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Abstract: In this paper, I consider multivariate analogues of the extended gamma density, which
will provide multivariate extensions to Tsallis statistics and superstatistics. By making use
of the pathway parameter B, multivariate generalized gamma density can be obtained from
the model considered here. Some of its special cases and limiting cases are also mentioned.
Conditional density, best predictor function, regression theory, etc., connected with this model are
also introduced.
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1. Introduction

Consider the generalized gamma density of the form

7
g(x)=cx"e™™,x>0,a>0,6>0,v+1>0, 1)
an
where c; = %, is the normalizing constant. Note that this is the generalization of some standard
.

statistical densities such as gamma, Weibull, exponential, Maxwell-Boltzmann, Rayleigh and many
more. We will extend the generalized gamma density by using pathway model of [1] and we get the
extended function as

1
g1(x) =cox"1+a(B—1)x°] F1,x>0,>1,a>0,5>0 )
r+1
5(a(p-1)) "7 T(z4
where ¢; = (alp1) - s ’1), is the normalizing constant.

F(WTJ‘FI)F(;;A_WTH)

Note that g1 (x) is a generalized type-2 beta model. Also /131rr} g1(x) = g(x), so that it can
—>

be considered to be an extended form of g(x). For various values of the pathway parameter
B a path is created so that one can see the movement of the function denoted by g;(x) above
towards a generalized gamma density. From the Figure 1 we can see that, as f moves away from 1
the function g;(x) moves away from the origin and it becomes thicker tailed and less peaked.
From the path created by  we note that we obtain densities with thicker or thinner tail compared
to generalized gamma density. Observe that for f < 1, writing  —1 = —(1 — ) in Equation (2)
produce generalized type-1 beta form, which is given by

2(x) =c3x"[1 —a(l —,B)x‘s}lliﬁ, 1-a(1-B)x*>0,<1,a>0,6>0
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T(2p+1+757) -
, is the normalizing constant (see [2]).

o )
where c3 = T
0.8
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Figure 1. The graph of g1 (x), fory =1,a =1, 6 = 2, y = 1 and for various values of f.

From the above graph, one can see the movement of the extended gamma density denoted
by g1(x) towards the generalized gamma density, for various values of the pathway parameter B.
Beck and Cohen’s superstatistics belong to the case (2) [34]. For v =1, a =1, § = 1 we have Tsallis
statistics [5,6] for > 1 from (2).

Several multivariate extensions of the univariate gamma distributions exist in the literature [7-9].
In this paper we consider a multivariate analogue of the extended gamma density (2) and some of
its properties.

2. Multivariate Extended Gamma

Various multivarite generalizatons of pathway model are discussed in the papers of
Mathai [10,11]. Here we consider the multivariate case of the extended gamma density of the
form (2). For X; >0,i=1, 2,...,n,let

o
fp(x1, %2, ..., xn) = kpx'x? . xf"[14 (B — 1)(111xf1 + azxgz + . agxd)] T,

/3>1,17>0,51'>0,11i>0,i:1,2,...,7’l,

®)

where kg is the normalizing constant, which will be given later. This multivariate analogue can also
produce multivariate extensions to Tsallis statistics [5,12] and superstatistics [3]. Here the variables
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are not independently distributed, but when B — 1 we have a result that X3, X»,..., X, will become
independently distributed generalized gamma variables. That is,

limfﬁ(xl,xz,. . .,xn) = f(xl,X2,. . .,xn)
B—1
_ kx’h Y2 o xZnefblelf...fbnxf," (4)

1 %2 ’
x; >0, bi:ﬂai>0, 6;>0,i=1,2,...,n,

7+l

n S

0;b, .
wherek = | | ———, 7 +1 i=1,2,...,n
ere EF(W)I%—'— >0, ;2,0
The following are the graphs of 2-variate extended gamma withy; =1, yo =1, a1 =1, ap =1,
61 =2, 6o = 2 and for various values of the pathway parameter . From the Figures 2—4, we can see
the effect of the pathway parameter j in the model.
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Figure 2. p = 1.2.
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Figure 3. p = 1.5.
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0.67

Figure 4. g = 2.

