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Abstract: The main aim of this contribution is to define the notions of Kullback-Leibler divergence
and conditional mutual information in fuzzy probability spaces and to derive the basic properties
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1. Introduction

The notion of σ−algebra S of random events and the concept of probability space (Ω, S, P) are
a basis of the classical Kolmogorov probability theory [1]. A probability P is a normalized measure
defined on the σ−algebra S. The event in classical probability theory is understood as an exactly and
clearly defined phenomenon and, from a mathematical point of view, it is a classical, ordinary set.
Consider a finite measurable partition A of (Ω, S, P) with probabilities p1, . . . , pn of the corresponding
elements of A. We recall that the Shannon entropy [2] of A is the number H(A) = −∑n

i=1 F(pi), where
the function F : [0, ∞)→ < is defined by F(x) = −x log x if x > 0 and F(0) = 0. In [3], we have
generalized this notion to situations when the considered probability space is a fuzzy probability space
(Ω, M, µ) defined by Piasecki [4]. Instead of probability P it is considered a fuzzy P-measure µ defined
on a fuzzy σ−algebra M of fuzzy subsets of Ω. Recall that by a fuzzy subset f of a non-empty set Ω we
mean a mapping f : Ω→ [0, 1] (Zadeh [5]). A fuzzy subset from the fuzzy σ−algebra M is interpreted
as a fuzzy event; the value µ( f ) is interpreted as a probability of fuzzy event f . The structure (Ω, M, µ)

can serve as an alternative mathematical model of probability theory for the case where the observed
events are described unclearly, vaguely, so-called fuzzy events. In [6], the mutual information of fuzzy
partitions of a given fuzzy probability space (Ω, M, µ) has been defined. It was shown that the entropy
of fuzzy partitions introduced and studied by the author in [3] (see also [7]) can be considered as
a special case of their mutual information. The proposed measures are fuzzy analogies of the relevant
terms of the classical theory and they can be used whenever it is necessary to know the quantity of
information received by the realization of experiments whose results are fuzzy events. Note that
in [3] (see also [8]) using the concept of entropy of fuzzy partitions we define the entropy of the fuzzy
dynamical system (Ω, M, µ, U) (where (Ω, M, µ) is a fuzzy probability space and U : M→ M is
a measure µ preserving σ−homomorphism). Analogies of our results for the case of logical entropy
(see, e.g., [9]) are provided in our recently published papers [10,11]. Recall that the logical entropy

of the probability distribution P = (p1, . . . , pn) ∈ <n is defined as the number h(P) =
n
∑

i=1
pi(1− pi).

In [9] the author deals with historical aspects of the logical entropy formula h(P) and investigates
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the relationship between the logical entropy and Shannon’s entropy. It should be noted that other
fuzzy analogies of entropy are presented in [12–25]. It is known that there are many possibilities for
defining operations with fuzzy sets; an overview can be found in [26]. While our approach is based
on Zadeh’s connectives [5], the authors of the cited papers used other connectives to define the fuzzy
set operations.

In classical information theory [27] the mutual information is a special case of a more general
quantity called Kullback-Leibler divergence, which was originally introduced by Kullback and Leibler
in 1951 [28] as the divergence between two probability distributions. It is discussed in Kullback’s
historic text [29]. The Kullback-Leibler divergence is also called by many other different names, as K-L
divergence, whether relative entropy, or information gain. It plays an important role, as a mathematical
tool, in the stability analysis of master equations [30] and Fokker-Planck equations [31], and in
isothermal equilibrium fluctuations and transient nonequilibrium deviations [32] (see also [31,33]).

The main aim of this contribution is to define, using our previous results on this issue, the notion
of Kullback-Leibler divergence and conditional mutual information in fuzzy probability spaces and
to study properties of the suggested measures. The paper is organized as follows. In the next
section, we give the basic definitions and some known facts used in this paper. Our results are
presented in Sections 3 and 4. In Section 3 we extend our study concerning the mutual information
of fuzzy partitions. The notion of conditional mutual information of fuzzy partitions is introduced
and subsequently chain rules for mutual information of fuzzy partitions are established. We also
derive some more properties of this measure, e.g., data processing inequality. In Section 4 we define
the Kullback-Leibler divergence and the conditional Kullback-Leibler divergence in fuzzy probability
spaces. The basic properties of these measures are proved. Our results are summarized in Section 5.

2. Basic Definitions and Facts

We start by recalling some definitions and some known results which will be used in
this contribution.

