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Abstract:



For a given pair of s-dimensional real Laurent polynomials [image: there is no content], which has a certain type of symmetry and satisfies the dual condition [image: there is no content], an [image: there is no content] Laurent polynomial matrix [image: there is no content] (together with its inverse [image: there is no content]) is called a symmetric Laurent polynomial matrix extension of the dual pair [image: there is no content] if [image: there is no content] has similar symmetry, the inverse [image: there is no content] also is a Laurent polynomial matrix, the first column of [image: there is no content] is [image: there is no content] and the first row of [image: there is no content] is [image: there is no content]. In this paper, we introduce the Euclidean symmetric division and the symmetric elementary matrices in the Laurent polynomial ring and reveal their relation. Based on the Euclidean symmetric division algorithm in the Laurent polynomial ring, we develop a novel and effective algorithm for symmetric Laurent polynomial matrix extension. We also apply the algorithm in the construction of multi-band symmetric perfect reconstruction filter banks.
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1. Introduction


In this paper, we develop a novel and effective algorithm for symmetric Laurent polynomial matrix extension (SLPME) and apply it in the construction of the symmetric multi-band perfect reconstruction filter bank (SPRFB). The paper is a continuative study of [1].



To describe the SLPME problem clearly, we first give some notions and notations. For a given matrix A, we denote by [image: there is no content] the j-th column of A and by [image: there is no content] its i-th row. Let [image: there is no content] be the ring of all Laurent polynomials (LPs) with real coefficients and [image: there is no content] an integer. An LP vector [image: there is no content] is called prime if there is [image: there is no content] such that [image: there is no content]. In this case, we call [image: there is no content] a dual of [image: there is no content] and call [image: there is no content] a dual pair. An invertible LP matrix [image: there is no content] is called [image: there is no content]-invertible if [image: there is no content], as well. We will denote by [image: there is no content] the group of all [image: there is no content][image: there is no content]-invertible matrices. We write an s-dimensional column vector [image: there is no content] as [image: there is no content] and write its transpose as [image: there is no content]. The symmetry of LP vectors and matrices is defined as follows:

Definition 1.

An LP vector [image: there is no content] is called polar-symmetric (or [image: there is no content]-symmetric), if [image: there is no content], and called polar-antisymmetric (or [image: there is no content]-symmetric), if [image: there is no content]. An LP matrix [image: there is no content] is called vertically symmetric (or [image: there is no content]-symmetric), if each of its columns is either [image: there is no content]-symmetric or [image: there is no content]-symmetric.







In the paper, we employ [image: there is no content] for the sign notation: [image: there is no content] or −. Thus, an LP vector is said to be [image: there is no content]-symmetric if it is either [image: there is no content]-symmetric or [image: there is no content]-symmetric. When the sign is not stressed, we simplify [image: there is no content] to [image: there is no content]. We now define an SLPME of an LP vector as follows:

Definition 2.

Let [image: there is no content] be a given [image: there is no content]-symmetric prime vector. An LP matrix [image: there is no content] is called an SLPME of [image: there is no content] if [image: there is no content] is [image: there is no content]-symmetric and [image: there is no content]. Furthermore, [image: there is no content] is called an SLPME of a [image: there is no content]-symmetric dual pair [image: there is no content] if [image: there is no content] is an SLPME of [image: there is no content] and [image: there is no content].







It is worth pointing out that the construction of a dual pair with or without the symmetry property is also a key ingredient in LPME and SLPME. This problem has been completely resolved in [2].



The study of the Laurent polynomial matrix extension (LPME) has a long history. In the early 1990s, the two-band LPME arose in the study of the construction of compactly-supported wavelets [3,4,5,6,7]. In the construction of multi-wavelets, the LPME problems arise [8,9,10,11].



It has become well known that LPME is the core in the construction of multi-band prefect reconstruction filter banks (PRFB) and multi-band wavelets [12,13,14,15,16]. If a PRFB is represented by the polyphase form, then constructing the polyphase matrices of PRFB is essentially identical with LPME. The general study of multi-band PRFB is referred to [1,17,18,19,20,21]. We mention that the algorithm proposed in [1] was based on Euclidean division in the ring [image: there is no content]. The author revealed the relation between Euclidean division in [image: there is no content] and [image: there is no content]-elementary matrices, then developed the algorithm for LPME using [image: there is no content]-elementary matrix factorization.



Unfortunately, the algorithm for LPME cannot be applied for SLPME because it does not preserve symmetry in the factorization. A special case of SLPME was given in Theorem 4.3 of [22]. However, the development of effective algorithms for SLPME is still desirable. Recently, Chui, Han and Zhuang in [17] introduced a bottom-up algorithm to construct SPRFB for a given dual pair of symmetric filters. Their algorithm consists of a forward (or top-down) phase and a backward (or down-top) phase. In the top-down phase, the algorithm gradually reduces the filters in the dual pair to the simplest ones, keeping the symmetry in the process. Thus, an SPRFB is first constructed for the simplest dual pair. Then, in the down-top phase, the algorithm builds the SLPME for the original dual pair. Their method does not employ the polyphase forms of filters. Hence, it is not directly linked to SLPME.



In this paper, we develop an SLPME algorithm in the framework of the Laurent polynomial algebra. We first introduce the Euclidean [image: there is no content]-symmetric division algorithm, which keeps the symmetry of LPs in the division. Then, we introduce the symmetric [image: there is no content]-elementary matrices in the Laurent polynomial ring and reveal the relation between the Euclidean [image: there is no content]-symmetric division and the symmetric [image: there is no content]-elementary transformation. Our SLPME algorithm essentially is based on the symmetric [image: there is no content]-elementary transformations on the [image: there is no content]-symmetric matrices in the group [image: there is no content].



The paper is organized as follows. In Section 2, we introduce [image: there is no content]-symmetric vectors and matrices and their properties. In Section 3, we first develop the Euclidean symmetric division algorithms in the Laurent polynomial ring, introduce symmetric [image: there is no content]-elementary matrices and reveal the relation between the Euclidean symmetric division and the symmetric [image: there is no content]-elementary transformation. Then, at the end of the section, we present the Euclidean symmetric division algorithm for SLPME. In Section 4, we apply our SLPME algorithm in the construction of multi-band SPRFBs. In Section 5, we present several illustrative examples for the construction of symmetric multi-band SPRFBs and SLPMEs.




2. Symmetries of LP Vectors and Matrices


In this section, we study the symmetric properties of [image: there is no content]-symmetric vectors and [image: there is no content]-symmetric matrices. For [image: there is no content], we write [image: there is no content]. Then, [image: there is no content] is [image: there is no content]-symmetric if and only if [image: there is no content]. Define:


[image: there is no content]











Then, [image: there is no content], [image: there is no content] and [image: there is no content]. Later, if no confusion arises, we will simplify [image: there is no content] to [image: there is no content], [image: there is no content] to M, and so on.



We denote by [image: there is no content] the set of all [image: there is no content]-symmetric vectors in [image: there is no content]. Particularly, when [image: there is no content], the vector [image: there is no content] is reduced to a Laurent polynomial, say, [image: there is no content]. Thus, [image: there is no content] if and only if [image: there is no content].



Lemma 1.

Let [image: there is no content] be a symmetric dual pair. Then, they have the same symmetry, i.e., if [image: there is no content] is [image: there is no content]-symmetric, so is [image: there is no content].





Proof. 

We have [image: there is no content] so that [image: there is no content]. Therefore, if [image: there is no content], by [image: there is no content], we have:


[image: there is no content]








which yields [image: there is no content], i.e., [image: there is no content] is [image: there is no content]-symmetric. The lemma is proven.  ☐





Definition 3.

A matrix [image: there is no content] is called centrally polar symmetric, denoted by [image: there is no content]-symmetric, if [image: there is no content].





All [image: there is no content]-symmetric matrices in [image: there is no content] form a semigroup of [image: there is no content], denoted by [image: there is no content]; and all [image: there is no content]-invertible, [image: there is no content]-symmetric matrices in [image: there is no content] form a subgroup of [image: there is no content], denoted by [image: there is no content]. By Definition 3, we have the following:

Proposition 1.

A matrix [image: there is no content] is [image: there is no content]-symmetric if and only if:


mi,j(z)=ms+1−i,s+1−j(1/z),1≤i≤s,1≤j≤s.



(1)




Therefore, [image: there is no content] and [image: there is no content].







We say that [image: there is no content] is a [image: there is no content]-symmetric matrix if all columns of [image: there is no content] are [image: there is no content]-symmetric.



