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Abstract: We aim to present some formulas for the Saigo hypergeometric fractional integral and
differential operators involving the generalized Mathieu series Sµ(r), which are expressed in terms of
the Hadamard product of the generalized Mathieu series Sµ(r) and the Fox–Wright function pΨq(z).
Corresponding assertions for the classical Riemann–Liouville and Erdélyi–Kober fractional integral
and differential operators are deduced. Further, it is emphasized that the results presented here,
which are for a seemingly complicated series, can reveal their involved properties via the series of the
two known functions.
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1. Introduction and Preliminaries

Fractional calculus, which has a long history, is an important branch of mathematical analysis
(calculus) where differentiations and integrations can be of arbitrary non-integer order. During the past
four decades or so, fractional calculus has been widely and extensively investigated and has gained
importance and popularity due mainly to its demonstrated applications in numerous and diverse
fields of science and engineering such as turbulence and fluid dynamics, stochastic dynamical system,
plasma physics and controlled thermonuclear fusion, nonlinear control theory, image processing,
nonlinear biological systems, and astrophysics (see, for detail, [1–5]).

We recall Saigo fractional integral and differential operators involving Gauss’s hypergeometric
function 2F1 as a kernel. Let α, β, η ∈ C, <(α) > 0 and x > 0, then Saigo’s fractional integral and
differential operators

(
Iα,β,η
0+ f

)
(x),

(
Iα,β,η
− f

)
(x) and

(
Dα,β,η

0+ f
)
(x),

(
Dα,β,η
− f

)
(x) are defined as (see,

for example, [1,2,4–6]):

(
Iα,β,η
0+ f

)
(x) =

x−α−β

Γ(α)

∫ x

0
(x− t)α−1

2F1

(
α + β,−η; α; 1− t

x

)
f (t) dt, (1)

(
Iα,β,η
− f

)
(x) =

1
Γ(α)

∫ ∞

x
(t− x)α−1t−α−β

2F1

(
α + β,−η; α; 1− x

t

)
f (t) dt, (2)

and (
Dα,β,η

0+ f
)
(x) =

(
I−α,−β,α+η
0+ f

)
(x)

=

(
d

dx

)n (
I−α+n,−β−n,α+η−n
0+ f

)
(x) (n = [<(α)] + 1), (3)
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(
Dα,β,η
− f

)
(x) =

(
I−α,−β,α+η
− f

)
(x)

= (−1)n
(

d
dx

)n (
I−α+n,−β−n,α+η
− f

)
(x) (n = [<(α)] + 1). (4)

Here and in what follows, [x] denotes the greatest integer less than or equal to the real number x.
When β = −α, the operators in (1)–(4) coincide with the classical Riemann–Liouville fractional integrals
and derivatives of order α ∈ C with <(α) > 0 and x > 0 (see, e.g., [1,4]):(

Iα,−α,η
0+ f

)
(x) =

(
Iα
0+ f

)
(x) ≡ 1

Γ(α)

∫ x

0
(x− t)α−1 f (t) dt, (5)

(
Iα,−α,η
− f

)
(x) = (Iα

− f ) (x) =
1

Γ(α)

∫ ∞

x
(t− x)α−1 f (t) dt, (6)

and (
Dα,−α,η

0+ f
)
(x) =

(
Dα

0+ f
)
(x) =

(
d

dx

)n 1
Γ(n− α)

∫ x

0
(x− t)n−α−1 f (t) dt

=

(
d

dx

)n (
In−α
0+ f

)
(x) (n = [<(α)] + 1), (7)

(
Dα,−α,η
− f

)
(x) = (Dα

− f ) (x) = (−1)n
(

d
dx

)n 1
Γ(n− α)

∫ ∞

x
(t− y)n−α−1 f (t) dt

= (−1)n
(

d
dx

)n (
In−α
− f

)
(x) (n = [<(α)] + 1). (8)

Here and in the following, let C, R+, and N be the sets of complex numbers, positive real numbers,
and positive integers, respectively, and let N0 := N∪ {0}.