A fuzzy measurable space (Dvurečenskij [34]) is a couple (Ω, M), where Ω is a non-empty set,
and M is a fuzzy σ−algebra of fuzzy subsets of Ω, i.e., M ⊂ [0, 1]Ω containing 1Ω, excluding (1/2)Ω,
closed under the operation ⊥ : f 7→ 1Ω − f (i.e., if f ∈ M, then f⊥ : = 1Ω − f ∈ M) and countable
supremums (i.e., satisfying the implication if fn ∈ M, n = 1, 2, . . ., then ∪∞

n=1 fn := supn fn ∈ M).
A fuzzy probability space (Piasecki [4]) is a triplet (Ω, M, µ), where (Ω, M) is a fuzzy measurable
space and the mapping µ : M→ [0, ∞) satisfies the following two conditions: (i) µ( f ∪ f⊥) = 1 for
all f ∈ M; (ii) if { fn}∞

n=1 is a sequence of pairwise W-separated fuzzy subsets from M (i.e., fi ≤ f⊥j
(point wisely) whenever i 6= j), then µ(∪∞

n=1 fn)= ∑∞
n=1 µ( fn).

The symbols ∪∞
n=1 fn = supn fn and ∩∞

n=1 fn : = infn fn denote the fuzzy union and the fuzzy
intersection of a sequence { fn}∞

n=1 ⊂ M, respectively, in the sense of Zadeh [5]. The complement of
fuzzy subset f of Ω is a fuzzy set f⊥ defined by f⊥(ω) = 1− f (ω), ω ∈ Ω. The following notions
were defined by Piasecki in [35]. A fuzzy set f ∈ M such that f ≥ f⊥ is called a W-universum; a fuzzy
set f ∈ M such that f ≤ f⊥ is called a W-empty fuzzy set. It can be proved that a fuzzy event f ∈ M is
a W-universum if and only if there exists a fuzzy event g ∈ M such that f = g ∪ g⊥. A W-universum
is interpreted as a certain event and a W-empty set as an impossible event. W-separated fuzzy events
are interpreted as mutually exclusive events. Each mapping µ : M→ [0, ∞) having the properties
(i) and (ii) is called, in the terminology of Piasecki, a fuzzy P-measure. Any fuzzy P-measure has all
properties analogous to properties of a classical probability measure; the proofs and more details can
be found in [4]. The monotonicity of fuzzy P-measure µ implies that this measure transforms M into
the interval [0, 1]. In the following we will use the following property of fuzzy P-measure µ.

(2.1) Let g ∈ M. Then µ( f ∩ g) = µ( f ) for all f ∈ M if and only if µ(g) = 1.
Let g ∈ M such that µ(g) > 0. Then the mapping µ(·/g) : M→ [0, 1] defined by the formula

µ( f /g) =
µ( f ∩ g)

µ(g)
, f ∈ M,
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is a fuzzy P-measure on M; it is called a conditional probability.

Definition 1 [36]. By a fuzzy partition (of a space (Ω, M, µ)) we understand a finite collection
ξ = { f1, . . . , fn} of pairwise W-separated fuzzy subsets from M such that µ(∪n

i=1 fi) = 1.

Every fuzzy partition ξ = { f1, . . . , fn} of (Ω, M, µ) represents in the sense of the classical
probability theory a random experiment with a finite number of outcomes fi, i = 1, 2, . . . , n (which are
fuzzy events) with a probability distribution pi = µ( fi), i = 1, 2, . . . , n, since pi ≥ 0 for i = 1, 2, . . . , n,

and
n
∑

i=1
pi =

n
∑

i=1
µ( fi) = µ(∪n

i=1 fi) = 1. For that reason, we have defined in [3] the entropy of

ξ = { f1, . . . , fn} by Shannon’s formula:

Hµ(ξ) =−
n

∑
i=1

F(µ( fi)), (1)

where:

F : [0, ∞)→ <, F(x) =

{
x log x, if x > 0;
0, if x = 0.

In accordance with the classical theory the log is to the base 2 and entropy is expressed in bits.

Definition 2 [6]. Let ξ = { f1, . . . , fn} and η = {g1, . . . , gm} be two fuzzy partitions of a fuzzy probability
space (Ω, M, µ). A conditional entropy of η given a fuzzy event fi ∈ ξ is defined by:

Hµ(η/ fi) = −
m

∑
j=1

F(
.
µ(gj/ fi)),

where:
.
µ(gj/ fi) =

{
µ(gj/ fi), i f µ( fi) > 0;
0, i f µ( fi) = 0.

A conditional entropy of η assuming a realization of the experiment ξ is defined by the formula:

Hµ(η/ξ) = −
n

∑
i=1

µ( fi) · Hµ(η/ fi) = −
n

∑
i=1

m

∑
j=1

µ( fi) · F(
.
µ(gj/ fi)). (2)

In the following, we will use the convention (based on continuity arguments) that x log x
0 = ∞ if

x > 0, and 0 log 0
x = 0 if x ≥ 0. It is easy to see that we can rewrite Equation (2) in the following way:

Hµ(η/ξ) = −
n

∑
i=1

m

∑
j=1

µ( fi ∩ gj) · log
µ( fi ∩ gj)

µ( fi)
. (3)

