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Abstract:



Quantum quasigroups are algebraic structures providing a general self-dual framework for the nonassociative extension of Hopf algebra techniques. They also have one-sided analogues, which are not self-dual. The paper presents a survey of recent work on these structures, showing how they furnish various solutions to the quantum Yang–Baxter equation.
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1. Introduction


The self-dual concept of a quantum quasigroup offers a far-reaching unification of Hopf algebras (along with their non-associative extensions, e.g., [1,2,3,4]) and quasigroups [5]. Consider a bimagma [image: there is no content], an object of a strict symmetric monoidal category [image: there is no content] with [image: there is no content]-morphisms giving a magma structure or multiplication [image: there is no content], and a comagma structure or comultiplication [image: there is no content], such that Δ is a magma homomorphism. (The latter bimagma condition is equivalent to its dual: ∇ is a comagma homomorphism.) A bimagma [image: there is no content] is a quantum quasigroup if two dual morphisms are invertible in [image: there is no content]: the left composite


[image: there is no content]








(“[image: there is no content]” for “Gauche”) and the right composite


[image: there is no content]








(“[image: there is no content]” for “Droite”). The qualifiers “left” and “right” refer to the side of the tensor product on which the comultiplications appear. Quantum quasigroups also have one-sided analogues [6]. A left quantum quasigroup just requires the invertibility of the left composite. Dually, a right quantum quasigroup requires the invertibility of the right composite.



The present work surveys some connections between these structures and the quantum Yang–Baxter equation (QYBE):


[image: there is no content]



(1)




[7] (Section 2.2C). The QYBE applies to an endomorphism [image: there is no content] of the tensor square of an object A in a symmetric, monoidal category. For a given integer [image: there is no content], the notation [image: there is no content], for [image: there is no content], means applying R to the i-th and j-th factors in the n-th tensor power of A. Since the left and right composite morphisms are endomorphisms of tensor squares, it is natural to seek conditions under which they satisfy the QYBE. Then, as observed by B.B. Venkov working in the category of sets with Cartesian products [8] (Section 9), the QYBE corresponds to various distributivity conditions involving magma multiplications [image: there is no content] appearing in the left and right composites along with diagonal or setlike comultiplications. While such classical distributivity conditions receive due consideration in this survey, the main novelty lies in the combination with more general comultiplications to obtain a much broader palette of QYBE solutions, corresponding to the bialgebraic concept of quantum distributivity as recently introduced in [9,10]. It should also be noted (compare Remark 3) that distinct quantum quasigroups may furnish identical solutions to the QYBE. In other words, a classification of quantum quasigroups that exhibit quantum distributivity will be finer than a classification of the QYBE solutions that they provide.



The broad layout of the paper is as follows. The second section mainly covers background material about magmas and quasigroups, including some relations between the classical and quantum concepts of a quasigroup (Section 2.4), and classical concepts of idempotence and distributivity (Section 2.5), including a brief dictionary of the relevant knot theory terminology (Remark 2). The third section introduces the bialgebraic or “quantum” versions of idempotence (Section 3.1), distributivity (Section 3.2), and Albert’s notion of isotopy (Section 3.3), in particular showing how quantum distributivity is transferred under bimagma isotopy (Theorem 4). The final section of the paper then presents various QYBE solutions obtained using quantum quasigroup techniques from one of the subtlest structures in quasigroup theory, commutative Moufang loops. While most of the QYBE solutions appearing in the paper are explicitly given in the symmetric monoidal category of sets under the Cartesian product, they may be transferred easily to categories of modules under the tensor product by application of the free module functor—compare [11] (III, Ex. 3.6.3; IV, Proposition 2.4.8(d)).



For concepts and conventions that are not otherwise discussed in this paper, readers are referred to [11]. We use algebraic notation, placing functions to the right of their arguments, or as superfixes. This enables compositions to be read in natural order from left to right. These conventions serve to control the profusion of brackets that all too easily arise in nonassociative structures. Since the comultiplications featured in this paper are not necessarily coassociative, the adapted version


[image: there is no content]








of Sweedler notation is used (without any implication that the image of a is of tensor rank 1) in concrete symmetric monoidal categories. Note that in this notation, coassociativity takes the form


aLL⊗aLR⊗aR=aL⊗aRL⊗aRR.











Under coassociativity, the usual Sweedler notation is recovered for example by taking the superfixes [image: there is no content] or [image: there is no content] in lexicographic order as suffices [image: there is no content] (which are sometimes encased in parentheses).