If β = 0 in (1)–(4) yields the so-called Erdélyi–Kober fractional integrals and derivatives of order
α ∈ C with <(α) > 0 and x > 0 (see, e.g., [1,4]):

(
Iα,0,η
0+ f

)
(x) =

(
I+η,α f

)
(x) =

x−α−η

Γ(α)

∫ x

0
(x− t)α−1tη f (t) dt, (9)

(
Iα,0,η
− f

)
(x) =

(
K−η,α f

)
(x) ≡ xη

Γ(α)

∫ ∞

x
(t− x)α−1t−α−η f (t) dt, (10)

and (
Dα,0,η

0+ f
)
(x) =

(
D+

η,α f
)
(x)

=

(
d

dx

)n (
I−α+n,−α,α+η−n
0+ f

)
(x) (n = [<(α)] + 1), (11)

(
Dα,0,η
− f

)
(x) =

(
D−η,α f

)
(x)

= (−1)n
(

d
dx

)n (
I−α+n,−α,α+η
− f

)
(x) (n = [<(α)] + 1), (12)

(
D+

η,α f
)
(x) = x−η

(
d

dx

)n 1
Γ(n− α)

∫ x

0
tα+η(x− t)n−α−1 f (t) dt (n = [<(α)] + 1), (13)
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(
D−η,α f

)
(x) = xη+α

(
d

dx

)n 1
Γ(n− α)

∫ ∞

x
t−η(t− x)n−α−1 f (t) dt (n = [<(α)] + 1). (14)

A detailed account of such operators along with their properties and applications has been
considered by several authors (see, for details, [1–5]).

The following familiar infinite series of the form

S(r) = ∑
n≥1

2n
(n2 + r2)2 , r > 0 (15)

is known in literature as the Mathieu series. Émile Leonard Mathieu was the first to investigate such a
series in 1890 in his book elasticity of solid bodies [7]. An alternative version of (15)

S̃(r) = ∑
n≥1

(−1)n−1 2n
(n2 + r2)2 , r > 0 (16)

was introduced by Pogány et al. [8]. Closed form integral representations for S(r) and S̃(r) are given
by (see e.g., [8,9])

S(r) =
1
r

∫ ∞

0

x sin(rx)
ex − 1

dx (17)

and

S̃(r) =
1
r

∫ ∞

0

x sin(rx)
ex + 1

dx, (18)

respectively. Several interesting problems and solutions deal with integral representations and bounds
for the following mild generalization of the Mathieu series and its alternative version with a fractional
power defined by ([10], p. 2, Equation (16)) ( see also, [11], p. 181)

Sµ(r) = ∑
n≥1

2n
(n2 + r2)µ+1 ( r > 0, µ > 0) (19)

and
S̃µ(r) = ∑

n≥1
(−1)n−1 2n

(n2 + r2)µ+1 ( r > 0, µ > 0), (20)

respectively. Such a series has been widely considered in mathematical literature (see, e.g., papers of
Cerone and Lenard [10], Diananda [12] and Pogány et al. [8]). Various applications of the familiar
Mathieu series and its generalizations in probability theory with other variants such as trigonometric
Mathieu series, harmonic Mathieu series, Fourier–Mathieu series and some other particular forms of
the Mathieu series can be found in a recent paper [13].

Recently, Tomovski and Pogány [14] studied the several integral representations of the generalized
fractional order Mathieu-type power series

Sµ(r; z) = ∑
n≥1

2n zn

(n2 + r2)µ+1 , (µ > 0, r ∈ R, |z| < 1). (21)

Obviously, we have

Sµ(r; 1) = Sµ(r) and Sµ(r;−1) = −S̃µ(r).

Various other investigations and generalizations of the Mathieu series with its alternative variants
can also be found in [11,14–24], and the references cited therein.