As in [3] we define in the set of all fuzzy partitions of a fuzzy probability space (Ω, M, µ)

the relation ≺: Let ξ, η be two fuzzy partitions of a fuzzy probability space (Ω, M, µ). Then we
write ξ ≺ η (and we say that the fuzzy partition η is a refinement of the fuzzy partition ξ) iff for
every g ∈ η there exists f ∈ ξ such that g ≤ f . Given two fuzzy partitions ξ = { f1, . . . , fn} and
η = {g1, . . . , gm} of a fuzzy probability space (Ω, M, µ), their common refinement ξ ∨ η is defined as
the system ξ ∨ η =

{
fi ∩ gj; i = 1, . . . , n, j = 1, . . . , m }. The fuzzy partition ξ ∨ η represents a joint

experiment of experiments ξ, η. Evidently, ξ ≺ ξ ∨ η and η ≺ ξ ∨ η. If ξ1, ξ2, . . . , ξn are fuzzy
partitions of a fuzzy probability space (Ω, M, µ), then we put ∨n

i=1ξi = ξ1 ∨ ξ2 ∨ . . . ∨ ξn. Two fuzzy
partitions ξ = { f1, . . . , fn} and η = {g1, . . . , gm} of a given fuzzy probability space (Ω, M, µ) are
called statistically independent, if µ( fi ∩ gj) = µ( fi) · µ(gj), for i = 1, 2, . . . , n, j = 1, 2, . . . , m.
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Example 1. Let Ω = [0, 1], and let f : Ω→ [0, 1] be defined by f (ω) = ω, ω ∈ Ω. Consider a fuzzy
measurable space (Ω, M), where M =

{
1Ω, 0Ω, f , f⊥, f ∪ f⊥, f ∩ f⊥

}
. Then it is easy to verify that the

mapping µ : M→ [0, 1] defined by the equalities µ(1Ω) = µ( f ∪ f⊥) = 1, µ(0Ω) = µ( f ∩ f⊥) = 0,
µ( f ) = p, µ( f⊥) = 1− p, where p ∈ (0, 1), is a fuzzy P-measure and the system (Ω, M, µ) is a fuzzy
probability space. The sets ξ =

{
f , f⊥

}
, η =

{
f ∪ f⊥

}
, ς = {1Ω} are fuzzy partitions of (Ω, M, µ) such that

ς ≺ η ≺ ξ. We can calculate their entropy: Hµ(ξ) = −p log p− (1− p) log(1− p), Hµ(η) = Hµ(ς) = 0.
This makes sense, because the partitions η and ς represent experiments whose results are certain events. In particular,
if p = 1

2 , then Hµ(ξ) = log 2 = 1 bit.

The entropy and the conditional entropy of fuzzy partitions of a fuzzy probability space (Ω, M, µ)

satisfy all properties analogous to properties of Shannon’s entropy of measurable partitions in the
classical case; the proofs can be found in [3,6], respectively. We present some of them. If ξ, η, ς are
fuzzy partitions of a fuzzy probability space (Ω, M, µ), then:

(2.2) ξ ≺ η implies Hµ(ξ) ≤ Hµ(η);
(2.3) Hµ(η ∨ ς/ξ) = Hµ(ς/ξ ∨ η) + Hµ(η/ξ);
(2.4) ξ ≺ η implies Hµ(ξ/ς) ≤ Hµ(η/ς);
(2.5) ξ ≺ η implies Hµ(ς/ξ) ≥ Hµ(ς/η);
(2.6) Hµ(ξ/η) ≤ Hµ(ξ) with the equality if and only if ξ, η are statistically independent;
(2.7) Hµ(η ∨ ς/ξ) ≤ Hµ(η/ξ) + Hµ(ς/ξ);
(2.8) Hµ(ξ ∨ η) = Hµ(ξ) + Hµ(η/ξ).

Definition 3 [6]. Let ξ, η be two fuzzy partitions of a given fuzzy probability space (Ω, M, µ). The mutual
information of ξ and η is defined by the formula:

Iµ(ξ, η)= Hµ(ξ)− Hµ(ξ/η). (4)

As a simple consequence of (2.8) we have:

Iµ(ξ, η)= Hµ(ξ)+ Hµ(η) −Hµ(ξ ∨ η). (5)

It is evident that Iµ(ξ, ξ) = Hµ(ξ), and Iµ(ξ, η) = Iµ(η, ξ). Hence, we can write:

Iµ(ξ, η)= Hµ(η)− Hµ(η/ξ). (6)

The proofs of the following two theorems can be found in [6].

Theorem 1 [6]. Let ξ = { f1, . . . , fn} and η = {g1, . . . , gm} be two fuzzy partitions of a fuzzy probability
space (Ω, M, µ). Then:

Iµ(ξ, η) =
n

∑
i=1

m

∑
j=1

µ( fi ∩ gj) log
µ( fi ∩ gj)

µ( fi) · µ(gj)
.

Theorem 2 [6]. Iµ(ξ, η) ≥ 0 with the equality if and only if ξ, η are statistically independent.