2. Magmas, Quasigroups, and Loops


2.1. Magmas


Classically, a magma [image: there is no content] is a set Q carrying a binary multiplication operation. The operation is generally written as · or otherwise indicated by simple juxtaposition of the two arguments, with · binding less strongly than juxtaposition (The older term groupoid [12] (p. 1) is now best reserved for categories with invertible morphisms). Thus [image: there is no content] is a magma in the symmetric, monoidal category of sets under the Cartesian product, writing [image: there is no content] in place of the usual ordered pair notation [image: there is no content]. The magma [image: there is no content] is described as the opposite of the magma [image: there is no content] or [image: there is no content]. Here and elsewhere, the twist morphism of the symmetric, monoidal category in question is written as [image: there is no content], for example concretely implemented as [image: there is no content].



For a set Q, the transformation monoid [image: there is no content] is the monoid of self-maps from Q to Q. Now for an element q of a magma [image: there is no content], define the left multiplication [image: there is no content] or


[image: there is no content]



(2)




and right multiplication [image: there is no content] or


R(q):Q→Q;x↦x∗q.



(3)







Specifying


[image: there is no content]



(4)




or


[image: there is no content]



(5)




is then equivalent (by Currying) to specification of the magma structure. In particular, using the algebraic convention for composition of maps, the associativity of a magma is equivalent to R being a magma homomorphism.




2.2. Combinatorial and Equational Quasigroups


Quasigroups may be defined combinatorially or equationally. Combinatorially, a quasigroup [image: there is no content] is defined as a magma with the property that any two of the arguments [image: there is no content] in the equation [image: there is no content] determine the third uniquely. A loop is defined as a quasigroup Q having an element 1, the identity element, satisfying [image: there is no content] for each x in Q.



Under the equational definition, a quasigroup [image: there is no content] is a set Q carrying binary operations of multiplication, right division / and left division ∖, which together satisfy the following identities:


(SL)x·(x\z)=z;(SR)z=(z/x)·x,(IL)x\(x·z)=z;(IR)z=(z·x)/x.



(6)







Note that (SL) gives the surjectivity of the left multiplication [image: there is no content], while (IL) expresses its injectivity. The other two identities are their mirror images (chiral duals).



When an abelian group is considered as a combinatorial quasigroup under subtraction, the addition operation is the right division, while subtraction becomes the left division. If x and y are elements of a group [image: there is no content], the left division is given by [image: there is no content], with [image: there is no content] as right division. More generally, these equations hold in a diassociative loop, where the subloop generated by each pair of elements is associative, and thus forms a group. The loop [image: there is no content] of unit octonions is diassociative, but not associative [13] (Section 1.7).




2.3. Equational and Combinatorial One-Sided Quasigroups


Using an equational definition, a left quasigroup [image: there is no content] is a set Q equipped with a multiplication and left division satisfying the identities (SL) and (IL) of Equation (6). Dually, a right quasigroup [image: there is no content] is a set Q equipped with a multiplication and right division satisfying the identities (SR) and (IR) of Equation (6). A left loop is a left quasigroup with an identity element. Dually, a right loop is a right quasigroup with an identity element.



Combinatorially, a left quasigroup [image: there is no content] is a set Q with a multiplication such that in the equation [image: there is no content], specification of a and b determines x uniquely. In equational terms, the unique solution is [image: there is no content]. The combinatorial definition of right quasigroups is dual. If Q is a set, the right projection product [image: there is no content] yields a left quasigroup structure on Q, while the left projection product [image: there is no content] yields a right quasigroup structure.



The following algebraic observations are often useful. In particular, they underlie simple conceptual proofs of results (such as Proposition 1 below) that otherwise require more complicated computational or syntactical proofs.



Lemma 1.

Let [image: there is no content] and [image: there is no content] be magmas.

	(a) 

	
If [image: there is no content] is a right quasigroup, then so is [image: there is no content].




	(b) 

	
If [image: there is no content] is a left quasigroup, then so is [image: there is no content].




	(c) 

	
If [image: there is no content] and [image: there is no content] are right quasigroups, and [image: there is no content] is a magma homomorphism, then it is a right quasigroup homomorphism.




	(d) 

	
If [image: there is no content] and [image: there is no content] are left quasigroups, and [image: there is no content] is a magma homomorphism, then it is a left quasigroup homomorphism.











Proof. 

Claims (a) and (b) are immediate from the definitions. Claim (c) will be proved and the claim (d) is dual. For elements x and z of P, one has [image: there is no content] by (SR). Thus, [image: there is no content], whence [image: there is no content] by (IR). ☐






2.4. Quasigroups and Quantum Quasigroups


This paragraph summarizes some connections between quasigroups and quantum quasigroups. The symbol ⊤ is often used to denote a singleton set, in its role as a terminal object of categories of sets and functions.