The concept of the Hadamard product (or the convolution) of two analytic functions is useful
in our present investigation. It can help us to decompose a newly emerged function into two known
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functions. If, in particular, one of the power series defines an entire function, then the Hadamard
product series defines an entire function, too. Let

f (z) :=
∞

∑
n=0

anzn (|z| < R f ) and g(z) :=
∞

∑
n=0

bnzn (|z| < Rg)

be two power series whose radii of convergence are denoted by R f and Rg, respectively. Then, their
Hadamard product is the power series defined by

( f ∗ g)(z) :=
∞

∑
n=0

an bnzn = (g ∗ f )(z) (|z| < R) (22)

where

R = lim
n→∞

∣∣∣∣ an bn

an+1 bn+1

∣∣∣∣ = ( lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣) .
(

lim
n→∞

∣∣∣∣ bn

bn+1

∣∣∣∣) = R f · Rg,

therefore, in general, we have R ≥ R f · Rg [25,26]. For various other investigations involving the
Hadamard product (or the convolution), the interested reader may be referred to several recent papers
on the subject (see, for example, [27,28] and the references cited in each of these papers).

In this paper, our aim is to study the compositions of the generalized fractional integration and
differentiation operators (1)–(4) with the generalized Mathieu series (21) in terms of the Hadamard
product (22) of the generalized Mathieu series and the Fox–Wright function. Further, corresponding
assertions for the classical Riemann–Liouville and Erdélyi–Kober fractional integral and differential
operators are deduced. The results presented in Theorems together with Corollaries are sure to be new
and potentially useful, mainly because they are expressed in terms of the Hadamard product with two
known functions. At least, a seemingly complicated resulting series expressed in terms of two known
functions means that certain properties involved in the complicated resulting series can be revealed via
the series of the known functions.

2. Fractional Integration of the Mathieu Series

We first recall the Fox–Wright function pΨq(z) (p, q ∈ N0) with p numerator and q denominator
parameters defined for α1, . . . , αp ∈ C and β1, . . . , βq ∈ C \Z−0 by (see, for details, [1,3]; see also [4,29]):

pΨq

[
(α1, A1), · · · , (αp, Ap);
(β1, B1), · · · , (βq, Bq);

z

]
=

∞

∑
n=0

Γ(α1 + A1n) · · · Γ(αp + Apn)
Γ(β1 + B1n) · · · Γ(βq + Bqn)

zn

n!
(23)

(
Aj ∈ R+ (j = 1, . . . , p); Bj ∈ R+ (j = 1, . . . , q); 1 +

q

∑
j=1

Bj −
p

∑
j=1

Aj ≥ 0

)
,

where the equality in the convergence condition holds true for

|z| < ∇ :=

(
p

∏
j=1

A
−Aj
j

)
.

(
q

∏
j=1

B
Bj
j

)
.

In particular, when Aj = Bk = 1 (j = 1, . . . , p; k = 1, . . . , q), (23) reduces immediately to the
generalized hypergeometric function pFq (p, q ∈ N0) (see, e.g., [29]):

pFq

[
α1, . . . , αp;
β1, . . . , βq;

z

]
=

Γ(β1) · · · Γ(βq)

Γ(α1) · · · Γ(αp)
pΨq

[
(α1, 1), · · · , (αp, 1);
(β1, 1), · · · , (βq, 1);

z

]
. (24)
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Lemma 1. Let α, β, η ∈ C. Then, there exists the relation

(a) If <(α) > 0 and <(σ) > max[0,<(β− η)], then

(Iα,β,η
0+ tσ−1)(x) =

Γ(σ)Γ(σ + η − β)

Γ(σ− β)Γ(σ + α + η)
xσ−β−1 (25)

In particular, for x > 0, we have

(Iα
0+tσ−1)(x) =

Γ(σ)
Γ(σ + α)

xσ+α−1 (<(α) > 0, <(σ) > 0), (26)

(I+η,αtσ−1)(x) =
Γ(σ + η)

Γ(σ + α + η)
xσ−1 (<(α) > 0, <(σ) > −<(η)). (27)