Special Cases and Limiting Cases

1. When  — 1, (3) will become independently distributed generalized gamma variables.
This includes multivariate analogue of gamma, exponential, chisquare, Weibull, Maxwell-
Boltzmann, Rayleigh, and related models.

2. Ifn=1,a=1, 6 =1, p=2,(3)is identical with type-2 beta density.

3. Iff=2,m=m=...=a,=1,06 =6 =... =0, =1in(3), then (3) becomes the type-2
Dirichlet density,
D(x1,x2,...,%n) = dx?*lxzz_l N § R O R O B xn]*(’“*'“wnﬂ), x; >0, (5

wherev; =v;+1,i=1,2,...,n, vy41 =4 — (v1 + ...+ v,) and d is the normalizing constant
(see [13,14]).

A sample of the surface for n = 2 is given in the Figure 5.
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Figure 5. The graph of bivariate type-2 Dirichlet with y1 =9, =1, 7 = 6.
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3. Marginal Density

We can find the marginal density of X;, by integrating out Xy, Xo,..., X;_1, Xit1,..., Xpn—1, Xu.
First let us integrate out Xj;, then the joint density of X;, X»,..., X,,_1 denoted by f; is given by

filxy, x2,. 00, x01) = / fp(x1, 22,0, xn)dxy
x>0

= kﬁx¥1x22 LxInl 1+ (B— 1)(61136(151 +...+ an,lxi”_‘ll)]*ﬁf1 (6)

*tn—1

x/ X1+ Cxdn] B Tduy,
Xn

where C = [1+(/5—1)(a1(5:)a1a T By putting y = Cxd" and integrating we get
Tty

n—1

kgl (5l — 5T (55)
f1(X1, X2,.. .,xn,l) = Y;nﬂ - 1
Sulan(B— D)5 T(5Ly) %
—1pii]

|
(14 (B—1)(ax0 + apx2 + .. 4 a1 )] [,

Y1472 Yn—-1
Xp X" .x,

;>0,i=12,...,n—1,8>0,6>0,i=12,...,n, >1,7>0, %—Vgn“ >0, y1p+1>0.

In a similar way we can integrate out Xy, Xp,...,X;_1, Xj11,...,X;—1. Then the marginal
density of X; is denoted by f, and is given by

,[ 7 _ym+l e+l vigg Al vﬁl]

fo(xi) = kox' 1+ (B — 1)al-x;.5i s 8)
wherex; >0, >1,6; >0, 17>0,

2t +1 +1 +1

(a(B—1)) % T( _antl vl vigHl oyl

ky = Gilei(p1) ¥ Mg =75 - T e e )

+ + 7
F(L(s,. )r(%_iﬁ(ﬁ R )
) Ui Tnt1 Yicitl i+l 71+l 1 7141 Intl
71+1>0’ﬁj_ 5’1 _.--_ﬂ_ﬁ_-.._7>0/ﬂ_ 51 _--._T>O-

If we take any subset of (X3, ..., X;), the marginal densities belong to the same family. In the
limiting case they will also become independently distributed generalized gamma variables.

Normalizing Constant

Integrating out X; from (8) and equating to 1, we will get the normalizing constant kg as

1l 12+1 yn+1 .
0107 ... 0n(ar(B—1)) 1 (a2(fp—1)) 2 ... (au(B—1)) o T(557) o)
ﬁ: n n 4
T(BE)T(332) L T (g — 5 — . - 2
5i>0,8>0,7+1>0,i=12...,np>11>0 g4 - BE . 1>

4. Joint Product Moment and Structural Representations

Let (X, ..., X,) have a multivariate extended gamma density (3). By observing the normalizing
constant in (23), we can easily obtained the joint product moment for some arbitrary (hy, ..., hy,),



Axioms 2017, 6, 11 60f 12

hi+1 nthn+1 Iy 1 1
e ol PEEE) - POy — 25 = = )
E(x1 xz n) - k’B th“ Jnthntl 7
i b (B=1) T an(p 1) T Gy)
hy+1 0 hn 1) fy +hi+1 10
- n
1 n 1 ,l ')/+1
r(%—héj' —_,.—%)H[ai(‘gil)}o F( 151 )
i=
n . h 1 " ' 1
%_Z%>O,7i+hi+l>o,ﬁnl_z%; >0,'}’i+1>0,ai>0,ﬁ>1/5i>0,
i= i _ = .
i=1,2,...,n.