Recall that a unital magma [image: there is no content] in a symmetric, monoidal category [image: there is no content] is a magma [image: there is no content] equipped with a unit [image: there is no content]-morphism [image: there is no content] such that [image: there is no content]. Dually, a counital comagma [image: there is no content] within a symmetric, monoidal category [image: there is no content] is a comagma [image: there is no content] equipped with a counit [image: there is no content]-morphism [image: there is no content] such that [image: there is no content]. In particular, in the symmetric, monoidal category [image: there is no content] of sets with Cartesian products, the only counital comultiplication is the diagonal or setlike comultiplication [image: there is no content] [10] (Lemma 4.6).



Theorem 1.

[5,6] Consider the category [image: there is no content] of sets and functions, with the symmetric monoidal category structure [image: there is no content]. Then, counital left, right, or two-sided quantum quasigroups in [image: there is no content] are, respectively, equivalent to left, right, or two-sided quasigroups.





Theorem 2.

Consider the symmetric, monoidal category [image: there is no content] of finite sets under the Cartesian product:

	(a) 

	
Left quantum quasigroups in [image: there is no content] are equivalent to triples [image: there is no content] that consist of a left quasigroup A with an automorphism L and endomorphism R [6].




	(b) 

	
Right quantum quasigroups in [image: there is no content] are equivalent to triples [image: there is no content] that consist of a right quasigroup A with an endomorphism L and automorphism R [6].




	(c) 

	
Quantum quasigroups in [image: there is no content] are equivalent to triples [image: there is no content] consisting of a quasigroup A equipped with automorphisms L and R [5].











Corollary 1.

[6] Given a left quasigroup [image: there is no content] equipped with an automorphism L and endomorphism R, define [image: there is no content] as a multiplication and [image: there is no content] as a comultiplication. Then, [image: there is no content] is a left quantum quasigroup in [image: there is no content].





The chiral dual is as follows.



Corollary 2.

Given a right quasigroup [image: there is no content] equipped with an endomorphism L and automorphism R, define [image: there is no content] as a multiplication and [image: there is no content] as a comultiplication. Then, [image: there is no content] is a right quantum quasigroup in [image: there is no content].





Corollary 3.

[5] Suppose that [image: there is no content] is a quasigroup equipped with two automorphisms L and R. Define [image: there is no content] as a multiplication and [image: there is no content] as a comultiplication. Then, [image: there is no content] is a quantum quasigroup in [image: there is no content].






2.5. Some Classical Concepts


Definition 1.

Let [image: there is no content] be a magma:

	(a) 

	
The magma is idempotent if [image: there is no content] for all x in Q.




	(b) 

	
The magma is left repetitive if [image: there is no content] for all [image: there is no content] in Q, i.e., if the monogenic submagmas of Q are contained entirely within kernel classes of the map L of Equation (4).




	(c) 

	
The magma is right repetitive if [image: there is no content] for all [image: there is no content] in Q, i.e., if the monogenic submagmas of Q are contained entirely within kernel classes of the map R of Equation (5).




	(d) 

	
The magma is left (self-)distributive if [image: there is no content] for all [image: there is no content] in Q, i.e., if each left multiplication Equation (2) is a magma endomorphism.




	(e) 

	
The magma is right (self-)distributive if [image: there is no content] for all [image: there is no content] in Q, i.e., if each right multiplication Equation (3) is a magma endomorphism.




	(f) 

	
The magma is (self-)distributive if it is right and left distributive.











Remark 1.

As observed at the end of Section 2.1, the “global" magma homomorphism property for the map R of Equation (5) corresponds to associativity of the magma in question. On the other hand, the “local" magma homomorphism property for each individual value [image: there is no content] corresponds to right distributivity as in Definition 1e.





Remark 2.

A quandle is just an idempotent, right distributive right quasigroup (or dually, an idempotent, left distributive left quasigroup) [14] (Definition 14). A rack is a right distributive right quasigroup (or dually, a left distributive left quasigroup) [14] (Definition 27). Racks may also be described by giving the opposite of the division along with the multiplication (as in Proposition 1 below). Crans has used the term shelf for a one-sided distributive magma [15] (p. 52), the term spindle for a one-sided idempotent distributive magma [15] (p. 53), and the term quasi-idempotent for repetitive magmas [15] (Section 3.1.3).





Proposition 1.

Let [image: there is no content] be a right quasigroup, with opposite division [image: there is no content]:

	(a) 

	
If the magma [image: there is no content] is right distributive, then so is the magma [image: there is no content].