3. Mutual Information and Conditional Mutual Information in Fuzzy Probability Spaces

In this section by using our previous results we introduce the notion of conditional mutual
information in fuzzy probability spaces. We derive chain rules for mutual information of fuzzy
partitions and we will prove some more properties concerning these measures.
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Definition 4. Let ξ, η, ς be fuzzy partitions of a fuzzy probability space (Ω, M, µ). Then the conditional
mutual information of ξ and η given ς is defined by the formula:

Iµ(ξ, η/ς) =Hµ(ξ/ς) −Hµ(ξ/η ∨ ς). (7)

Remark 1. Since, according to (2.5), we have Hµ(ξ/ς) ≥ Hµ(ξ/η∨ ς), for the conditional mutual information
the inequality Iµ(ξ, η/ς) ≥ 0 holds.

Theorem 3. For fuzzy partitions ξ, η, ς of a fuzzy probability space (Ω, M, µ), it holds:

Iµ(ξ, η ∨ ς) = Iµ(ξ, η) + Iµ(ξ, ς/η) = Iµ(ξ, ς) + Iµ(ξ, η/ς).

Proof. By simple calculation we obtain:

Iµ(ξ, η) + Iµ(ξ, ς/η) = Hµ(ξ)− Hµ(ξ/η) + Hµ(ξ/η)− Hµ(ξ/η ∨ ς)

= Hµ(ξ)− Hµ(ξ/η ∨ ς) = Iµ(ξ, η ∨ ς).

Analogously we obtain the second equality. �

Let ξ, η be fuzzy partitions of a fuzzy probability space (Ω, M, µ). Denote ξ0 = {1Ω}. Evidently,
we have ξ0 ∨ ξ = ξ, and Hµ(ξ/ξ0) = Hµ(ξ). Hence, we can write:

Iµ(ξ, η/ξ0) =Hµ(ξ/ξ0
)
−Hµ(ξ/η ∨ ξ0) = Hµ(ξ)− Hµ(ξ/η) =Iµ(ξ, η).

Theorem 4 (Chain rules). Let ξ1, ξ2, . . . , ξn and η be fuzzy partitions of a fuzzy probability space (Ω, M, µ).
Then, for n = 1, 2, . . . , the following equalities hold:

(i) Hµ(ξ1 ∨ ξ2 ∨ . . . ∨ ξn) =∑n
i=1 Hµ(ξi/ ∨i−1

k=0 ξk);

(ii) Hµ(∨n
i=1ξi/η)= ∑n

i=1 Hµ(ξi/(∨i−1
k=0ξk) ∨ η);

(iii) Iµ(∨n
i=1ξi, η) =∑n

i=1 Iµ(ξi, η/ ∨i−1
k=0 ξk).

Proof. The first two equalities may be obtained using the principle of mathematical induction from
the properties (2.8) and (2.3). By Equation (4), using the two previous equalities and Equation (7),
we obtain:

Iµ(∨n
i=1ξi, η) = Hµ(∨n

i=1ξi)− Hµ(∨n
i=1ξi/η)

= ∑n
i=1 Hµ(ξi/ ∨i−1

k=0 ξk)−∑n
i=1 Hµ(ξi/(∨i−1

k=0ξk) ∨ η)

= ∑n
i=1
(

Hµ (ξi/ ∨i−1
k=0 ξk) −Hµ(ξi/(∨i−1

k=0ξk) ∨ η)
)
= ∑n

i=1 Iµ(ξi, η/ ∨i−1
k=0 ξk). �

Definition 5. Let ξ, η, ς be fuzzy partitions of a fuzzy probability space (Ω, M, µ). We say that ξ is
conditionally independent to ς given η (and write ξ → η → ς ) if Iµ(ξ, ς/η) = 0.

Theorem 5. For fuzzy partitions ξ, η, ς of a fuzzy probability space (Ω, M, µ), it holds:

ξ → η → ς if and only if ς → η → ξ.

Proof. Let ξ → η → ς. Then:

0 = Iµ(ξ, ς/η) =Hµ(ξ/η)−Hµ(ξ/η ∨ ς),
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and according to the property (2.8) we can write:

Hµ(ξ/η) =Hµ(ξ/η ∨ ς) =Hµ(ξ ∨ η ∨ ς)−Hµ(η ∨ ς).

Calculate:

Iµ(ς, ξ/η) =Hµ(ς/η)−Hµ(ς/ξ ∨ η)

= Hµ(ς ∨ η)−Hµ(η)−Hµ(ξ ∨ η ∨ ς)+ Hµ(ξ ∨ η)

= Hµ(ξ ∨ η)− Hµ(η)− Hµ(ξ/η)= Hµ(ξ/η)− Hµ(ξ/η) = 0.

It follows that ς → η → ξ . The opposite implication is obvious. �

According to Theorem 5, we may say that ξ and ς are conditionally independent given η and
write ξ ↔ η ↔ ς instead of ξ → η → ς .

Theorem 6. For fuzzy partitions ξ, η, ς of a fuzzy probability space (Ω, M, µ) such that ξ → η → ς,
we have:

(i) Iµ(ξ ∨ η, ς) =Iµ(η, ς);
(ii) Iµ(η, ς) =Iµ(ξ, ς)+Iµ(ς, η/ξ);
(iii) Iµ(ξ, η/ς) ≤Iµ(ξ, η);
(iv) Iµ(ξ, η) ≥ Iµ(ξ, ς).