Property 1. The joint product moment of the multivariate extended gamma density can be written as

[TEG), an

where Y; s are generalized gamma random variables having density function

Fy(yi) = ciylie [ B=Dvl" y >0, 81, ;> 0, 5 >0, (12)

v+l

q.(B— o; . . ..
where ¢; = %, Yi+1>0,i=1,2,...,n,is the normalizing constant.
%

Property 2. Letting hy = ... = hy, =0, in (10), we get

r(;L — nthtl  pdl w+1) ('Yl+h1+1)
E(x) = —F— = p : (13)

1 at1 = 1

Mgk = 25— = Bl (B— 1)) ()

1 hi+1
gy — tfatl Z%+ 0%> Z% >0, m+1>0a >0
1

B>1,6>0. (13) is the hth moment of a random vurzable with densztyfunctzon of the the form (8),

51— [L_Lﬂ 'YV’*l}
f3(x1) = k3x1'71 [1 + (,B — 1)013611] B-1 ] (14)
where k3 is the normalizing constant. Then
h [es] [ ’7274’1_'“_ “m_+1]
) =ks [P+ m(- 1) P (15)
0

Making the substitution y = a1 (B — )x1 , then it will be in the form of a type-2 beta density and we
can easily obtained the hi' moment as in (13).



Axioms 2017, 6, 11 7 of 12

Property 3. Letting h3 = ... = hy, =0, in (10), we get
r(% o Y1 +h1+1 - ’yz+flz+1 . ’Yn+1)F(71+h1+1)r(72+ﬁ2+1)
Blay'ag) = — = " - t——— (19
T(gh - 1 L= a1 (B = D] [a2(B — D2 T(H5=)T(37)
1 1
gy — Dl mad] Z%; >0 51y I—Z%J“ >0,B>1, v+h+1>0,
=3 1 Z

Yi+1>0,a >0, >0, i=1,2, which is the joint product moment of a bivariate extended gamma
density is denoted by fy and is given by

falrrza) = ke P L+ (B~ 1) (e + apa)] P

73+l ’Yn+1]

17)

where ky is the normalizing constant. (17) is obtained by integrating out X3,. .., Xy, from (3). By putting
hy = ... =hy, =0,in (10), we get the joint product moment of trivariate extended gamma density and so on.

Theorem 1. When Xj, ..., X, has density in (3), then

E{x;ll.,,xﬁn[1+(‘3_1)(alx11+ +anx‘5")]h}

hy+1 i +1 hy+1 iy +1
. MW L Tt T (55 R )
B 71+ 1 T ]
5162 u(@(B=1) 7 . (an(p—1)) "W T(5Ly W) 18)
n
I +1 atha 1 vi+h+1
r(ﬁzl)r(ﬁzl _h/_71+511+ —= 7 ts,,+ )HT( l (SAZ )
1 1

i=1

gt = 25 = G~ [Tt - 1T <%§1>}

i=1

B +1 "yt
sl W - Z¥>0/%+hi+1>0rﬁ”1—271; >0, 7+1>0,8>0>1,
i - i= i

n>06>0i=12,..

Corollary 1. When X3, ..., Xy, has density in (3), then

r(%)r(ﬁ’iﬁl W — 71+§h1+1 L 'Yn+5hn+l)
(5;1 h _ — B 1 n
E{[1+(B—1)(mx + ... +anxin)]"} = P TES SR e S v BRI (19)
T 7
n n
VRNV ol il S . A VA S M o (e s T S S S BV
P 1; oi p-1 p-1 z; oi l A 1

5 >0i=12,...,n

4.1. Variance-Covariance Matrix

Let X be a n x 1 vector. Variance-covariance matrix is obtained by taking E[(X — E(X))(X —
E(X))']. Then the elements will be of the form
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Var(x1) Cov(xy,x2) ... Cov(xy, Xn)
C , V. ... C , Xn
E[(X — EX))(X — E(X))] = | ov(xg,x1) Var(xp) | ov(x2,Xn)
Cov(xn,x1) Cov(xn,x2) ... Var(xy)
where
Cov(x;, xj) = E(x;xj) — E(x;)E(xj), i, j=1,2,...,n, i # (20)
and
Var(x;) = E(x?) — [E(x))]%, i=1,2,...,n. (21)