(b) If <(α) > 0 and <(σ) < 1 + min[<(β),<(η)], then

(Iα,β,η
− tσ−1)(x) =

Γ(1− σ + β)Γ(1− σ + η)

Γ(1− σ)Γ(1− σ + α + β + η)
xσ−β−1. (28)

In particular, for x > 0, we have

(Iα
−tσ−1)(x) =

Γ(1− α− σ)

Γ(1− σ)
xσ+α−1 (0 < <(α) < 1−<(σ)), (29)

(K−η,αtσ−1)(x) =
Γ(1− σ + η)

Γ(1− σ + α + η)
xσ−1 (<(σ) < 1 +<(σ)). (30)

We begin the exposition of the main results by presenting the composition formulas of generalized
fractional integrals, (1) and (2), involving the generalized Mathieu series in terms of the Hadamard
product (22) of the generalized Mathieu series (21) and the Fox–Wright function (23). It is emphasized
that the results presented here, which are for a seemingly complicated series, can reveal their involved
properties via the series of the two known functions.

Theorem 1. Let α, β, η, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) > 0 and
<(σ) > max[0,<(β− η)]. Then, the following Saigo hypergeometric fractional integral Iα,β,η

0+ of Sµ(r, tρ)

holds true: (
Iα,β,η
0+

{
tσ−1 Sµ(r, tρ)

})
(x)

= xσ−β+ρ−1 Sµ(r, xρ) ∗ 3Ψ2

[
(1, 1), (σ + ρ, ρ), (σ + η − β + ρ, ρ);
(σ− β + ρ, ρ), (σ + α + η + ρ, ρ);

xρ

]
. (31)

Proof. Using the definitions (1) and (21), by changing the order of integration and applying the
relation (25), we find that x > 0

(
Iα,β,η
0+

{
tσ−1Sµ(r, tρ)

})
(x) =

∞

∑
k=1

2k
(k2 + r2)µ+1

(
Iα,β,η
0+ tσ+ρk−1

)
(x)

= xσ−β−1
∞

∑
k=1

2k
(k2 + r2)µ+1

Γ(σ + ρk)Γ(σ + η − β + ρk)
Γ(σ− β + ρk)Γ(σ + α + η + ρk)

xρk. (32)

by applying the Hadamard product (22) in (32), which in the view of (21) and (23), yields the
desired formula (31).



Axioms 2017, 6, 18 6 of 11

Theorem 2. Let α, β, η, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) > 0 and <(σ) < 1 +

min[<(β),<(η)]. Then, the following Saigo hypergeometric fractional integral Iα,β,η
− of Sµ

(
r, 1

tρ

)
holds true:

(
Iα,β,η
−

{
tσ−1 Sµ

(
r,

1
tρ

)})
(x)

= xσ−ρ−β−1 Sµ

(
r,

1
xρ

)
∗ 3Ψ2

[
(1, 1), (1− σ + β + ρ, ρ), (1− σ + η + ρ, ρ);
(1− σ + ρ, ρ), (1− σ + α + β + η + ρ, ρ);

1
xρ

]
. (33)

Proof. Using the definitions (2) and (21), by changing the order of integration and applying
the relation (28)(

Iα,β,η
−

{
tσ−1Sµ

(
r,

1
tρ

)})
(x) =

∞

∑
k=1

2k
(k2 + r2)µ+1

(
Iα,β,η
− tσ−ρk−1

)
(x)

= xσ−β−1
∞

∑
k=1

2k
(k2 + r2)µ+1

Γ(1− σ + β + ρk)Γ(1− σ + η + ρk)
Γ(1− σ + ρk)Γ(1− σ + α + β + η + ρk)

x−ρk. (34)

by applying the Hadamard product (22) in (34), which in the view of (21) and (23), yields the
desired formula (33).

Further, we deduce the fractional integral formulas for the classical Riemann–Liouville and
Erdélyi–Kober fractional integral and differential operators by letting β = −α and β = 0 respectively,
which are asserted by Corollaries 1–4 below.