Proof.

(i) Since by the assumption Iµ(ξ, ς/η) = 0, using the chain rule for logical mutual information,
we obtain:

Iµ(ξ ∨ η, ς) =Iµ(η ∨ ξ, ς) =Iµ(η, ς)+Iµ(ξ, ς/η) =Iµ(η, ς).

(ii) According to Theorem 3 we have Iµ(ξ ∨ η, ς) =Iµ(ς, ξ)+Iµ(ς, η/ξ). Hence, using the equality (i)
of this theorem, we obtain:

Iµ(η, ς) =Iµ(ξ ∨ η, ς) =Iµ(ς, ξ)+Iµ(ς, η/ξ).

(iii) Since Iµ(ξ, η) ≥ 0, from (ii) it follows the inequality:

Iµ(ς, η/ξ) ≤Iµ(ς, η).

By Theorem 5 we can interchange ξ and ς. Doing so we obtain Iµ(ξ, η/ς) ≤Iµ(ξ, η).
(iv) By Theorem 3, the mutual information Iµ(ξ, η ∨ ς) can be expressed in two different ways:

Iµ(ξ, η ∨ ς)= Iµ(ξ, η)+Iµ(ξ, ς/η)

= Iµ(ξ, ς) +Iµ(ξ, η/ς).

Since ξ → η → ς , we have Iµ(ξ, ς/η) = 0, and, therefore, it holds Iµ(ξ, η) = Iµ(ξ, η ∨ ς). Using
the second equality, we obtain:

Iµ(ξ, η) =Iµ(ξ, η ∨ ς)= Iµ(ξ, ς) +Iµ(ξ, η/ς).

Since Iµ(ξ, η/ς) ≥ 0, we have Iµ(ξ, η) ≥ Iµ(ξ, ς). �
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Note that, in the classical theory, the last assertion from the previous theorem is known as the
data processing inequality.

4. Kullback-Leibler Divergence with Respect to Fuzzy P-Measures

In this part we define the Kullback-Leibler divergence in fuzzy probability spaces and its
conditional version. We prove basic properties of these measures; in particular, Gibb’s inequality.
Finally, using the concept of conditional Kullback-Leibler divergence we establish a chain rule for
Kullback-Leibler divergence with respect to fuzzy P-measures. In the proofs we use the following
known log-sum inequality: for non-negative real numbers a1, a2, . . . , an, b1, b2, . . . , bn, it holds:

n

∑
i=1

ai log
ai
bi
≥ (

n

∑
i=1

ai) log
∑n

i=1 ai

∑n
i=1 bi

(8)

with the equality if and only if ai
bi

is constant. Recall that we use the convention that x log x
0 = ∞ if

x > 0, and 0 log 0
x = 0 if x ≥ 0.

Definition 6. Let µ, ν be fuzzy P-measures on a common fuzzy measurable space (Ω, M). Then, for any
fuzzy partition ξ of fuzzy probability spaces (Ω, M, µ), (Ω, M, ν), we define the Kullback-Leibler divergence
Dξ(µ ‖ ν) by:

Dξ(µ‖ν)=
n

∑
i=1

µ( fi) log
µ( fi)

ν( fi)
.

Remark 2. The Kullback-Leibler divergence is not a metric in a true sense since it is not symmetric, i.e.,
the equality Dξ(µ ‖ ν)= Dξ(ν ‖ µ) is not necessarily true (as shown in the example that follows), and does not
satisfy the triangle inequality.

Example 2. Consider the fuzzy measurable space (Ω, M) from Example 1 and the following two
fuzzy P-measures µ, ν defined on M: µ is defined as in Example 1 and ν is defined in a similar way:
ν(1Ω) = ν( f ∪ f⊥) = 1, ν(0Ω) = ν( f ∩ f⊥) = 0, ν( f ) = q, ν( f⊥) = 1− q, where q ∈ (0, 1). Then,
for the fuzzy partition ξ =

{
f , f⊥

}
, we obtain:

Dξ(µ‖ν) = p · log
p
q
+ (1− p) · log

1− p
1− q

, and Dξ(ν‖µ) = q · log
q
p
+ (1− q) · log

1− q
1− p

.

If p = q, then Dξ(µ ‖ ν) =Dξ(ν ‖ µ) = 0. If p = 1
2 , q = 1

3 , then we have:

Dξ(µ‖ν) =
1
2
· log

1
2
1
3
+

1
2
· log

1
2
2
3
=

1
2
· log

3
2
+

1
2
· log

3
4
= 0.084963 bit

and:

Dξ(ν‖µ) =
1
3
· log

1
3
1
2
+

2
3
· log

2
3
1
2
=

1
3
· log

2
3
+

2
3
· log

4
3
= 0.0817036 bit.

This means that Dξ(µ ‖ ν) 6=Dξ(ν ‖ µ), in general.