E(xixj)’s are obtained from (10) by putting h; = hj = land all other iy =0, k =1,2,...,n,
k # 1, j. E(x;)’s and E(x?)’s are respectively obtained from (10) by putting #; = 1 and h; = 2 and all
otherh, =0, k=1,2,...,n, k # i. Where

E(xlxz):/o /0 x1x2f2(x1, x2)dxyday. (22)

4.2. Normalizing Constant

Integrate out x; from (8) and equate with 1, we will get the normalizing constant K, as

71+l 72+1 T+l
G0 h(@(a— 1) T (e —1) R (an(e—1)) b T() )
n .
e e

5. Regression Type Models and Limiting Approaches
The conditional density of X; given Xy, Xy,..., Xj—1, Xjy1,...,Xu is denoted by f5 and is
given by

fﬁ(xlrx2/~ . -r-x'rl)
f(,(xl,XQ,. ..,xi_l,xl-H,. . .,xn)

f5(x1-|x1,x2,. ey Xic1,Xi4 1, - .,Xn) =

Slai(B 1) 5 T
M - )

3 B—1 (24)
(S.
— 1Da;x;’ _n
x [1+ 5 5 (B~ 1) 151.71 i ; BT
T+ (B —1)(axy" +axy> + ...+ a 1%, + a1 + .o+ anxy")
5 5 5 i 6y~ 5
X [T+ (B—1)(a1x] +a2x” + ..+ a1 + x|+ a5,

where f; is the joint density of X1, X, ..., Xj_1, Xj11,..., Xn. When we take the limitas § — 1in
Equation (24), we can see that the conditional density will be in the form of a generalized gamma
density and is given by

7+l

. 6;(na;) o0

égn}f5(xi|x1,x2,. . .,,xi_l,xiH,...,xn) = %x?’e a,xl" (25)
1

x;>0,6>0,1>0,9+1>0.
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Theorem 2. Let (X3, Xo,..., Xyu) have a multivariate extended gamma density (3), then the limiting case
of the conditional density fg(x;|x1,%2,...,,%i_1,Xi1, -, Xn) will be a generalized gamma density (25).

Best Predictor

The conditional expectation, E(x,|x1,...,x,_1), is the best predictor, best in the sense of
minimizing the expected squared error. Variables which are preassigned are usually called
independent variables and the others are called dependent variables. In this context, X, is
the dependent variable or being predicted and Xj,...,X,_; are the preassigned variables or
independent variables. This ‘best’ predictor is defined as the regression function of X, on
X100, X1

(o]

E(xp|x1,..., %4—1) :/ Oxnfy(xn|x1,...,xn_1)dxn

Xp=

yn+l
Snlan(B—1)] o T(5Ly) s 5 PRPIEE LS
T or()r(L - 1+ (B=D(axy + a5+ Hapax, )] o 7T (26)

0 Yn+1 01 173 J, il
x/ , 1+ (B—1)(ax]" +axxy® + ... +apxy")] Fldx,.
Xpn=!

We can integrate the above integral as in the case of Equation (6). Then after simplification we
will get the best predictor of X, at preassigned values of X, ..., X;,—1 which is given by

Onlan(B — 1)]*$r(il _ %:5:2)T<%3:2)
I(T5 ) (gl = 25) 27)

E(xplx1,...,x01) =

) 1
X1+ (B = D3] +a2x3 + ...+ 3,y )] 7,

n—

n>0,a,>0,>1,x>0,i=12...,n—1, g5 — 22 >0, 4, +1 > 0. We can take the limit
B — 1in (27). For taking limit, let us apply Stirling’s approximations for gamma functions, see for
example [15]

I'(z+a)— (271)%zz+“_%e_z,for |z| — oo and a is bounded (28)
to the gamma’s in (27). Then we will get
ol (2512)

P E——y (29)
(any) T (7572

lim E PR, =
‘313} (xn|xl Xn 1)

which is the moment of a generalized gamma density as given in (25).