Corollary 1. Let α, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) > 0 and <(σ) > 0. Then,
the following Riemann–Liouville fractional integral Iα

0+ of Sµ(r, tρ) holds true:

(
Iα
0+

{
tσ−1 Sµ(r, tρ)

})
(x) = xσ+ρ+α−1 Sµ(r, xρ) ∗ 2Ψ1

[
(1, 1), (σ + ρ, ρ);
(σ + α + ρ, ρ);

xρ

]
. (35)

Corollary 2. Let α, η, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) > 0 and <(σ) > −<(η). Then,
the following Erdélyi–Kober fractional integral I+η,α of Sµ(r, tρ) holds true:

(
I+η,α

{
tσ−1 Sµ(r, tρ)

})
(x) = xσ+ρ−1 Sµ(r, xρ) ∗ 2Ψ1

[
(1, 1), (σ + η + ρ, ρ);
(σ + α + η + ρ, ρ);

xρ

]
. (36)

Corollary 3. Let α, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that 0 < <(α) < 1−<(σ). Then, the following
Riemann–Liouville fractional integral Iα

− of Sµ

(
r, 1

tρ

)
holds true:

(
Iα
−

{
tσ−1 Sµ

(
r,

1
tρ

)})
(x) = xσ+α−ρ−1 Sµ

(
r,

1
xρ

)
∗ 2Ψ1

[
(1, 1), (1− σ− α + ρ, ρ);

(1− σ + ρ, ρ);
1
xρ

]
. (37)

Corollary 4. Let α, η, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) > 0 and <(σ) < 1 +<(η). Then,
the following Erdélyi–Kober fractional integral K−η,α of Sµ

(
r, 1

tρ

)
holds true:

(
K−η,α

{
tσ−1 Sµ

(
r,

1
tρ

)})
(x) = xσ−ρ−1 Sµ

(
r,

1
xρ

)
∗ 2Ψ1

[
(1, 1), (1− σ + η + ρ, ρ);
(1− σ + α + η + ρ, ρ);

1
xρ

]
. (38)

The results obtained in this section can be presented in terms of Gauss’s hypergeometric
functions by taking ρ = 1. Here, we present results for the classical Riemann–Liouville fractional
integral operators.
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Corollary 5. Let the conditions of Corollary 1 be satisfied, and let <(σ) > 0 and <(σ + α + 1) > 0. Then,
for x > 0, there holds the relation

(
Iα
0+

{
tσ−1 Sµ(r, t)

})
(x) = xσ+α Γ(σ + 1)

Γ(σ + α + 1)
Sµ(r, x) ∗ 2F1

[
1, σ + 1;

σ + α + 1;
x

]
. (39)

Corollary 6. Let the conditions of Corollary 3 be satisfied, and let <(1− σ) > 0 and <(2− σ− α) > 0.
Then, for x > 0, there holds the relation(

Iα
−

{
tσ−1 Sµ

(
r,

1
t

)})
(x) = xσ+α−2 Γ(2− σ− α)

Γ(2− σ)
Sµ

(
r,

1
x

)
∗ 2F1

[
1, 2− σ− α;

2− σ;
1
x

]
. (40)

3. Fractional Differentiation of the Mathieu Series

In this section, we present the composition formulas of generalized fractional derivatives,
(3) and (4), involving the generalized Mathieu series in terms of the Hadamard product (22) of
the generalized Mathieu series (21) and the Fox–Wright function (23).