The following result suggests interpretation of Kullback-Leibler divergence as a measure of how
different two fuzzy P-measures (over the same fuzzy partition) are.

Theorem 7. Let ξ = { f1, . . . , fn} be a fuzzy partition of fuzzy probability spaces (Ω, M, µ), (Ω, M, ν).
Then Dξ(µ ‖ ν) ≥ 0 (Gibb’s inequality) with the equality if and only if µ( fi) = ν( fi), for i = 1, 2, . . . , n.
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Proof. Putting ai = µ( fi) and bi = ν( fi), for i = 1, 2, . . . , n, in the log-sum inequality, we obtain
∑n

i=1 ai = ∑n
i=1 µ( fi) = µ(∪n

i=1 fi) = 1; analogously we obtain ∑n
i=1 bi = 1. Therefore, by Equation (8):

Dξ(µ‖ν)= ∑n
i=1 µ( fi) log µ( fi)

ν( fi)

≥ (∑n
i=1 µ( fi)) log ∑n

i=1 µ( fi)

∑n
i=1 ν( fi)

= 1 · log 1
1 = 0

with the equality if and only if µ( fi)
ν( fi)

= α for i = 1, 2, . . . , n, where α is constant. Taking the sum
for all i = 1, 2, . . . , n, we obtain α = 1. This means that Dξ(µ ‖ ν) = 0 if and only if µ( fi) = ν( fi),
for i = 1, 2, . . . , n. �

Theorem 8. Let µ, ν be fuzzy P-measures on a common fuzzy measurable space (Ω, M). Then, for any fuzzy
partition ξ = { f1, . . . , fn} of fuzzy probability spaces (Ω, M, µ), (Ω, M, ν), it holds:

Hµ(ξ) = log n− Dξ(µ‖ν),

where n is the number of members of ξ, and ν is the uniform probability distribution over ξ, i.e., ν( fi) =
1
n ,

for i = 1, 2, . . . , n.

Proof. Calculate:

Dξ(µ‖ν) = ∑n
i=1 µ( fi) log µ( fi)

ν( fi)
= ∑n

i=1 µ( fi) log µ( fi)
1
n

= ∑n
i=1 µ( fi)

(
log µ( fi)− log n−1)

= ∑n
i=1 µ( fi) log µ( fi) + log n = log n− Hµ(ξ). �

As a consequence of the previous two theorems we obtain the following property of entropy of
fuzzy partitions:

Corollary 1. For any fuzzy partition ξ of a fuzzy probability space (Ω, M, µ), it holds Hµ(ξ) ≤ log n, where n
denotes the number of members of ξ, with the equality if and only if µ is the uniform probability distribution
over ξ.

Proof. Let ν be the uniform probability distribution over ξ = { f1, . . . , fn}. Then, according to the
previous theorem and Gibb’s inequality (Theorem 7) we have:

0 ≤ Dξ(µ‖ν) = log n− Hµ(ξ),

which implies the inequality Hµ(ξ) ≤ log n, where n is the number of members of ξ. Since by
Theorem 7 Dξ(µ ‖ ν) = 0 if and only if µ( fi) = ν( fi), for i = 1, 2, . . . , n, the equality Hµ(ξ) = log n
holds if and only if µ is the uniform probability distribution over ξ. �

In the following, a concavity of entropy Hµ(ξ) as a function of µ and convexity of K-L divergence
with respect to fuzzy P-measures are shown. We recall, for the convenience of the reader, the definitions
of convex and concave function:

A real-valued function f is said to be convex over an interval [a, b] if for every x1, x2 ∈ [a, b] and
for any real number α ∈ [0, 1],

f (αx1 + (1− α)x2) ≤ α f (x1) + (1− α) f (x2).
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A real-valued function f is said to be concave over an interval [a, b] if for every x1, x2 ∈ [a, b] and
for any real number α ∈ [0, 1],

f (αx1 + (1− α)x2) ≥ α f (x1) + (1− α) f (x2).

Remark 3. In the proofs of some of the next assertions, the following known properties are used:

(i) A function f is concave over an interval if and only if the function − f is convex over the interval.
(ii) The sum of two concave functions is itself concave; the sum of two convex functions is itself convex.
(iii) Every real-valued affine function, i.e., each function of the form f (x) = ax+ b, a, b ∈ <, is simultaneously

convex and concave.

It is easy to prove the following proposition.

Proposition 1. Let µ1, µ2 be fuzzy P-measures on a given fuzzy measurable space (Ω, M). Then, for every
real number α ∈ [0, 1], the mapping αµ1 + (1− α)µ2 is a fuzzy P-measure on (Ω, M).

Theorem 9 (Concavity of entropy). Let ξ be a fuzzy partition of fuzzy probability spaces (Ω, M, µ1),
(Ω, M, µ2). Then, for any real number α ∈ [0, 1], the following inequality holds:

α Hµ1(ξ)+(1− α) Hµ2(ξ) ≤ Hα µ1+(1−α)µ2
(ξ).

