below will show, the converse is not true.



(iii) Definition 5 could have been given for any aggregation function [image: there is no content], but it does not make any sense to measure the proximity of F to the OR-operator when there does not exist any order relation between them.



Moreover, if [image: there is no content] for all [image: there is no content], we would have [image: there is no content]. Similarly, if [image: there is no content] for all [image: there is no content], then [image: there is no content] would be equal to 1.



For the aforementioned reasons, we have extended the definition of orness only to the class of idempotent aggregation functions, which are exactly those lying between the AND and the OR-operators.





The previous extension of the concept of orness makes it possible to classify a wider kind of idempotent aggregation functions which include OWA operators: the so called discrete Choquet integrals. Their definition is as follows:



Definition 6

([12]). Let [image: there is no content] be a fuzzy measure. The discrete Choquet integral with respect to m is the map [image: there is no content] defined by


[image: there is no content]








where [image: there is no content] is a permutation such that [image: there is no content] and [image: there is no content] by convention.





Remark 3.

As was shown in [13], a discrete Choquet integral is an OWA operator if and only if it is symmetric. The latter is equivalent to the fuzzy measure being symmetric, i.e., [image: there is no content] for any [image: there is no content] such that [image: there is no content].





Example 1.

Let [image: there is no content] and consider the fuzzy measures [image: there is no content] given by


m({1})=m({4})=0=ν({1})=ν({2})m({2})=m({3})=14=ν({3})=ν({4});m({i,j})=13=ν({i,j})1≤i<j≤4;m({i,j,k})=12=ν({i,j,k})1≤i<j<k≤4;m(P4)=1=ν(P4).











The orness of each of the corresponding non-symmetric discrete Choquet integrals [image: there is no content] is given by


orness(Cm)=Cm1,23,13,0=1312-13+2313-0=518=Cν1,23,13,0=orness(Cν)








so, in particular, [image: there is no content]. However,


Cm0,0,12,1=1213-0=16Cν0,0,12,1=1213-14+114-0=724








and therefore, [image: there is no content]. The latter shows that the converse of Remark 2(ii) is not true.






4. Qualitative Orness for Idempotent Aggregation Functions Defined on Finite Lattices


In this section, [image: there is no content] will be a bounded finite lattice.



In order to classify OWA operators when they are defined on this kind of lattice, a qualitative orness was introduced in [4] generalizing the one given by Yager for the real case. In this section, this concept is extended to any idempotent aggregation function defined on [image: there is no content]. Note that, by [4], Remark 3, the definition given in [4] can be reformulated so that it still has sense in this wider context.



Definition 7.

Let [image: there is no content] be a finite bounded lattice and let [image: there is no content] be the descending chain introduced in Definition 3, involving all the elements of the lattice. For any idempotent n-ary aggregation function [image: there is no content], a qualitative orness measure is calculated by means of a descending chain [image: there is no content] that consists of some equidistant elements in the lattice, which are performed following some steps:

	(i) 

	
Call [image: there is no content].




	(ii) 

	
Consider the descending chain [image: there is no content] defined by



c1=⋯=cn-1=b1;cn=⋯=c2(n-1)=b2;…; [image: there is no content].



Note that [image: there is no content] and [image: there is no content].




	(iii) 

	
Build a descending subchain of [image: there is no content], [image: there is no content] by means of


d1=1L,d2=cl,d3=c2l,…,dn=c(n-1)l=0L;








i.e., [image: there is no content], and for each j∈{1,…,n-1}, [image: there is no content] with [image: there is no content], where the symbol [image: there is no content] denotes the integer part of [image: there is no content].




	(iv) 

	
Call [image: there is no content].











As in [4], we have the following observations.



Remark 4.

(i) Note that the same chain [image: there is no content] is obtained if we let s be any common multiple of {l,n-1}. In that case, if [image: there is no content] with [image: there is no content], the chain [image: there is no content] must be



c1=⋯=ce=b1;ce+1=⋯=c2e=b2;…; [image: there is no content] and, if [image: there is no content] with [image: there is no content], then the chain [image: there is no content] must be


d1=1L,d2=ch,d3=c2h,…,dn=c(n-1)h=0L.











Therefore, the chain [image: there is no content] obtained in this way is the same as that obtained in Definition 7. Indeed, for each j∈{1,…,n-1}, [image: there is no content] with [image: there is no content].



(ii) When the aggregation function is an OWA operator, the previous definition agrees with that given in [4] for OWA operators. Hence, in particular, the orness corresponding to the AND-operator is 0, and the one corresponding to the OR-operator is 1.