Lemma 2.

For any [image: there is no content], there exists a non-singular [image: there is no content]-symmetric matrix and a non-singular [image: there is no content]-symmetric one.





Proof. 

We first prove the lemma for the [image: there is no content]-symmetric case by mathematical induction. For [image: there is no content] the matrices [image: there is no content] and [image: there is no content] are non-singular [image: there is no content]-symmetric matrices because their determinants are not zero. Assume that the statement is true for each [image: there is no content]. We prove that the statement is also true for [image: there is no content]. Let [image: there is no content] be a [image: there is no content] non-singular [image: there is no content]-symmetric matrix. Then, so is the following [image: there is no content] matrix:


[image: there is no content]













The proof is completed. For the [image: there is no content]-symmetric case, [image: there is no content] and [image: there is no content] are non-singular and [image: there is no content]-symmetric. The remainder of the proof is similar.  ☐



The following proposition describes the role of [image: there is no content]-symmetric matrices.



Proposition 2.

Any matrix in [image: there is no content] represents a linear transformation from [image: there is no content] to [image: there is no content]. Conversely, any linear transformation from [image: there is no content] to [image: there is no content] is realized by a matrix in [image: there is no content].





Proof. 

We first prove the proposition for the case of [image: there is no content]. If [image: there is no content], then for any [image: there is no content], writing [image: there is no content], we have:


[image: there is no content]











Hence, [image: there is no content]. On the other hand, if for any [image: there is no content], [image: there is no content], then we have:


[image: there is no content]








which yields that the equality:


[image: there is no content]



(2)




holds for any [image: there is no content]-symmetric matrix. By Lemma 2, we can choose a non-singular matrix [image: there is no content] in (2), which yields [image: there is no content], i.e., [image: there is no content]. The proposition is proven. For the case of [image: there is no content], the proof is similar.  ☐





Since [image: there is no content], by Proposition 2, [image: there is no content] is a group of linear transformations on the set [image: there is no content]. For the matrices in [image: there is no content], we have the following:

Proposition 3.

Assume [image: there is no content]. Then, for any prime vector [image: there is no content], the vector [image: there is no content] is also prime.





Proof. 

Assume that [image: there is no content] is a [image: there is no content]-symmetric prime vector. Then, there is a [image: there is no content]-symmetric vector [image: there is no content], such that [image: there is no content]. Therefore, we have [image: there is no content], which indicates that [image: there is no content] is a [image: there is no content]-symmetric prime vector. The proof is similar for [image: there is no content].  ☐







In linear algebra, a well-known result is that each invertible matrix can be written as a product of elementary matrices. To produce the similar factorization of a matrix in [image: there is no content], we introduce the [image: there is no content]-symmetric elementary matrices. We first define the [image: there is no content]-elementary matrices (that may not be [image: there is no content]-symmetric).



Definition 4.

Let I be the [image: there is no content] identity matrix. An [image: there is no content][image: there is no content]-elementary matrix is obtained by performing one of the following [image: there is no content]-elementary row operations on I:

	(1) 

	
Interchanging two rows, e.g., [image: there is no content].




	(2) 

	
Multiplying a row by a non-zero real number c, e.g., [image: there is no content].




	(3) 

	
Replacing a row by itself plus a multiple [image: there is no content] of another row, e.g., [image: there is no content].











For convenience, we denote by [image: there is no content], [image: there is no content] and [image: there is no content] for the [image: there is no content]-elementary matrices in (1), (2) and (3), and call them Types 1, 2 and 3, respectively. Since [image: there is no content], we agree that [image: there is no content] in [image: there is no content]. It is clear that an [image: there is no content]-elementary matrix is [image: there is no content]-invertible, and its inverse is of the same type. Indeed, we have the following:


(E[i,j])−1=E[i,j],(Es(i))−1(c)=E(i)(1/c),(E(i,j)(q))−1=E(i,j)(−q).



(3)







Later, when the type of an [image: there is no content]-elementary matrix is not stressed, we simply denote it by E. On the other hand, if the dimension of an [image: there is no content]-elementary matrix needs to be stressed, then we write it as [image: there is no content], [image: there is no content], etc. For developing our SLPME algorithm, we define the [image: there is no content]-symmetric elementary matrix based on Definition 4.



Definition 5.

Let [image: there is no content] be an integer. Write [image: there is no content]. When [image: there is no content], the matrices:


E[i,j]=E[i,j]E[s+1−j,s+1−i],1≤i<j≤m,E(i)(c)=E(i)(c)E(s+1−i)(c),1≤i≤m,E(i,j)(q)=E(i,j)(q)E(s+1−i,s+1−j)(q¯),1≤i,j≤m,i≠j,








are called [image: there is no content]-symmetric elementary matrices of Type 1, 2 or 3, respectively. When [image: there is no content], the matrices:


E[i,j]=E[i,j]E[s+1−j,s+1−i],1≤i<j≤m,E(c)=E(m+1)(c)andE(i)(c)=E(i)(c)E(s+1−i)(c),1≤i≤m,E(i,j)(q)=E(i,j)(q)E(s+1−i,s+1−j)(q¯),1≤i,j≤m+1,i≠j,








are called [image: there is no content]-symmetric elementary matrices of Type 1, 2 or 3, respectively.





We denote by [image: there is no content] the set of all [image: there is no content]-symmetric elementary matrices in [image: there is no content] and by [image: there is no content] the set of all matrices of type i in [image: there is no content].



We can verify that the inverses of [image: there is no content]-symmetric elementary matrices are given by the following:


(E[i,j])−1=E[i,j],(E(i))−1(c)=E(i)(1/c),(E(i,j))−1(q)=E(i,j)(−q).



(4)




If we do not stress the type of [image: there is no content]-symmetric elementary matrix, we will simply denote it by [image: there is no content]. On the other hand, if we need to stress the dimension of an [image: there is no content][image: there is no content]-symmetric elementary matrix, we write it as [image: there is no content], [image: there is no content], and so on.



Example 1.

Let [image: there is no content] and [image: there is no content]. All [image: there is no content]-symmetric elementary matrices in [image: there is no content] are:


E(c)=1000c0001,E(1)(c)=c0001000c










E(1,2)(q)=1q(z)00100q(1/z)1,E(2,1)(q)=100q(z)1q(1/z)001.











By (4), their inverses are:


10001/c0001,1/c00010001/c,1−q(z)00100−q(1/z)1,100−q(z)1−q(1/z)001.











All [image: there is no content]-symmetric elementary matrices in [image: there is no content] are:


E[1,2]=0100100000010010,E(1)(c)=c00001000010000c,E(2)(c)=10000c0000c00001,










E(1,2)(q)=1q(z)000100001000q(1/z)1,E(2,1)(q)=1000q(z)100001q(1/z)0001.











Their inverses are:


0100100000010010,1/c000010000100001/c,100001/c00001/c00001,










1−q(z)000100001000−q(1/z)1,1000−q(z)100001−q(1/z)0001.














3. Euclidean Algorithm for SLPME


For simplification, in the paper, we only discuss LPs with real coefficients. Readers will find that our results can be trivially generalized to the LPs with coefficients in the complex field or other number fields. First, we recall some notations and notions used in [1]. We denote by [image: there is no content] the ring of all (real) polynomials and write [image: there is no content]. We also write [image: there is no content] and denote by [image: there is no content] the group of all nonzero Laurent monomials: Lm={czℓ∈L;c≠0,ℓ∈Z}. If [image: there is no content], writing [image: there is no content], where [image: there is no content] and [image: there is no content], we define its highest degree as [image: there is no content], its lowest degree as [image: there is no content] and its support length as [image: there is no content]. When [image: there is no content], we agree that [image: there is no content], [image: there is no content] and [image: there is no content].



Let the semi-group [image: there is no content] be defined by Πhc={p∈Πh:p(0)≠0}. Then, the power mapping [image: there is no content],


[image: there is no content]



(5)




defines an equivalent relation “∽” in [image: there is no content], i.e., [image: there is no content] if and only if [image: there is no content]. For convenience, we agree that [image: there is no content]. It is obvious that [image: there is no content]. In [1], we established the following Euclid’s division theorem for Laurent polynomials.



Theorem 1 ([image: there is no content]-Euclid’s division theorem)

Let [image: there is no content]. Then, there exists a unique pair [image: there is no content] such that:


[image: there is no content]



(6)




where, if [image: there is no content],


[image: there is no content]



(7)







Furthermore, if [image: there is no content], then:


[image: there is no content]



(8)









Remark 1.