	(b) 

	
If the magma [image: there is no content] is right distributive, then the magma [image: there is no content] is left distributive.




	(c) 

	
If the magma [image: there is no content] is right distributive, then it is right repetitive.











Proof. 

(a): If the magma [image: there is no content] is right distributive, its right multiplications and their inverses are magma automorphisms. Then, by Lemma 1(c), the right multiplications [image: there is no content] are magma automorphisms of [image: there is no content].



(b): By (a), the magma [image: there is no content] is right distributive. Thus, its opposite [image: there is no content] is left distributive.



(c): For elements [image: there is no content] of Q, one has


[image: there is no content]



(7)




since [image: there is no content] is an automorphism of [image: there is no content]. Right multiplication of the extremes of Equation (7) by x then yields the right repetitiveness. ☐







3. Quantum Idempotence, Distributivity, and Isotopy


Idempotence, (self-)distributivity, and isotopy are standard concepts for magmas in the monoidal category of sets and Cartesian products. It is convenient to describe them as classical concepts (compare the heading of Section 2.5), as their extensions to quantum concepts in bimagmas provide key tools for the identification of solutions to the QYBE in one- or two-sided quantum quasigroups.



3.1. Quantum Idempotence


For the following definition, compare [10,16].



Definition 2.

Let [image: there is no content] be a bimagma in a symmetric, monoidal category [image: there is no content]. If the diagram


 [image: Axioms 05 00025 i001]








commutes in [image: there is no content], then the bimagma is said to satisfy the condition of quantum idempotence.





A comagma [image: there is no content] is said to be cocommutative if [image: there is no content]. The first result relates classical idempotence to quantum idempotence.



Proposition 2.

[10] (Proposition 5.2) Let [image: there is no content] be a magma in [image: there is no content]. Define [image: there is no content]; [image: there is no content]:

	(a) 

	
The structure [image: there is no content] is a counital, cocommutative, coassociative bimagma.




	(b) 

	
The bimagma [image: there is no content] is quantum idempotent if and only if the magma [image: there is no content] is idempotent in the classical sense.











Non-classical examples of quantum idempotence are obtained as follows (Compare [10] (Theorem 5.4) for the dual.).



Theorem 3.

Let [image: there is no content] be a right quasigroup in which the identity


[image: there is no content]



(8)




is satisfied. Define


[image: there is no content]



(9)




and [image: there is no content].

	(a) 

	
The structure [image: there is no content] forms a right quantum quasigroup within the category [image: there is no content].




	(b) 

	
The bimagma [image: there is no content] is quantum idempotent.











Corollary 4.

[10] (Corollary 5.5) Under the conditions of Theorem 3, the bimagma [image: there is no content] is cocommutative if and only if [image: there is no content] is classically idempotent.





Commutative, diassociative loops (such as abelian groups) satisfy the conditions of Theorem 3, along with entropic right quasigroups (i.e., where the multiplication is a homomorphism), including sets equipped with left projections. The comultiplication (9) of Theorem 3 is also useful in other contexts.



Proposition 3.

Let [image: there is no content] be a right distributive right quasigroup. Then, [image: there is no content] and Equation (9) yield a right quantum quasigroup [image: there is no content].





Proof. 

The bimagma condition for [image: there is no content] amounts to satisfaction of [image: there is no content] in [image: there is no content]. It follows from the right distributivity and right repetitiveness as [image: there is no content], and thus holds by Proposition 1c. Let [image: there is no content] be the right composite of [image: there is no content], and let [image: there is no content] be the right composite of [image: there is no content] with the diagonal comultiplication Δ. Since [image: there is no content], Corollary 2 shows that [image: there is no content] is a right quantum quasigroup. ☐






3.2. Quantum Distributivity


Definition 3.

Suppose that [image: there is no content] is a bimagma in a symmetric, monoidal category:

	(a) 

	
The bimagma [image: there is no content] is said to satisfy the condition of quantum left distributivity if the left composite [image: there is no content] of [image: there is no content] satisfies the quantum Yang–Baxter equation (1).




	(b) 

	
The bimagma [image: there is no content] is said to satisfy the condition of quantum right distributivity if the right composite [image: there is no content] of [image: there is no content] satisfies the quantum Yang–Baxter equation (1).




	(c) 

	
The bimagma [image: there is no content] is said to satisfy the condition of quantum distributivity if it has both the left and right quantum distributivity properties.











The following result records B.B. Venkov’s motivating observation [8] (Section 9) quoted in the introduction.