(iii) Definition 7 could have been given for any aggregation function (not necessarily idempotent), but the same reasons explained in Remark 2(iii) lead us to consider this restriction.





Example 2.

Let [image: there is no content] be a partially ordered set with the relation given by [image: there is no content] and [image: there is no content]. Note that [image: there is no content] is a non-distributive lattice with [image: there is no content]. Consider the discrete Sugeno integral [image: there is no content] defined by means of the L-fuzzy measure [image: there is no content] with


μ({1})=μ({3})=0L;μ({2})=a;μ({i,j})=a,1≤i<j≤3;μ({1,2,3})=1L,










[image: there is no content]











Note that since [image: there is no content] is not symmetric, it is not an OWA operator. Nevertheless, we can compute its qualitative orness with the new definition we have just given. In order to calculate it, we follow the next steps:


Find b1=1L,b2=1L,b3=a,b4=0L,b5=0L.Call s=l(n-1)=5·2=10.Consider the descending chain c1≥L⋯≥Lc10 defined byc1=c2=b1;c3=c4=b2;c5=c6=b3;c7=c8=b4;c9=c10=b5.Build the descending subchain d1≥Ld2≥Ld3,by means ofd1=1L;d2=c5=a;d3=c10=0L.











Therefore, [image: there is no content].





In [14] it is shown that the class of all the n-ary aggregation functions defined on a complete lattice [image: there is no content]—denoted by [image: there is no content]—is also a complete lattice with the pointwise order relation; i.e., with the relation ≤ defined for any F,G∈An(L) as [image: there is no content] if and only if [image: there is no content] for every [image: there is no content].



The smallest and the greatest aggregation functions in [image: there is no content] are, respectively (see [15]):


[image: there is no content]











We use the symbols ∧, ∨ to denote both the meet and the join on L and the following operations on [image: there is no content]:


[image: there is no content]








for any [image: there is no content].



Note [14] that if [image: there is no content] is a distributive lattice, then [image: there is no content] is a distributive lattice as well.



Proposition 1.

Let [image: there is no content] be a bounded finite lattice and consider F,G:Ln→L, idempotent aggregation functions.

	(i) 

	
If [image: there is no content], then [image: there is no content].




	(ii) 

	
Both [image: there is no content] and [image: there is no content] are idempotent.




	(iii) 

	
It holds that


[image: there is no content]



















Proof. 

Consider the chain [image: there is no content] obtained in Definition 7.

	(i)

	
Since [image: there is no content], then [image: there is no content].




	(ii)

	
For any [image: there is no content], [image: there is no content] by using the idempotency of F and G. In the same way, the idempotency of [image: there is no content] can be proved.




	(iii)

	
By Definition 7, [image: there is no content]. Analogously, [image: there is no content].






  ☐





Remark 5.

As for the orness messure of Section 3, the converse of Proposition 1 (i) is not true. Indeed, let [image: there is no content] and [image: there is no content] be, respectively, the lattice and the discrete Sugeno integral defined in Example 2.



Consider now the non-symmetric discrete Sugeno integral [image: there is no content] defined by means of the L-fuzzy measure [image: there is no content] with


ν({i})=0L,1≤i≤3;ν({1,2})=a,ν({1,3})=ν({2,3})=c;ν({1,2,3})=1L,










[image: there is no content]











Therefore, [image: there is no content].



However, [image: there is no content].






5. Quantitative Orness for Idempotent Aggregation Functions


In this section, [image: there is no content] will be a complete lattice satisfying the following additional condition of local finiteness, which is called maximal finite chain condition or simply condition (MFC):



(MFC) For any [image: there is no content] with [image: there is no content], there exists some maximal chain with a finite length, named l, between a and b,


[image: there is no content]











The maximality means that for any [image: there is no content] there is no [image: there is no content] with [image: there is no content]. Obviously, if [image: there is no content], the maximal chain has length [image: there is no content]. The length of the shortest maximal chain between a and b—which will be denoted by [image: there is no content]—will be called distance from a to b.



Remark 6.

Note that any finite lattice satisfies condition (MFC).





A quantitative orness was defined in [8] in the following way for any OWA operator defined on [image: there is no content].



Definition 8

([8]). Let [image: there is no content] be a complete lattice, endowed with a t-norm and a t-conorm satisfying condition (MFC). For any distributive weighting vector, [image: there is no content], define the qualitative quantifier [image: there is no content] by means of


Qα(0)=0L,Qα(k)=S(α1,⋯,αk)for k=1,…,n.