In [1], we defined [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content]. In this paper, the definition of the support length is slightly changed so that it is up to the standard. Therefore, the inequality in (8) is updated according to the new definition.





In [1], we already developed a Euclidean algorithm for LPME based on Theorem 1. We now develop a Euclidean algorithm for SLPME. For this purpose, we introduce two lemmas.



Lemma 3.

Let [image: there is no content] and [image: there is no content] be an integer satisfying [image: there is no content] and [image: there is no content]. Then, there exists a unique pair [image: there is no content] such that:


[image: there is no content]



(9)




where [image: there is no content] and:


supp(r)+s−1≤deg+(r)<supp(b)+s−1,ifr(z)≠0.



(10)









Proof. 

In the case that [image: there is no content], we have [image: there is no content]. Hence, the lemma is identical to Theorem 1. We now assume [image: there is no content]. Define [image: there is no content]. Then, [image: there is no content] and [image: there is no content]. By Theorem 1, there is a unique pair [image: there is no content] such that:


[image: there is no content]








where, if [image: there is no content],


[image: there is no content]











Let [image: there is no content]. We have:


[image: there is no content]











If [image: there is no content], then [image: there is no content]. In this case, it is clear that there exists a unique [image: there is no content] such that (9) holds. We now consider the case that [image: there is no content]. If [image: there is no content], then [image: there is no content], so that [image: there is no content] and [image: there is no content]. In this case, we must have [image: there is no content]. Indeed, if [image: there is no content], then [image: there is no content]. Setting [image: there is no content] in (9), we get [image: there is no content], which leads to a contradiction with [image: there is no content]. Hence, we have [image: there is no content] so that (10) holds. Finally, if [image: there is no content] is neither zero nor [image: there is no content], by [image: there is no content], we have [image: there is no content] and [image: there is no content] so that (10) holds. The proof is completed.  ☐





For a real number x, we denote by [image: there is no content] the integer part of x, denote by [image: there is no content] the nearest integer of x that is no less than x and denote by [image: there is no content] the nearest integer of x that is no greater than x. For instance, for [image: there is no content], [image: there is no content] and [image: there is no content].



Lemma 4.

Assume [image: there is no content], [image: there is no content] and [image: there is no content]. Define [image: there is no content]. Then, there is a pair [image: there is no content] such that:


[image: there is no content]



(11)




where [image: there is no content], [image: there is no content] and [image: there is no content].





Proof. 

By [image: there is no content], we may write [image: there is no content], where [image: there is no content] and [image: there is no content] so that [image: there is no content]. Define:


[image: there is no content]











Then, [image: there is no content] and [image: there is no content]. Write [image: there is no content]. By [image: there is no content], we have [image: there is no content]. Applying Lemma 3 to [image: there is no content] and [image: there is no content] by setting [image: there is no content], we obtain a unique pair [image: there is no content] such that:


[image: there is no content]








where [image: there is no content] and [image: there is no content]. Since [image: there is no content], we have:


[image: there is no content]











Writing [image: there is no content], we have [image: there is no content] and [image: there is no content]. The proof is completed.  ☐





The proof suggests the following Euclidean [image: there is no content]-symmetric division algorithm for computing [image: there is no content] and [image: there is no content] in the division of [image: there is no content] described by Lemma 4.



Algorithm 1 (Euclidean [image: there is no content]-symmetric division algorithm).

Assume that [image: there is no content] and:


a(z)=∑j=−mmajzj∈Pϵ,b(z)=∑j=−ln−lbjzj∈Lh.









	1.

	
Compute [image: there is no content].




	2.

	
Construct [image: there is no content] and [image: there is no content].




	3.

	
Perform polynomial division [image: there is no content] to produce [image: there is no content].




	4.

	
Output [image: there is no content].











For [image: there is no content], we define [image: there is no content] as the number of nonzero entries in [image: there is no content] and define [image: there is no content]. The following theorem describes the relation between the Euclidean [image: there is no content]-symmetric division and the [image: there is no content]-symmetric elementary transformation on [image: there is no content].



Theorem 2.

Assume that [image: there is no content] with [image: there is no content]. Then, there is a [image: there is no content]-symmetric elementary matrix [image: there is no content] of Type 3, such that [image: there is no content] with [image: there is no content] and [image: there is no content].





Proof. 

Write [image: there is no content]. We first consider the case of [image: there is no content]. Since [image: there is no content], by the [image: there is no content]-symmetry of [image: there is no content], there are at least two nonzero entries in [image: there is no content], say [image: there is no content], where [image: there is no content] and [image: there is no content]. By Theorem 1, there is a pair [image: there is no content] such that [image: there is no content] and [image: there is no content], where r possibly vanishes. Let [image: there is no content]. Then, [image: there is no content], [image: there is no content], and the other entries are unchanged. Hence, [image: there is no content] and [image: there is no content].



We now consider the case of [image: there is no content]. If there are at least two nonzero entries in [image: there is no content], the proof is similar to what we have done for [image: there is no content]. Otherwise, [image: there is no content], so that there is a nonzero entry [image: there is no content] and [image: there is no content]. If [image: there is no content], applying Theorem 1, we produce the pair [image: there is no content] such that [image: there is no content]. Let [image: there is no content]. Then, in [image: there is no content], [image: there is no content], [image: there is no content], and the other entries are unchanged. Else, if [image: there is no content], by Lemma 4, there is [image: there is no content] and [image: there is no content] such that:


[image: there is no content]








where [image: there is no content]. Let [image: there is no content]. Then, [image: there is no content], and the other entries are unchanged. In both cases, we have [image: there is no content], [image: there is no content] and [image: there is no content]. The proof is completed.  ☐





Definition 6.

Let [image: there is no content]. A [image: there is no content]-symmetric prime vector [image: there is no content] is called the smallest one if it is given as follows:

	(1) 

	
[image: there is no content], where [image: there is no content] is the [image: there is no content]-th coordinate basis vector of [image: there is no content].




	(2) 

	
[image: there is no content] with only two nonzero entries [image: there is no content] and [image: there is no content].




	(3) 

	
[image: there is no content] with only two nonzero entries: [image: there is no content] and [image: there is no content].









Particularly, we call [image: there is no content] normalized if [image: there is no content] in (1) and [image: there is no content] in (2) and (3).





In Definition 6, because [image: there is no content] is prime, [image: there is no content] in (2) and (3) satisfies [image: there is no content]. Besides, we may normalize the smallest [image: there is no content]-symmetric prime vector as follows: In (1), if [image: there is no content], then [image: there is no content] is normalized. In (2) and (3), if [image: there is no content], then [image: there is no content] is the normalized one. Repeating the [image: there is no content]-symmetric elementary transformations in Theorem 2, we may transform a [image: there is no content]-symmetric prime vector to the smallest one.



Corollary 1.

Assume that [image: there is no content] is a [image: there is no content]-symmetric prime vector. Then, there are final [image: there is no content]-symmetric elementary matrices [image: there is no content] of Type 3 such that [image: there is no content] is the smallest [image: there is no content]-symmetric prime vector.





Proof. 

We first assume that the prime vector [image: there is no content], and it is not the smallest one. Then, [image: there is no content]. By Theorem 2, applying the mathematical induction, we can construct final [image: there is no content]-symmetric elementary matrices [image: there is no content] such that [image: there is no content] has only one nonzero entry in [image: there is no content]. If [image: there is no content], then [image: there is no content]. Otherwise, there is [image: there is no content] such that [image: there is no content]. Writing [image: there is no content], by the [image: there is no content]-symmetry of [image: there is no content], we have [image: there is no content] and [image: there is no content]. By the extended Euclidean algorithm in [1], we can find a LP pair [image: there is no content] such that [image: there is no content] Let [image: there is no content]. Then:


[image: there is no content]



(12)







Defining [image: there is no content] and [image: there is no content], we have [image: there is no content]. The proof for the case of [image: there is no content] is completed.