Proof. Assume that ξ = { f1, f2, . . . , fn}. Since the function F is convex, we obtain:

α Hµ1(ξ)+(1− α) Hµ2(ξ) = − α
n
∑

i=1
F(µ1( fi))−(1− α)

n
∑

i=1
F(µ2( fi))

= −
n
∑

i=1
(α F(µ1( fi)) + (1− α) F(µ2( fi)))≤ −

n
∑

i=1
F(αµ1( fi) + (1− α)µ2( fi))

= −
n
∑

i=1
F((αµ1 + (1− α)µ2)( fi)) = Hαµ1+(1−α)µ2

(ξ),

which proves the concavity of entropy Hµ(ξ) as a function of fuzzy P-measure µ. �

Theorem 10 (Convexity of K-L divergence). The K-L divergence Dξ(µ ‖ ν) is convex in the pair (µ, ν), i.e.,
for fuzzy P- measures µ1, ν1 and µ2, ν2 on a common fuzzy measurable space (Ω, M), we have, for any fuzzy
partition ξ of fuzzy probability spaces (Ω, M, µi), (Ω, M, νi), i = 1, 2, and for any real number α ∈ [0, 1],
the following inequality:

Dξ(αµ1 + (1− α)µ2‖αν1 + (1− α)ν2) ≤αDξ(µ1‖ν1)+(1− α)Dξ(µ2‖ν2).

Proof. Let ξ = { f1, . . . , fn} be a fuzzy partition of fuzzy probability spaces (Ω, M, µ1), (Ω, M, µ2),
(Ω, M, ν1), (Ω, M, ν2). Fix i ∈ {1, 2, . . . , n}. Putting a1 = αµ1( fi), a2 = (1− α)µ2( fi), b1 = αν1( fi),
b2 = (1− α)ν2( fi) in the log-sum inequality, we obtain:

(αµ1( fi) + (1− α)µ2( fi)) · log αµ1( fi)+(1−α)µ2( fi)
αν1( fi)+(1−α)ν2( fi)

≤ αµ1( fi) · log αµ1( fi)
αν1( fi)

+ (1− α)µ2( fi) · log (1−α)µ2( fi)
(1−α)ν2( fi).

Summing these inequalities over all i, we obtain what was claimed. �

Theorem 11. Let ξ = { f1, . . . , fn} and η = {g1, . . . , gm} be two fuzzy partitions of a fuzzy probability space
(Ω, M, µ). Then the mutual information Iµ(ξ, η) of ξ and η is a concave function of µ for fixed µ(gj/ fi),
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j = 1, 2, . . . , m, i = 1, . . . , n. The mutual information Iµ(ξ, η) of ξ and η is a convex function of µ(gj/ fi),
for fixed µ( fi), i = 1, . . . , n.

Proof. Let us prove the first assertion. By Equations (6) and (2) we have:

Iµ(ξ, η)= Hµ(η)−
n

∑
i=1

m

∑
j=1

µ( fi) · F(
.
µ(gj/ fi)). (9)

Let gj ∈ M. Since fk ∩ gj ≤ fk ≤ f⊥l ≤ f⊥l ∪ g⊥j = ( fl ∩ gj)
⊥ whenever k 6= l, the system{

f1 ∩ gj, . . . , fn ∩ gj
}

is a system of pairwise W-separated fuzzy subsets from M. Due to the assumption
µ(∪n

i=1 fi) = 1, the property (2.1) and additivity of the fuzzy P-measure, we get:

µ(gj) = µ
(
(∪n

i=1 fi) ∩ gj
)
= µ

(
∪n

i=1( fi ∩ gj)
)
=

n

∑
i=1

µ( fi ∩ gj) = ∑
i:µ( fi)>0

µ( fi)µ(gj/ fi).

This means that, for fixed µ(gj/ fi), µ(gj) is a linear function of µ( fi). Therefore, Hµ(η), which is
a concave function of µ(gj), is a concave function of µ( fi). The second term of the difference in
Equation (9) is a linear function of µ( fi). Hence, (see Remark 3) the difference in Equation (9) is
a concave function of µ( fi). Thus, the first part of theorem is proved.

Now, let us prove the second part. We fix µ over ξ and consider two different conditional
fuzzy P-measures µ1(gj/ fi) and µ2(gj/ fi), defined for fi ∈ ξ, µ( fi) > 0, and j = 1, 2, . . . , m. Then,
for i = 1, . . . , n, j = 1, 2, . . . , m, we have:

µ1( fi ∩ gj) = µ( fi)
.
µ1(gj/ fi), and µ2( fi ∩ gj) = µ( fi)

.
µ2(gj/ fi).

According to Proposition 1 we can define, for every real number α ∈ [0, 1], the following
conditional fuzzy P-measure:

µα(gj/ fi) = αµ1(gj/ fi) + (1− α) µ2(gj/ fi).

Then we have:

µα( fi ∩ gj) = αµ1( fi ∩ gj) + (1− α) µ2( fi ∩ gj), and

µα(gj) = αµ1(gj) + (1− α) µ2(gj).