Definition 9

([8]). Let [image: there is no content] be a complete lattice satisfying condition (MFC). For any distributive weighting vector [image: there is no content], let [image: there is no content] be the n-ary OWA operator associated to it. Consider the qualitative quantifier [image: there is no content] defined in Definition 8. For each [image: there is no content], call [image: there is no content]. If [image: there is no content], then define


[image: there is no content]













The following remark contains the key points that allow us to generalize this concept to the setting of idempotent aggregation functions.



Remark 7

([8]). Let [image: there is no content] be a distributive weighting vector in [image: there is no content]. Then

	(i) 

	
[image: there is no content] is a monotonically increasing function.




	(ii) 

	
For any [image: there is no content], [image: there is no content].




	(iii) 

	
Consequently, if [image: there is no content] is a distributive weighting vector in [image: there is no content] with [image: there is no content], then [image: there is no content].











Definition 10.

Let [image: there is no content] be a complete lattice satisfying condition (MFC). For any idempotent aggregation function [image: there is no content], consider the qualitative quantifier [image: there is no content] defined by means of


Q(0)=0L,Q(k)=F(1L,…,1L(k),0L,…,0L)for k=1,…,n.











For each [image: there is no content], call [image: there is no content]. If [image: there is no content], then define


[image: there is no content]













Remark 8.

(i) Note that for arbitrary idempotent aggregation functions, the definition of orness does not directly depend on the t-norm and the t-conorm considered on the lattice L.



(ii) When the aggregation function is an OWA operator, Remark 7(ii) shows that the previous definition agrees with the one given in [8] for OWA operators. In particular, as shown in [8], Proposition 3.6, the orness corresponding to the AND-operator is 0 and the one corresponding to the OR-operator is 1.



(iii) Observe that, contrary to the case of OWA operators (see [8]), Proposition 3.6(ii), there might be idempotent aggregation functions different from the AND-operator whose orness is 0. For instance, take [image: there is no content] with [image: there is no content]. Define [image: there is no content] as [image: there is no content]. Then, F is an idempotent aggregation function different from the AND-operator whose orness is 0.



(iv) Definition 10 could have been given for any aggregation function, not necessarily idempotent, but the same reasons explained in Remark 2(iii) lead us to consider this restriction.





Proposition 2.

Let [image: there is no content] be a complete lattice satisfying condition (MFC). For any idempotent aggregation function [image: there is no content], it is satisfied that [image: there is no content].





Proof. 

Clearly, [image: there is no content]. Moreover,


[image: there is no content]








as desired. ☐





Example 3.

Let L={0L,a,b,1L}∪{ci:i∈N}, with [image: there is no content] for [image: there is no content], be the lattice described as follows: [image: there is no content] and [image: there is no content] for any [image: there is no content]. Then, L is a non-finite lattice satisfying condition (MFC). Consider the discrete Sugeno integral [image: there is no content] defined by means of the L-fuzzy measure [image: there is no content] with


μ({1})=μ({3})=0L;μ({2})=a;μ({i,j})=a,1≤i<j≤3;μ({1,2,3})=1L,










[image: there is no content]











Even if [image: there is no content] is not an OWA operator (since it is not symmetric), we can compute its quantitative orness with the new definition we have just given. In order to calculate it, we follow these steps:


Define Q:{0,1,2,3}→L by means of Q(0)=0L,Q(1)=Sμ(1L,0L,0L)=0L,Q(2)=Sμ(1L,1L,0L)=a,Q(3)=Sμ(1L,1L,1L)=1L.Calculate m(1)=dQ(0),Q(1)=0;m(2)=dQ(1),Q(2)=1;m(3)=dQ(2),Q(3)=2and m=m(1)+m(2)+m(3)=3.Therefore,orness(Sμ)=122·m(1)3+1·m(2)3=16.














6. Conclusions


The concept of orness defined by Yager for OWA operators on the real interval [image: there is no content] can be extended to the more general setting of idempotent aggregation functions, all of them lying between the AND and the OR-operators. This includes the class of all the discrete Choquet integrals, which are not necessarily symmetric. In addition, on finite bounded lattices, the concept of qualitative orness defined for OWA operators can be extended to this wide set of all the idempotent aggregation functions. Finally, for complete lattices satisfying a weaker condition of local finiteness, the concept of quantitative orness defined for OWA operators can be extended to all the idempotent aggregation functions. The latter includes the set of all the discrete Sugeno integrals defined on that kind of lattice, which are not necessarily symmetric.



For future research, the application of these concepts of orness to practical situations may be analyzed.
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