6. Multivariate Extended Gamma When < 1

Consider the case when the pathway parameter f§ is less than 1, then the pathway model has
the form

g(x):Kﬂ[l—a(l—/})x"—]ﬁ,/3<1,a>0,(5>0,17>0, (30)
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1—a(1— B)x? > 0, and K is the normalizing constant. g(x) is the generalized type-1 beta model.
Let us consider a multivariate case of the above model as

e

gp(x1, X2, .., xn) = Kpx'x? .. x)"[1—(1 —[&)(alel +a2xg2 + . agxdn)|TF,
B<1,7>0,6>0a>0i=12,...,n (31)
1-(1- ,B)(alx‘lsl +a2xgz o apxin) > 0.

where Kp is the normalizing constant and it can be obtained by solving
1
K;;/.../xi“ = (1= B x| TRy Ly = 1 (32)
Integration over x;, yields the following,

[ u o
Kg x'xxI" 01— (1 - B) (mad! +...+an_1x5”*11)]1*ﬂ/0 X1+ Cradn] Fidx,,  (33)

n—

1*(1fﬂ)(u1xf1+...+an4xi’:1)} 3 and Ci — (1-B)ay

(1) L e b))
then the above integral becomes a type-1 Dirichlet integral and the normalizing constant can be
obtained as

where u = [ . Letting y = Cyx3",

1 A/JTH Ui ’)’1+1 ')’n+1

M) T+ )

)

Ky = (34)

When g — 1, (31) will become the density of independently distributed generalized gamma
variables. By observing the normalizing constant in (34), we can easily obtaine the joint product
moment for some arbitrary (hy, ..., hy,),

hi+1 nth,+1
r(uthely | p(utlatlpg g

hy h
E(x'xy2 ... xln) = Kg .

2y hy+1 +hat1
16— Blay 5 I+ ? pntntl, Ittty
j=1 L=F o o
(35)
a1 hy41 nthnt1
_ L1+l B o 2P T
- hj hy+1 hy +1 1 1
H[((]—ﬁ)aj)éj]r(l‘i‘ j +’Yl+ 1+ +”'+7n+ n+ )r(’)’1+ )'“1—.(7114‘ )
1 1 ‘B 51 (Sn 51 5n

’Yi+hj+1>0, ’Yj+1>0, a]->0,/3<1, 6;>0,j=1,2,...,n

Letting hp = ... = h; = 0, in (35), we get
I(1-+ % + 71+1 N "rn+1)r(’h+h1+1)
E(x) = e Z z , (36)
hy+1 1 a1 1
(1= B)m] (L4 g + 5=+ B 4 2T (T)

1
T+h+1>0,79%+1>0,a1>0<1,4>0,17>0,j=12,...,n

—

>
=

|
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(13) is the hﬁh moment of a random variable with density function,

Ul T2+1 T+l
A i

g1(x1) = Ky ' [1— (1 - ﬁ)alx‘lsl L , (37)

where Kj is the normalizing constant.
Letting 3 = ... = h, = 0, in (35), we get

hy_h
E(x;'x,%)

+1 n+1 +hy+1 +hy+1
I(1+£7+%T+...+7(5n )T (1 511 )T(2 522 ) (38)
2 by 2 noa. !
1 29T 1+ Ui n Yi i + 2 ] T r

j ]

Y1+h+1)>0, (r2+h+1>0,9+1>0,a1>0,a2>08<1,6>0,7+1>0,
j=12,...,n

If we proceed in the similar way as in Section 4.1, here we can deduce the variance-covariance
matrix of multivariate extended gamma for g < 1.

7. Conclusions

Multivariate counterparts of the extended generalized gamma density is considered and some
properties are discussed. Here we considered the variables as not independently distributed,
but when the pathway parameter § — 1 we can see that X;, Xj, ..., X, will become independently
distributed generalized gamma variables. Joint product moment of the multivariate extended
gamma is obtained and some of its properties are discussed. We can see that the limiting case
of the conditional density of this multivariate extended gamma is a generalized gamma density.
A graphical representation of the pathway is given in Figures 1-4.
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