We now consider the case of [image: there is no content]. Similar to the proof above, we can construct [image: there is no content] such that [image: there is no content] has only one nonzero entry in [image: there is no content]. If [image: there is no content], because [image: there is no content] is prime, [image: there is no content]. By [image: there is no content], we would have [image: there is no content], which yields [image: there is no content]. Therefore, the only nonzero entry in [image: there is no content] cannot be [image: there is no content]. Assume now [image: there is no content]. Then, [image: there is no content] and [image: there is no content] is smallest. The proof for [image: there is no content] is completed. The proof for the case of [image: there is no content] is similar.  ☐





When the vector [image: there is no content] is prime, we choose [image: there is no content] in (12) and define:


[image: there is no content]



(13)







Then, [image: there is no content] is an SLPME of the vector [image: there is no content]. The inverse of [image: there is no content] is:


[image: there is no content]











In (13), if we set [image: there is no content], then [image: there is no content] is reduced to:


[image: there is no content]



(14)




which will be used in the construction of SLPMEs. In the following content, the submatrix of M, which contains all elements [image: there is no content] in M with [image: there is no content] and [image: there is no content], is denoted by [image: there is no content].



Lemma 5.

Let [image: there is no content] and [image: there is no content] be a normalized smallest [image: there is no content]-symmetric prime vector. Let [image: there is no content] be the matrix in (13). Assume that [image: there is no content], [image: there is no content] and [image: there is no content] are arbitrary. Write:


[image: there is no content]



(15)




and:


[image: there is no content]



(16)







Then, an SLPME [image: there is no content] of [image: there is no content] is constructed as follows.

	(i) 

	
For [image: there is no content], we define [image: there is no content] as the following:


A(m+1,:)=[1,−w1+(z),⋯,−wm+(z),wm−(z),⋯,w1−(z)],A[m+1−j,m+1+j],[m+2−j,m+1+j]=J+,1≤j≤m,



(17)




and the other entries are zero. Its inverse [image: there is no content] is the following:


A−1(1,:)=[u1(z),⋯,um(z),1,um(1/z),⋯,u1(1/z)],A−1[m+2−j,m+1+j],[m+1−j,m+1+j]=J−,1≤j≤m,



(18)




and the other entries vanish.




	(ii) 

	
For [image: there is no content],


A([1,2m+1],[1,2m+1])=D−(z),A([1,m+1,2m+1],m+1)=[−d(z)v(z);1;−d(1/z)v(z)],A([1,2m+1],[j+1,2m+1−j])=Wj−(z),1≤j≤m−1,A([m+1−j,m+1+j],[m+1−j,m+1+j])=J+,1≤j≤m−1,



(19)




and the other entries vanish. Its inverse [image: there is no content] is the following:


A−1(m+1,m+1)=1,A−1([1,2m+1],[1,2m+1])=D−−1(z),A−1(1,[2:2m])=[u1(z),⋯,um−1(z),v(z),−um−1(1/z),⋯,−u1(1/z)],A−1([m+1−j,m+1+j],[m+1−j,m+1+j])=J−,1≤j≤m−1,,



(20)




and the other entries vanish.




	(iii) 

	
For [image: there is no content],


A([1,2m],[1,2m])=Dϵ(z),A([1,2m],[j+1,2m−j])=Wjϵ(z),1≤j≤m−1,A([m+1−j,m+j],[m+1−j,m+j])=Jϵ,1≤j≤m−1,



(21)




and the other entries vanish. Its inverse [image: there is no content] is the following:


A−1([1,2m],[1,2m])=Dϵ−1(z),A−1(1,2:2m−1)=[u1(z),⋯,um−1(z),ϵum−1(1/z),⋯,ϵu1(1/z)],A−1([m+1−j,m+j],[m+1−j,m+j])=Jϵ−1,1≤j≤m−1,



(22)




and the other entries vanish.











Proof. 

Recall that [image: there is no content]. By computation, we claim that [image: there is no content] in (i), (ii) or (iii) is [image: there is no content]-symmetric and [image: there is no content]-invertible, and [image: there is no content] is given by (18), (20) or (22), respectively. The proof is completed.  ☐





The SLPME of the smallest [image: there is no content]-symmetric prime vector is not unique because [image: there is no content] and [image: there is no content] can be arbitrary. Besides, each [image: there is no content] can be replaced by [image: there is no content] in (13), where [image: there is no content] and [image: there is no content] can also be freely chosen.



We show the SLPMEs of some smallest [image: there is no content]-symmetric prime vectors in the following example.



Example 2.


	(i) 

	
An SLPME of [image: there is no content] is given by:


[image: there is no content]








whose inverse is:


[image: there is no content]












	(ii) 

	
An SLPME of [image: there is no content] is given by:


[image: there is no content]








whose inverse is:


[image: there is no content]












	(iii) 

	
An SLPME of [image: there is no content] is:


[image: there is no content]








whose inverse is:


[image: there is no content]



















We now give the main theorem for SLPME.



Theorem 3 (Euclidean symmetric division algorithm for SLPME).

Let [image: there is no content] be a [image: there is no content]-symmetric prime vector. Then, the following Euclidean symmetric division algorithm realizes its SLPME:

	1.

	
Apply Euclidean symmetric division to construct the [image: there is no content]-symmetric elementary matrices [image: there is no content] such that [image: there is no content] is a normalized smallest [image: there is no content]-symmetric prime vector.




	2.

	
Apply Lemma 5 to construct an SLPME [image: there is no content] of [image: there is no content] and its inverse [image: there is no content] by choosing [image: there is no content], [image: there is no content] and [image: there is no content] at random, say [image: there is no content].




	3.

	
Construct the SLPME for [image: there is no content] by:


[image: there is no content]














Then, [image: there is no content] is an SLPME of [image: there is no content].



If a dual pair [image: there is no content] is given, then Step (2) is replaced by the following to compute [image: there is no content].

	2.a 

	
Compute [image: there is no content].




	2.b 

	
If [image: there is no content], set:


wj+(z)=22(bjn(z)+bjn(1/z)),1≤j≤m,wj−(z)=22(bjn(z)−bjn(1/z)),1≤j≤m.











If [image: there is no content] in [image: there is no content] or in [image: there is no content], set:


wj+(z)=22(bj+1n(z)+bj+1n(1/z)),1≤j≤m−1,wj−(z)=22(bj+1n(z)−bj+1n(1/z)),1≤j≤m−1,








and also set [image: there is no content] if [image: there is no content].




	2.c 

	
Construct the SLPME [image: there is no content] as in Lemma 5 using [image: there is no content], [image: there is no content] and [image: there is no content].






Then, [image: there is no content] is an SLPME of the dual pair [image: there is no content].





Proof. 

By the construction of [image: there is no content], its first column [image: there is no content] is the smallest [image: there is no content]-symmetric prime vector. Since [image: there is no content], we have [image: there is no content] and [image: there is no content] is [image: there is no content]-symmetric and [image: there is no content]-invertible, whose inverse can be computed by [image: there is no content]. Hence, [image: there is no content] is an SLPME of [image: there is no content]. Assume now the dual pair [image: there is no content] is given. By the computation in Step (2.a) and Step (2.b), we claim that [image: there is no content]. Since [image: there is no content], [image: there is no content]. Hence, [image: there is no content] is an SPLME of the pair [image: there is no content]. The proof is completed.  ☐






4. Application in the Construction of Symmetric Multi-Band Perfect Reconstruction Filter Banks


In this section, we use the results in the previous section to construct symmetric M-band perfect reconstruction filter banks (SPRFBs). We adopt the standard notions and notations of digital signals, filters, the M-downsampling operator and the M-upsampling operator in signal processing (see [6,7]). In this paper, we restrict our study to real digital signals and simply call them signals.



Mathematically, a signal [image: there is no content] is defined as a bi-infinite real sequence, whose n-th term is denoted by [image: there is no content] or [image: there is no content]. A finite signal is a sequence that has only finite nonzero terms. All signals form a linear space, denoted by l. A filter [image: there is no content] can be represented as a signal [image: there is no content] that makes [image: there is no content] well defined, where ∗ denotes the convolution operator:


[image: there is no content]



(23)







A finite filter H is called a finite impulse response (FIR). Otherwise, it is called an infinite impulse response (IIR). In this paper, we only study FIR. The z-transform of a signal [image: there is no content] is the Laurent series [image: there is no content] where [image: there is no content] resides on the unit circle of the complex plane [image: there is no content]. Hence, [image: there is no content]. Similarly, the z-transform of an FIR H is the Laurent polynomial:


[image: there is no content]











We define the support length of an FIR as the support length of its z-transform: [image: there is no content]. By the convolution theorem, if [image: there is no content], then [image: there is no content].