Therefore, if we put να( fi ∩ gj) = µ( fi) · µα(gj), we obtain:

να( fi ∩ gj) = αµ( fi) · µ1(gj) + (1− α)µ( fi) · µ2(gj).

According to Theorem 1 and Theorem 10 we can write:

Iµα(ξ, η) = ∑n
i=1 ∑m

j=1 µα( fi ∩ gj) log
µα( fi∩gj)

µ( fi)·µα(gj)
=Dη/ξ(µ‖να)

≤ α∑n
i=1 ∑m

j=1 µ1( fi ∩ gj) log
µ1( fi∩gj)

µ( fi)·µ1(gj)
+ (1− α)∑n

i=1 ∑m
j=1 µ2( fi ∩ gj) log

µ2( fi∩gj)

µ( fi)·µ2(gj)

= α Iµ1(ξ, η) + (1− α)Iµ2(ξ, η). �

Finally, we define a conditional version of the Kullback-Leibler divergence and, subsequently,
we will prove the chain rule for K-L divergence.
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Definition 7. Let ξ = { f1, . . . , fn}, η = {g1, . . . , gm} be two fuzzy partitions of fuzzy probability spaces
(Ω, M, µ), (Ω, M, ν). Then we define the conditional Kullback-Leibler divergence Dη/ξ(µ ‖ ν) by:

Dη/ξ(µ‖ν)=
n

∑
i=1

µ( fi)
m

∑
j=1

.
µ(gj/ fi) log

.
µ(gj/ fi)
.
ν(gj/ fi)

.

Theorem 12 (Chain rule for K-L divergence). If ξ, η are two fuzzy partitions of fuzzy probability spaces
(Ω, M, µ), (Ω, M, ν), then:

Dξ∨η(µ‖ν) =Dξ(µ‖ν)+ Dη/ξ(µ‖ν).

Proof. Let ξ = { f1, . . . , fn}, η = {g1, . . . , gm}. Using the property (2.1), we obtain:

m

∑
j=1

µ( fi ∩ gj) = µ
(

fi ∩ (∪m
j=1gj)

)
= µ( fi), for i = 1, 2, . . . , n.

Therefore:

Dξ∨ η(µ‖ν) =∑n
i=1 ∑m

j=1 µ( fi ∩ gj) log
µ( fi∩gj)

ν( fi∩gj)

= ∑n
i=1 ∑m

j=1 µ( fi ∩ gj) log
µ( fi)

.
µ(gj/ fi)

ν( fi)
.
ν(gj/ fi)

= ∑n
i=1 ∑m

j=1 µ( fi ∩ gj) log µ( fi)
ν( fi)

+∑n
i=1 ∑m

j=1 µ( fi ∩ gj) log
.
µ(gj/ fi)
.
ν(gj/ fi)

= ∑n
i=1 µ( fi) log µ( fi)

ν( fi)
+∑n

i=1 µ( fi)∑m
j=1

.
µ(gj/ fi) log

.
µ(gj/ fi)
.
ν(gj/ fi)

= Dξ(µ‖ν)+ Dη/ξ(µ‖ν). �

5. Discussion

In this paper we extend our study concerning mutual information of fuzzy partitions in fuzzy
probability spaces. In Section 3, using our previous results, the notion of conditional mutual
information of fuzzy partitions is defined and chain rules for mutual information of fuzzy partitions
are established. Subsequently, using the notion of conditional mutual information of fuzzy partitions
we have defined the notion of conditional independence of fuzzy partitions and we have proved, inter
alia, data processing inequality for the studied situation. In Section 4 the notion of Kullback-Leibler
divergence for fuzzy P-measures is introduced and the basic properties of this measure are shown.
In particular, a convexity of Kullback-Leibler divergence with respect to fuzzy P-measures is proved
and a convexity of mutual information of fuzzy partitions is studied. Finally, a conditional version
of the Kullback-Leibler divergence is defined and chain rules for Kullback-Leibler divergence with
respect to fuzzy P-measures are established.

As noted previously, logical versions of some results concerning the entropy and mutual
information of fuzzy partitions presented in Sections 2 and 3 are given in [10]. In [9] Ellerman
studied, in addition to the logical entropy and logical mutual information, the concept of logical
Kullback-Leibler divergence. The aim of our next study will be to provide a logical version of
Kullback-Leibler divergence for fuzzy probability measures.

Let us mention, finally, the fuzzy set theory has been shown to be useful in many applications of
mathematics and it is continually developing. Currently, algebraic structures, based on fuzzy set theory,
as MV-algebras (cf. [37,38]), D-posets (cf. [39,40]), effect algebras (cf. [41,42]), and IF-sets (cf. [43–47])
are subject of intensive research and, of course, there are also many results about the entropy on these
structures. Some of them can be found, e.g., in [48–58].
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49. Petrovičová, J. On the entropy of dynamical systems in product MV-algebras. Fuzzy Sets Syst. 2001, 121,

347–351. [CrossRef]
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