Lemma 2. Let α, β, η ∈ C. Then, there exists the relations

(a) If <(α) > 0 and <(σ) > −min[0,<(α + β + η)], then

(Dα,β,η
0+ tσ−1)(x) =

Γ(σ)Γ(σ + α + β + η)

Γ(σ + β)Γ(σ + η)
xσ+β−1 (41)

In particular, for x > 0, we have

(Dα
0+tσ−1)(x) =

Γ(σ)
Γ(σ− α)

xσ−α−1 (<(α) > 0, <(σ) > 0), (42)

(D+
η,αtσ−1)(x) =

Γ(σ + α + η)

Γ(σ + η)
xσ−1 (<(α) > 0, <(σ) > −<(α + η)). (43)

(b) If <(α) > 0,<(σ) < 1+min[<(−β− n),<(α + η)] and n = [<(α)] + 1, then

(Dα,β,η
− tσ−1)(x) =

Γ(1− σ− β)Γ(1− σ + α + η)

Γ(1− σ)Γ(1− σ + η− β)
xσ+β−1. (44)

In particular, for x > 0, we have

(Dα
−tσ−1)(x) =

Γ(1− σ + α)

Γ(1− σ)
xσ−α−1 (<(α) > 0, <(σ) < 1+<(α)− n), (45)

(D−η,αtσ−1)(x) =
Γ(1− σ + α + η)

Γ(1− σ− η)
xσ−1 (<(α) > 0, <(σ) < 1+<(α + η)− n). (46)

Theorem 3. Let α, β, η, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that
<(α) ≥ 0 and <(σ) > −min[0,<(α + β + η)]. Then, the following Saigo hypergeometric fractional
derivative Dα,β,η

0+ of Sµ(r, tρ) holds true:(
Dα,β,η

0+

{
tσ−1 Sµ(r, tρ)

})
(x)

= xσ+β+ρ−1 Sµ(r, xρ) ∗ 3Ψ2

[
(1, 1), (σ + ρ, ρ), (σ + α + β + η + ρ, ρ);

(σ + β + ρ, ρ), (σ + η + ρ, ρ);
xρ

]
. (47)
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Proof. Using the definitions (3) and (21), by changing the order of integration and applying the
relation (41), we find for x > 0

(
Dα,β,η

0+

{
tσ−1Sµ(r, tρ)

})
(x) =

∞

∑
k=1

2k
(k2 + r2)µ+1

(
Dα,β,η

0+ tσ+ρk−1
)
(x)

= xσ+β−1
∞

∑
k=1

2k
(k2 + r2)µ+1

Γ(σ + ρk)Γ(σ + α + β + η + ρk)
Γ(σ + β + ρk)Γ(σ + η + ρk)

xρk. (48)

by applying the Hadamard product (22) in (48), which in the view of (21) and (23), yields the
desired formula (47).

Theorem 4. Let α, β, η, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) ≥ 0 and <(σ) < 1 +

min[<(−β− n),<(α + η)], n = [<(α)] + 1. Then, the following Saigo hypergeometric fractional derivative
Dα,β,η
− of Sµ

(
r, 1

tρ

)
holds true:

(
Dα,β,η
−

{
tσ−1 Sµ

(
r,

1
tρ

)})
(x)

= xσ−ρ+β−1 Sµ

(
r,

1
xρ

)
∗ 3Ψ2

[
(1, 1), (1− σ− β + ρ, ρ), (1− σ + α + η + ρ, ρ);

(1− σ + ρ, ρ), (1− σ + η− β + ρ, ρ);
1
xρ

]
. (49)

Proof. Using the definitions (4) and (21), by changing the order of integration and applying the
relation (44), we find for x > 0(

Dα,β,η
−

{
tσ−1Sµ

(
r,

1
tρ

)})
(x) =

∞

∑
k=1

2k
(k2 + r2)µ+1

(
Dα,β,η
− tσ−ρk−1

)
(x)

= xσ+ρ+β−1
∞

∑
k=1

2k
(k2 + r2)µ+1

Γ(1− σ− β + ρk)Γ(1− σ + α + η + ρk)
Γ(1− σ + ρk)Γ(1− σ + η− β + ρk)

x−ρk. (50)

by applying the Hadamard product (22) in (50), which in the view of (21) and (23), yields the
desired formula (49).

Now, we deduce fractional derivative formulas for the classical Riemann–Liouville and
Erdélyi–Kober fractional integral and differential operators by letting β = −α and β = 0 respectively,
which are asserted by Corollaries 7–10 below.