PRFBs have been widely used in many areas such as signal and image processing, data mining, feature extraction and compressive sensing [12,13,14,15,16]. The readers can find an introduction to PRFB from many references on signal processing and wavelets, say [6,7]. A PRFB consists of two sub-filter banks: an analysis filter bank, which decomposes a signal into different bands, and a synthesis filter bank, which composes a signal from its different band components. Assume that an analysis filter bank consists of the band-pass filter set [image: there is no content] and a synthesis one consists of the band-pass filter set [image: there is no content], where [image: there is no content] and [image: there is no content] are low-pass filters. They form an M-band PRFB if and only if the following condition holds:


∑j=0M−1B¯j(↑M)(↓M)Hj=I,



(24)




where ↓M is the M-downsampling operator, ↑M is the M-upsampling operator, I is the identity operator and [image: there is no content] denotes the conjugate filter of [image: there is no content]. Here, the conjugate of a real filter [image: there is no content] is [image: there is no content]. Therefore, the z-transform of [image: there is no content] is [image: there is no content].



The polyphase form of a signal is defined as follows:

Definition 7.

Let [image: there is no content] be the z-transform of a signal [image: there is no content] and [image: there is no content] an integer. The Laurent series:


x[M,k](z)=∑jx(Mj+k)zj,k∈Z,



(25)




is called the k-th M-phase of [image: there is no content], and the vector of Laurent series [image: there is no content] is called an M-polyphase of [image: there is no content].







Since a filter can be identical with a signal, we define its polyphase in the same way. For instance, let [image: there is no content] be the z-transform of an FIR filter F. We call:


[image: there is no content]








the k-th M-phase of F and call the LP vector [image: there is no content] the M-polyphase of F. We will abbreviate [image: there is no content] to [image: there is no content] if the band number M is not stressed. It is clear that [image: there is no content]. Since, for any filter F,


F[k+sM](z)=z−sF[k](z),s∈Z,



(26)




the M-polyphase of F can be generalized to [image: there is no content] with [image: there is no content]. Then, in general,


[image: there is no content]











For a filter bank [image: there is no content], we define its M-polyphase matrix as:


[image: there is no content]











The characterization identity (24) for PRFB now can be written as the following:


[image: there is no content]



(27)




where [image: there is no content] is the Hermitian adjoint matrix of [image: there is no content] and I is the identity matrix.



A pair of low-pass filters [image: there is no content] is called a conjugate pair if their M-polyphase forms satisfy:


[image: there is no content]



(28)







We write [image: there is no content] and [image: there is no content]. Then, the vector form of (28) is:


[image: there is no content]



(29)







Recall that, in the previous section, we call [image: there is no content] a dual pair, if [image: there is no content]. Therefore, [image: there is no content] in (29) is a conjugate pair if and only if [image: there is no content] is a dual pair.



The PRFB construction problem is the following: Assume that a conjugate pair of low-pass filters [image: there is no content] is given. Find the filter sets [image: there is no content] and [image: there is no content] such that the pair of filter banks [image: there is no content] and [image: there is no content] forms an M-band PRFB. The problem can be presented in the polyphase form: Let [image: there is no content] be the M-polyphase of [image: there is no content]. Then, [image: there is no content] is an LP dual pair. The PRFB construction problem becomes to find an LPME [image: there is no content] of [image: there is no content] such that [image: there is no content] and [image: there is no content]. Once the pair [image: there is no content] is constructed, then the polyphase matrices for the PRFB are [image: there is no content] and [image: there is no content]. Hence, the PRFB construction problem essentially is identical to the LPME one, which we have studied thoroughly in [1].



The symmetric PRFB (SPRFB) plays an important role in signal processing because it has the linear phase. An FIR [image: there is no content] is said to be [image: there is no content]-symmetric (with respect to the symmetric center [image: there is no content]) if [image: there is no content]. It is clear that if c is even, then [image: there is no content] is odd, else if c is odd, then [image: there is no content] is even. In applications, we usually shift a given [image: there is no content]-symmetric filter to the center zero if [image: there is no content] is odd or to one if [image: there is no content] is even. We abbreviate [image: there is no content]-symmetric to symmetric if the symmetric center c and type (characterized by [image: there is no content]) are not stressed. For convenience, we will call the z-transform of [image: there is no content] the [image: there is no content]-symmetric if [image: there is no content] is so. It is easy to verify that a [image: there is no content]-symmetric LP is [image: there is no content]-symmetric, a [image: there is no content]-symmetric [image: there is no content] satisfies [image: there is no content] and a [image: there is no content]-symmetric [image: there is no content] satisfies [image: there is no content]. We will denote by [image: there is no content] and [image: there is no content] the sets of all [image: there is no content]-symmetric and [image: there is no content]-symmetric LPs, respectively. It is clear that, if [image: there is no content], so is [image: there is no content]. If [image: there is no content], then [image: there is no content].



Assume that a conjugate pair of symmetric low-pass filters [image: there is no content] is given. An SPRFB construction problem is to find two symmetric filter sets [image: there is no content] and [image: there is no content] such that the pair of symmetric filter banks [image: there is no content] and [image: there is no content] forms an M-band SPRFB. Because the filters in a conjugate dual pair [image: there is no content] have the same symmetric type and center (see Lemma 1 or [17]), without loss of generality, we will assume that the given conjugate pair is [image: there is no content]-symmetric (if [image: there is no content] is odd) or [image: there is no content]-symmetric (if [image: there is no content] is even). Although the construction of PRFB has been well studied, the development of the algorithms for SPRFB is relatively new. The authors of [17] introduced a bottom-up algorithm to construct SPRFB for a given symmetric conjugate pair, without using SLPME. Our purpose in this section is to develop a novel algorithm based on the symmetric Euclidean SLPME algorithm introduced in the previous section. We want to put the algorithm in the framework of the matrix algebra on the Laurent polynomial ring to make it more constructive. The PRFB algorithm in [1] does not work for the construction of SPRFB. The new development is required.



To develop the SPRFB algorithm based on M-polyphase representation, we need to characterize the M-polyphase of a symmetric filter. By computation, we can verify that the k-th M-phase of a symmetric filter satisfies the following:

	(1)

	
If F is [image: there is no content]-symmetric, then:


[image: there is no content]



(30)








	(2)

	
If F is [image: there is no content]-symmetric, then:


[image: there is no content]



(31)








	(3)

	
If F is [image: there is no content]-symmetric, then:


[image: there is no content]



(32)








	(4)

	
If F is [image: there is no content]-symmetric, then:


[image: there is no content]



(33)













We call a vector in [image: there is no content][image: there is no content]-symmetric if it satisfies (32) and call a vector in [image: there is no content][image: there is no content]-symmetric if it satisfies (33). We denote by [image: there is no content] and [image: there is no content] the sets of all [image: there is no content]-symmetric vectors in [image: there is no content] and [image: there is no content]-symmetric vectors in [image: there is no content], respectively. By computation, we have the following:

Proposition 4.

Let [image: there is no content] be a [image: there is no content][image: there is no content]-symmetric elementary matrix and [image: there is no content]. Then, [image: there is no content]. Let [image: there is no content] be a [image: there is no content][image: there is no content]-symmetric elementary matrix and [image: there is no content]. Then, [image: there is no content].







We now characterize the M-polyphase of a symmetric filter F as follows:

Lemma 6.

Let [image: there is no content], and [image: there is no content] be the M-polyphase of a filter F.

	1.

	
If M is odd and F is [image: there is no content]-symmetric, or M is even and F is [image: there is no content]-symmetric, then [image: there is no content] is [image: there is no content]-symmetric.




	2.

	
Assume [image: there is no content]. If F is [image: there is no content]-symmetric, then (30) holds for [image: there is no content] and:


[image: there is no content]



(34)




else if F is [image: there is no content]-symmetric, then (32) holds for [image: there is no content] and:


[image: there is no content]



(35)








	3.

	
Assume [image: there is no content]. If F is [image: there is no content]-symmetric, then (31) holds for [image: there is no content] and:


[image: there is no content]



(36)




else if F is [image: there is no content]-symmetric, then (32) holds for [image: there is no content] and:


[image: there is no content]



(37)

















Proof. 

We obtain Part 1 directly from (30) and (31). To prove Parts 2 and 3, according to (30)–(33), we only need to verify (34)–(37).



If [image: there is no content] and F is [image: there is no content]-symmetric, by (26) and (30), [image: there is no content][image: there is no content], which yields (34); and if F is [image: there is no content]-symmetric, then [image: there is no content], which yields (35).



If [image: there is no content] and F is [image: there is no content]-symmetric, then [image: there is no content], which yields (36); and if F is [image: there is no content]-symmetric, then [image: there is no content], which yields (37). The lemma is proven.  ☐





We call a vector in [image: there is no content][image: there is no content]-symmetric if it satisfies (30) for [image: there is no content] and (34) and call it [image: there is no content]-symmetric if it satisfies (32) for [image: there is no content] and (35). Similarly, we call a vector in [image: there is no content][image: there is no content]-symmetric, if it satisfies (31) for [image: there is no content] and (36), and call it [image: there is no content]-symmetric if it satisfies (33) for [image: there is no content] and (37). We denote by [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], the sets of all [image: there is no content]-symmetric, [image: there is no content]-symmetric, [image: there is no content]-symmetric and [image: there is no content]-symmetric vectors, respectively. All of these symmetric vectors (other than [image: there is no content]-symmetric) will be called [image: there is no content]-symmetric ones.



Example 3.

The vector [image: there is no content] is [image: there is no content]-symmetric, but not [image: there is no content]-symmetric; and the vector [image: there is no content] is [image: there is no content]-symmetric, but not [image: there is no content]-symmetric.





By Part 1 of Lemma 6, we have the following SPRFB construction algorithm:

Theorem 4.

Let [image: there is no content] be a conjugate pair of symmetric filters and [image: there is no content] the M-polyphase of the pair. Assume that M is odd and [image: there is no content] is [image: there is no content]-symmetric, or M is even and [image: there is no content] is [image: there is no content]-symmetric. Write [image: there is no content] and [image: there is no content]. Let [image: there is no content] be an SLPME of the dual pair [image: there is no content] computed by the Euclidean division algorithm in Theorem 3. Write [image: there is no content] and [image: there is no content]. Then, [image: there is no content] is the M-polyphase form of the M-band SPRFB, in which [image: there is no content] is a filter in the analysis filter bank and [image: there is no content] is in the synthesis bank.







Proof. 

By [image: there is no content], we have:


[image: there is no content]











Hence, [image: there is no content] is a symmetric LP dual pair. By Theorem 3, [image: there is no content], [image: there is no content] and [image: there is no content]. The theorem is proven.  ☐





Lemma 6 shows that, when the odevityof the band number M mismatches the odevity of the support length of the conjugate pair [image: there is no content], then their M-polyphase forms are not [image: there is no content]-symmetric. Thus, we cannot apply Theorem 3 to solve the SPRFB constriction problem for [image: there is no content]. To employ the results we already obtained in the previous section, we establish a relation between [image: there is no content]- symmetry and [image: there is no content]-symmetry.



Definition 8.

The [image: there is no content] matrix:


[image: there is no content]








is called the symmetrizer for the vectors in [image: there is no content]. The [image: there is no content] matrix:


[image: there is no content]








is called the symmetrizer for the vectors in [image: there is no content].





Recall [image: there is no content]. It is easy to verify that the left inverse of [image: there is no content] is:


[image: there is no content]








and the left inverse of [image: there is no content] is:


[image: there is no content]











Lemma 7.

We have the following.

	(a) 

	
If [image: there is no content], then [image: there is no content]. Conversely, if [image: there is no content], then [image: there is no content].




	(b) 

	
If [image: there is no content], then [image: there is no content]. Conversely, if [image: there is no content], then [image: there is no content].




	(c) 

	
If [image: there is no content], then [image: there is no content]. Conversely, if [image: there is no content], then [image: there is no content].




	(d) 

	
If [image: there is no content], then [image: there is no content]. Conversely, if [image: there is no content], then [image: there is no content].











Proof. 

Let [image: there is no content]. Writing [image: there is no content] and applying (30) and (34), we have:


a1(z)=22zF[m](z)=22ϵF[m](z−1),aj(z)=ϵa2m+2−j(z−1),2≤j≤m+1,a2m+1(z)=22F[m](z),








which show that [image: there is no content] is [image: there is no content]-symmetric. On the other hand, if [image: there is no content] is [image: there is no content]-symmetric, writing [image: there is no content], for [image: there is no content], we have [image: there is no content], so that [image: there is no content]. We also have:


[image: there is no content]











By [image: there is no content] and the identify above, we have:


[image: there is no content]











Hence, [image: there is no content]. The proof for Part (a) is completed. By the similar computation and applying (31) and (36), (32) and (35), (33) and (37), respectively, we can prove Parts (b), (c) and (d) of the lemma.  ☐





Similar to Definition 6, we define the smallest [image: there is no content]-symmetric prime vector in the sets [image: there is no content] and [image: there is no content].



Definition 9.

The smallest [image: there is no content]-symmetric prime vector is defined as follows:

	(1) 

	
The vector [image: there is no content] is called the smallest [image: there is no content]-symmetric prime vector in [image: there is no content].




	(2) 

	
Let [image: there is no content] be the smallest [image: there is no content]-symmetric prime vector in (2) of Definition 6 with [image: there is no content]. Then, [image: there is no content] is called the smallest [image: there is no content]-symmetric prime vector in [image: there is no content].




	(3) 

	
Let [image: there is no content] be the smallest [image: there is no content]-symmetric prime vector in (3) of Definition 6 with [image: there is no content]. Then, [image: there is no content] is called the smallest [image: there is no content]-symmetric prime vector in [image: there is no content].











By Definition 9, we immediately have the following:

Proposition 5.

The smallest [image: there is no content]-symmetric prime vector has the following form:

	(1) 

	
The smallest [image: there is no content]-symmetric prime vector in [image: there is no content] has the form [image: there is no content], where [image: there is no content] is the smallest [image: there is no content]-symmetric prime vector in [image: there is no content]. Therefore, if [image: there is no content] in the smallest [image: there is no content]-symmetric prime vector, then [image: there is no content] is the smallest [image: there is no content]-symmetric prime vector.




	(2) 

	
The smallest [image: there is no content]-symmetric prime vector in [image: there is no content] has the form [image: there is no content], where [image: there is no content] is the smallest [image: there is no content]-symmetric prime vector in [image: there is no content]. Therefore, if [image: there is no content] in the smallest [image: there is no content]-symmetric prime vector, then [image: there is no content] is the smallest [image: there is no content]-symmetric prime vector.













Example 4.

Assume [image: there is no content] satisfies [image: there is no content]. The smallest [image: there is no content]-symmetric prime vector in [image: there is no content] has the form [image: there is no content] The smallest [image: there is no content]-symmetric prime vector in [image: there is no content] has the form [image: there is no content] The smallest [image: there is no content]-symmetric prime vector in [image: there is no content] has the form [image: there is no content] or [image: there is no content].





At the next step, we define [image: there is no content]-symmetric elementary matrices for transforming a [image: there is no content]-symmetric prime vector to the smallest one. By Lemma 7, we immediately have the following:

Lemma 8.

For any [image: there is no content], [image: there is no content] and [image: there is no content], we have [image: there is no content] and [image: there is no content]. For any [image: there is no content], [image: there is no content] and [image: there is no content], we have [image: there is no content] and [image: there is no content].







We also have the following:

Lemma 9.

Let [image: there is no content] be an [image: there is no content][image: there is no content]-symmetric elementary matrix of Type 3.

	(1) 

	
If [image: there is no content], then [image: there is no content].




	(2) 

	
If [image: there is no content], then [image: there is no content].











Proof. 

In the case of [image: there is no content], we have [image: there is no content] and:


[image: there is no content]








where


[image: there is no content]








satisfies [image: there is no content] and [image: there is no content]. Therefore,


[image: there is no content]











If [image: there is no content], then [image: there is no content], which yields [image: there is no content]. If [image: there is no content], then [image: there is no content]; else if [image: there is no content], then [image: there is no content]. By [image: there is no content] and [image: there is no content], in both cases, we have [image: there is no content] The lemma is proven for odd M. The proof for even M is similar.  ☐







By Lemmas 8 and 9, we define the [image: there is no content]-symmetric elementary matrices as follows.



Definition 10.

The matrix:


[image: there is no content]



(38)




is called a [image: there is no content]-symmetric elementary matrix. We denote by [image: there is no content] the set of all [image: there is no content][image: there is no content]-symmetric elementary matrices.





As before, when the indices of [image: there is no content] are not stressed, we simply write it as [image: there is no content]. If we need to stress the dimension of an [image: there is no content][image: there is no content]-symmetric elementary matrix, we write it as [image: there is no content].



Proposition 6.

[image: there is no content] and [image: there is no content].





Proof. 