Corollary 7. Let α, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) ≥ 0 and <(σ) > 0. Then,
the following Riemann–Liouville fractional differentiation Dα

0+ of Sµ(r, tρ) holds true:

(
Dα

0+

{
tσ−1 Sµ(r, tρ)

})
(x) = xσ+ρ−α−1 Sµ(r, xρ) ∗ 2Ψ1

[
(1, 1), (σ + ρ, ρ);
(σ− α + ρ, ρ);

xρ

]
. (51)

Corollary 8. Let α, η, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) ≥ 0 and <(σ) > −<(α + η).
Then, the following Erdélyi–Kober fractional derivative D+

η,α of Sµ(r, tρ) holds true:

(
D+

η,α

{
tσ−1 Sµ(r, tρ)

})
(x) = xσ+ρ−1 Sµ(r, xρ) ∗ 2Ψ1

[
(1, 1), (σ + α + η + ρ, ρ);

(σ + η + ρ, ρ);
xρ

]
. (52)
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Corollary 9. Let α, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) ≥ 0 and <(σ) < <(α)− [<(α)].
Then, the following Riemann–Liouville fractional differentiation Dα

− of Sµ

(
r, 1

tρ

)
holds true:

(
Dα
−

{
tσ−1 Sµ

(
r,

1
tρ

)})
(x) = xσ−ρ−α−1 Sµ

(
r,

1
xρ

)
∗ 2Ψ1

[
(1, 1), (1− σ + α + ρ, ρ);

(1− σ + ρ, ρ);
1
xρ

]
. (53)

Corollary 10. Let α, η, σ ∈ C and ρ > 0, µ > 0, r ∈ R be such that <(α) ≥ 0 and
<(σ) < <(α + η)− [<(α)]. Then, the following Erdélyi–Kober fractional differentiation D−η,α of Sµ

(
r, 1

tρ

)
holds true:(

D−η,α

{
tσ−1 Sµ

(
r,

1
tρ

)})
(x) = xσ−ρ−1 Sµ

(
r,

1
xρ

)
∗ 2Ψ1

[
(1, 1), (1− σ + α + η + ρ, ρ);

(1− σ + η + ρ, ρ);
1
xρ

]
. (54)

The results obtained in this section can be presented in terms of Gauss’s hypergeometric
functions by taking ρ = 1. Here, we present results for the classical Riemann–Liouville fractional
derivative operators.

Corollary 11. Let the conditions of Corollary 7 be satisfied, and let <(σ + 1) > 0 and <(σ− α + 1) > 0.
Then, for x > 0, there holds the relation

(
Dα

0+

{
tσ−1 Sµ(r, t)

})
(x) = xσ−α−2 Γ(σ + 1)

Γ(σ− α + 1)
Sµ(r, x) ∗ 2F1

[
1, σ + 1;

σ− α + 1;
x

]
. (55)

Corollary 12. Let the conditions of Corollary 9 be satisfied, and let <(2− σ) > 0 and <(2− σ + α) > 0.
Then, for x > 0, there holds the relation(

Dα
−

{
tσ−1 Sµ

(
r,

1
t

)})
(x) = xσ−α−2 Γ(2− σ + α)

Γ(2− σ)
Sµ

(
r,

1
x

)
∗ 2F1

[
1, 2− σ + α;

2− σ;
1
x

]
. (56)

4. Concluding Remarks and Observations

In our present investigation, with the help of the concept of the Hadamard product (or the
convolution) of two analytic functions, we have obtained the composition formulas of the generalized
fractional integrals, (1) and (2), involving the generalized Mathieu series in terms of the Hadamard
product (22) of the generalized Mathieu series (21) and the Fox–Wright function (23). Further, we have
also deduced the fractional integral formulas for the classical Riemann–Liouville and the Erdélyi–Kober
fractional integral and differential operators by letting β = −α and β = 0, respectively. The results
presented here, which are for a seemingly complicated series, can reveal their involved properties via
the series of the two known functions.
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