The first identity is derived from:


[image: there is no content]











The second one is derived from [image: there is no content] and Lemma 9.  ☐





To derive the explicit expressions of [image: there is no content]-symmetric elementary matrices, we write:


q→c(z)=22(q(z)+zq(z−1))e→m,e→m∈R2m−1,q→oj(z)=22(q(z)e→j+z−1q(z−1)e→2m+1−j),e→j,e→2m+1−j∈R2m,q→ej(z)=22(zq(z)e→j+q(z−1)e→2m−j),e→j,e→2m−j∈R2m−1.











When [image: there is no content] by (38) and:


[image: there is no content]








we have:


E˜2m+1(i+1,j+1)(q)=100E2m(i,j)(q),1≤j<i≤m.











Similar computation yields:


E˜2m+1(j+1,1)(q)=10q→ojI2m,1≤j≤m−1.











For even-dimensional cases, we have:


E˜2m(i+1,j+1)(q)=E2m−1(i,j)001,1≤j<i≤m,E˜2m(m+1,1)(q)=I2m−1q→c01,E˜2m(j+1,1)(q)=I2m−1q→ej01,1≤j≤m−1.











Example 5.

All elements of [image: there is no content] are derived from [image: there is no content], where [image: there is no content] and [image: there is no content]. By Corollary 6, we only need to present [image: there is no content] for [image: there is no content], and [image: there is no content]. By the formulas above, we obtain:


E˜4(2,1)(q)=10022zq(z)010000122q(z−1)0001,E˜4(3,1)(q)=1000010q^(z)00100001








where [image: there is no content], and:


[image: there is no content]











All elements of [image: there is no content] are derived from [image: there is no content]. Similarly, we only need to present [image: there is no content] for [image: there is no content] and [image: there is no content]. By the formulas above,


E˜5(2,1)(q)=1000022q(z)1000001000001022z−1q(z−1)0001,E˜5(3,1)(q)=100000100022q(z)010022z−1q(z−1)001000001.










[image: there is no content]













We now generalize Lemma 4 to the sets [image: there is no content] and [image: there is no content].



Lemma 10.

Assume that [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].

	(1) 

	
If [image: there is no content], then there is [image: there is no content] and [image: there is no content] with [image: there is no content] such that [image: there is no content]. If [image: there is no content], then there is [image: there is no content] and [image: there is no content] with [image: there is no content] such that [image: there is no content].




	(2) 

	
If [image: there is no content], then there is [image: there is no content] and [image: there is no content] with [image: there is no content] such that [image: there is no content]. If [image: there is no content], then there is [image: there is no content] and [image: there is no content] with [image: there is no content] such that [image: there is no content].




	(3) 

	
If [image: there is no content], there is a [image: there is no content] and [image: there is no content] with [image: there is no content] such that:


[image: there is no content]












	(4) 

	
If [image: there is no content], there is a [image: there is no content] and [image: there is no content] with [image: there is no content] such that:


[image: there is no content]



















Proof. 

We first prove (1). If [image: there is no content], applying Lemma 4 to [image: there is no content] and [image: there is no content], we have [image: there is no content] and [image: there is no content] with [image: there is no content] such that:


[image: there is no content]











Since [image: there is no content], [image: there is no content], so that:


[image: there is no content]








where [image: there is no content], which leads to [image: there is no content]. Because [image: there is no content] is even and [image: there is no content] is odd, [image: there is no content].



If [image: there is no content], writing [image: there is no content] and [image: there is no content], we have [image: there is no content]. Similar to the proof of Lemma 4, we write [image: there is no content], where [image: there is no content] and [image: there is no content]. Define:


[image: there is no content]











Then, [image: there is no content] and [image: there is no content]. Applying Lemma 3 to [image: there is no content] and [image: there is no content], we obtain a unique pair [image: there is no content] such that:


[image: there is no content]








where [image: there is no content] and [image: there is no content]. Since [image: there is no content], we have:


[image: there is no content]











Writing [image: there is no content] and [image: there is no content], we have:


[image: there is no content]








where [image: there is no content] and [image: there is no content]. The proof for (1) is completed. The proof of (2) is similar to that for (1), and the proofs for (3) and (4) are similar to that for Lemma 4.  ☐





The algorithms that perform the divisions in Lemma 10 are similar to Algorithm 1. We present the algorithm that performs the divisions in Parts (1) and (2) of Lemma 10 in the following:

Algorithm 2 (Euclidean [image: there is no content]-symmetric division algorithm I).

Input:


[image: there is no content]








and:


[image: there is no content]









	1.

	
If [image: there is no content], apply Algorithm 1 to [image: there is no content] to produce [image: there is no content] and output [image: there is no content] where [image: there is no content] and [image: there is no content]




	2.

	
Else, if [image: there is no content], set [image: there is no content] and:


[image: there is no content]











Apply the Euclidean division algorithm [image: there is no content] in the polynomial ring to obtain [image: there is no content] and output [image: there is no content], where:


[image: there is no content]








and:


[image: there is no content]





















The algorithm that performs the divisions in Parts (3) and (4) of Lemma 10 is the following:

Algorithm 3 (Euclidean [image: there is no content]-symmetric division algorithm II).

Assume [image: there is no content], [image: there is no content], and:


[image: there is no content]









	1.

	
Compute [image: there is no content].




	2.

	
Construct:


[image: there is no content]












	3.

	
Apply the Euclidean division algorithm [image: there is no content] to obtain [image: there is no content].




	4.

	
Output:


[q(z),b1(z)]=[zk−m+ℓqh(z),zk−mrh(z)+ϵzm−k−1rh(1/z))],b(z)∈P−ϵ,k−m+1+ℓqh(z),zk−m+1rh(z)+ϵzm−krh(1/z)],b(z)∈P+ϵ.





















Similar to Theorem 2, we have the following:

Theorem 5.

Assume [image: there is no content] or [image: there is no content] with [image: there is no content]. Then, there is a [image: there is no content]-symmetric elementary matrix [image: there is no content] such that [image: there is no content] or [image: there is no content] with [image: there is no content] and [image: there is no content].







Proof. 

We first consider [image: there is no content] with [image: there is no content]. Recall that [image: there is no content] is [image: there is no content]-symmetric. If [image: there is no content], by Theorem 2, we obtain the conclusion. Assume [image: there is no content]. Then, [image: there is no content]. Without loss of generality, we may assume [image: there is no content] so that [image: there is no content]. If [image: there is no content], by Theorem 1, there is a pair [image: there is no content] such that [image: there is no content] with [image: there is no content]. Therefore,


[image: there is no content]











Set [image: there is no content], where [image: there is no content]. Then, [image: there is no content], [image: there is no content], and other terms are unchanged. Hence, [image: there is no content] and [image: there is no content]. If [image: there is no content], applying the division in (3) of Lemma 10, we obtain the conclusion. The proof for [image: there is no content] is completed. The proof for [image: there is no content] is similar.  ☐





Corollary 2.

Assume that the prime vector [image: there is no content] (or in [image: there is no content]) is not the smallest one. Then, there are final [image: there is no content]-symmetric elementary matrices such that [image: there is no content] is the smallest [image: there is no content]-symmetric (or [image: there is no content]-symmetric) prime vector.





Proof. 

The proof is almost identical with that for Corollary 1. Assume [image: there is no content]. First, we find final [image: there is no content]-elementary matrix, say [image: there is no content], such that [image: there is no content] with [image: there is no content]. If [image: there is no content], the only possible nonzero term is either [image: there is no content] or [image: there is no content]. By [image: there is no content], the nonzero term must have the form of [image: there is no content]. we must have [image: there is no content]. However, [image: there is no content] is [image: there is no content]-symmetric; if [image: there is no content], it must be zero. Therefore, we have [image: there is no content]; if [image: there is no content], but [image: there is no content]. Therefore, we must have [image: there is no content] Applying the division scheme in (1) of Lemma 10, we find [image: there is no content] such that [image: there is no content] has only one nonzero term. As we proved before, we have [image: there is no content]. If [image: there is no content] and [image: there is no content], then there is [image: there is no content] such that [image: there is no content] and [image: there is no content] and [image: there is no content]. Similar to the proof of Corollary 1, we can find [image: there is no content] and [image: there is no content] such that [image: there is no content]. The proof for [image: there is no content] is completed. For the cases that [image: there is no content] and in [image: there is no content], the proofs are similar.  ☐





For convenience, an LPME [image: there is no content] of a [image: there is no content]-symmetric dual pair [image: there is no content] will be called an SLPME, if [image: there is no content] represents the polyphase form of an SPRFB.



Lemma 11.

Let [image: there is no content] be the smallest [image: there is no content]-symmetric prime vector in [image: there is no content] and [image: there is no content] be its dual so that [image: there is no content]. Write [image: there is no content] and [image: there is no content]. Let [image: there is no content] be an SLPME of [image: there is no content] such that [image: there is no content] and [image: there is no content]. Then:


[image: there is no content]



(39)




is the SLPME of [image: there is no content] and:


[image: there is no content]



(40)




in which [image: there is no content].



Similarly, let [image: there is no content] be the smallest [image: there is no content]-symmetric prime vector in [image: there is no content] and [image: there is no content] be its dual so that [image: there is no content]. Write [image: there is no content] and [image: there is no content]. Let [image: there is no content] be an SLPME of [image: there is no content] such that [image: there is no content] and [image: there is no content]. Then:


[image: there is no content]



(41)




is the SLPME of [image: there is no content] and:


[image: there is no content]



(42)




in which [image: there is no content].





Proof. 

We consider [image: there is no content]. Since [image: there is no content] is the smallest prime vector, we have [image: there is no content], and [image: there is no content] is the smallest [image: there is no content]-symmetric prime vector in [image: there is no content]. We find the SLPME [image: there is no content] for [image: there is no content] by Lemma 4. Because any column of [image: there is no content], say [image: there is no content], is [image: there is no content]-symmetric, all columns of [image: there is no content] except the last one are [image: there is no content]-symmetric. Recall that [image: there is no content] is in [image: there is no content]. Hence, [image: there is no content]. Therefore, the last column of [image: there is no content], [image: there is no content], is [image: there is no content]-symmetric. Thus, [image: there is no content] is an SLPME of [image: there is no content]. By computation,


[image: there is no content]











Hence, (40) gives [image: there is no content], whose first row is [image: there is no content]. It is also easy to verify that the last column of [image: there is no content] is [image: there is no content]-symmetric, and others are [image: there is no content]-symmetric. The proof for [image: there is no content] is completed. The proof for [image: there is no content] is similar.  ☐





Combining the results above, we develop the algorithm for the construction of the SPRFB of a given [image: there is no content]-symmetric conjugate pair of filters.



Theorem 6.

Let [image: there is no content] be a given [image: there is no content]-symmetric ([image: there is no content]-symmetric) conjugate pair of filters and the LP vector pair [image: there is no content] be the [image: there is no content]-polyphase ([image: there is no content]-polyphase) form of [image: there is no content]. Then, an SPRFB [image: there is no content] of [image: there is no content] can be constructed as follows:

	(1) 

	
[Normalizing the dual pair] Set [image: there is no content] and [image: there is no content], where M=2m(or2m+1).




	(2) 

	
[Reducing [image: there is no content] to the smallest prime one] Use the Euclidean [image: there is no content]-symmetric division algorithm to construct the [image: there is no content]-symmetric elementary matrices [image: there is no content] such that [image: there is no content] is the smallest [image: there is no content]-symmetric prime vector.




	(3) 

	
[Computing the dual of [image: there is no content]] Set [image: there is no content].




	(4) 

	
[Constructing SLPME for the smallest dual pair] Apply (39)–(42) to construct the SLPME [image: there is no content] for the dual pair [image: there is no content].




	(5) 

	
[Computing the polyphase matrices of SPRFB] Set:


[image: there is no content]








and [image: there is no content]. Then, [image: there is no content] is the M-polyphase form of the SPRFB for [image: there is no content].











Proof. 

The proof is similar to that for Theorem 3. We skip its details here.  ☐






5. Illustrative Examples


In this section, we present several examples for demonstrating the SLPME algorithm and SPRFB algorithms we developed in the paper.



Example 6 (Construction of three-band SPRFB)

Let [image: there is no content] and [image: there is no content] be two given low-pass symmetric filters with the z-transforms:


[image: there is no content]








and:


[image: there is no content]








We want to construct the three-band SPRFB [image: there is no content], which satisfies:


[image: there is no content]











Their three-band polyphase forms of [image: there is no content] and [image: there is no content] are the following:


[image: there is no content]









	(1) 

	
Normalizing [image: there is no content]. We set [image: there is no content] and [image: there is no content], so that [image: there is no content].




	(2) 

	
Reducing [image: there is no content] to the smallest [image: there is no content]-symmetric prime vector, we employ:


E(z)=1−2+z300100−2+1/z31E−1(z)=12+z3001002+1/z31,








which yields [image: there is no content].




	(3) 

	
Computing [image: there is no content] to make the dual pair [image: there is no content], we have:


[image: there is no content]












	(4) 

	
Constructing SLPME for the smallest dual pair [image: there is no content], set [image: there is no content]. We have [image: there is no content], [image: there is no content]. Hence,


A1(z)=022−221−(1+4z+z2)92z(1−z2)92z02222A1−1(z)=1+2z9z12+z922022−22022.












	(5) 

	
Computing the SLPME for [image: there is no content]:


[image: there is no content]










[image: there is no content]












	(6) 

	
Converting to SPRFB of [image: there is no content], the three-band polyphase matrices for the SPRFB of [image: there is no content] are [image: there is no content] and [image: there is no content]. Therefore, the z-transforms for filters in the three-band PRFB [image: there is no content] are:


[image: there is no content]








and:


[image: there is no content]



















Remark 2.

This example is the same as Example 1 in [17]. However, the results here are different from those in [17]. Our filters [image: there is no content] and [image: there is no content] have longer supports than those in [17]. If we want to shorten the support of the filters, we should carefully select [image: there is no content] in (13) and use it to replace [image: there is no content] in the [image: there is no content], as mentioned in Section 3.





Example 7 (Construction of an SLPME of a dual pair in [image: there is no content]).

Because a construction of SPRFB essentially is identical with an SLPME of a given dual pair, we now give the illustrative examples for SLPME only. We construct an SLPME for the following [image: there is no content]-symmetric dual pair [image: there is no content] in [image: there is no content]:


[image: there is no content]








which satisfies [image: there is no content].

	(1) 

	
Reducing [image: there is no content] to the smallest [image: there is no content]-symmetric prime vector. The Euclidean [image: there is no content]-symmetric division algorithm yields the following [image: there is no content]-symmetric elementary matrices:


E˜1=1000010z+1200100001E˜2=100−14(7+z)0100001−14(1+7z)0001










E˜3=112z0001000z2100001E˜4=1000010000100−1+z4z01,








such that [image: there is no content].




	(2) 

	
Computing [image: there is no content], we have:


[image: there is no content]












	(3) 

	
Constructing SLPME for the smallest dual pair [image: there is no content], the vector [image: there is no content] produces:


w+(z)=216(1/z+6+z)w−(z)=216(1/z−z).








Hence,


A4(z)=022−2201−w+(z)w−(z)−(1+z)34z0222200001,A4−1(z)=3z+18z13+z8(1+z)34z220220−220,2200001.












	(4) 

	
Computing the SLPME for [image: there is no content]: [image: there is no content] and [image: there is no content]:


[image: there is no content]








and:


[image: there is no content]



















Example 8 (Construction of SLPME of a dual pair in [image: there is no content])

In this example, we construct an SLPME for the following [image: there is no content]-symmetric dual pair [image: there is no content] in [image: there is no content]:


[image: there is no content]









	(1) 

	
Reducing [image: there is no content] to the smallest [image: there is no content]-symmetric prime vector, the Euclidean [image: there is no content]-symmetric division algorithm yields the following [image: there is no content]-symmetric elementary matrices:


E˜1=11+2/z1/z+2010001E˜2=1002+z101+2z01








such that [image: there is no content].




	(2) 

	
Computing [image: there is no content], we have:


[image: there is no content]












	(3) 

	
Constructing SLPME for the smallest dual pair [image: there is no content]:


A2(z)=0012−z2+z6(z−1)(z−2)−2+z−12z+16z(z−1−2)(z−1),A2−1(z)=1−z2z+16z−2+z602−z−12−z100.












	(4) 

	
Computing the SLPME for [image: there is no content]: [image: there is no content] and [image: there is no content]:


[image: there is no content]








and:


[image: there is no content]
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Abbreviations


The following abbreviations are used in this manuscript:



	LPME
	Laurent polynomial matrix extension



	SLPME
	Symmetric Laurent polynomial matrix extension



	PRFB
	Perfect reconstruction filter bank



	SPRFB
	Symmetric perfect reconstruction filter bank



	LP
	Laurent polynomial
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