Proposition 4.

[10] (Proposition 6.2) Let [image: there is no content] be a magma in the category of sets with the Cartesian product. Define [image: there is no content]:

	(a) 

	
The bimagma [image: there is no content] is quantum left distributive if and only if the magma [image: there is no content] is left distributive.




	(b) 

	
The bimagma [image: there is no content] is quantum right distributive if and only if the magma [image: there is no content] is right distributive.











Remark 3.

It is noteworthy that the distinct right quantum quasigroups [image: there is no content] and [image: there is no content] appearing in the proof of Proposition 3 have identical right composites. By Proposition 4, this common right composite solves the QYBE. Thus, a classification of quantum right distributive right quantum quasigroups would be finer than a classification of the QYBE solutions that they provide.





Corollary 5.

[10] (Corollary 6.3) Suppose that [image: there is no content] is a nontrivial left quantum distributive left quantum quasigroup, or right quantum distributive right quantum quasigroup, within the category [image: there is no content]:

	(a) 

	
If [image: there is no content] is unital, it is not counital.




	(b) 

	
If [image: there is no content] is counital, it is not unital.











Proposition 5.

[9] (Proposition 4.4) Let [image: there is no content] be a bimagma in [image: there is no content], equipped with comultiplication [image: there is no content].

	(a) 

	
The bimagma [image: there is no content] is quantum left distributive if [image: there is no content] and the identity


[image: there is no content]



(10)




is satisfied.




	(b) 

	
The bimagma [image: there is no content] is quantum right distributive if [image: there is no content] and the identity


[image: there is no content]



(11)




is satisfied.











Corollary 6.

Let [image: there is no content] be a bimagma in [image: there is no content], equipped with comultiplication [image: there is no content]; [image: there is no content].

	(a) 

	
The bimagma [image: there is no content] is quantum left distributive if [image: there is no content] and the identity


[image: there is no content]



(12)




is satisfied [10] (Corollary 6.5).




	(b) 

	
The bimagma [image: there is no content] is quantum right distributive if [image: there is no content] and the identity


[image: there is no content]



(13)




is satisfied.












3.3. Quantum Homotopy and Isotopy


To begin, recall some classical definitions.



Definition 4.

Consider magma structures


[image: there is no content]








(for [image: there is no content]) in a concrete symmetric monoidal category [image: there is no content].

	(a) 

	
A homotopy (in the classical sense)


[image: there is no content]



(14)




is defined as a triple of [image: there is no content]-morphisms [image: there is no content] such that the diagram


 [image: Axioms 05 00025 i002]



(15)




commutes. (See [13] (Section 1.2) for the case of quasigroups in the category of sets.)




	(b) 

	
The classical homotopy (14) is an isotopy (in the classical sense) if [image: there is no content] are [image: there is no content]-isomorphisms. (See [17] (Section 11) for the concept in a category of vector spaces, and [18] (Section 4) for quasigroups in the category of sets.)




	(c) 

	
A classical isotopy [image: there is no content] is principal when [image: there is no content] and [image: there is no content].











Remark 4.

Note that a classical homotopy (14) becomes a magma homomorphism if [image: there is no content].





Definition 5.

Let [image: there is no content] be a symmetric monoidal category. Let [image: there is no content] be a magma in [image: there is no content], for [image: there is no content]. Consider a pair [image: there is no content] consisting of [image: there is no content]-morphisms [image: there is no content] and [image: there is no content]:

	(a) 

	
The pair [image: there is no content] is a magma homotopy


[image: there is no content]



(16)




in [image: there is no content] if the diagram


 [image: Axioms 05 00025 i003]



(17)




commutes in [image: there is no content].




	(b) 

	
The magma homotopy (16) is said to be a magma isotopy if h and [image: there is no content] are [image: there is no content]-isomorphisms.




	(c) 

	
A magma isotopy (16) is principal when [image: there is no content] and [image: there is no content]. Thus, a principal magma isotopy [image: there is no content] is specified by its second component [image: there is no content].











Example 1.

For a commutative ring K, take the symmetric monoidal category [image: there is no content] of K-modules:

	(a) 

	
Let [image: there is no content] be a Hopf algebra in [image: there is no content]. Then,


[image: there is no content]








is a non-classical magma homotopy.




	(b) 

	
Let [image: there is no content] denote the algebra of [image: there is no content]-matrices, considered as a magma in [image: there is no content]. Let [image: there is no content] denote matrix transposition. Then,


[image: there is no content]








is a non-classical magma isotopy.











Remark 5.

(a) The concepts of Definition 4 provide instances of those of Definition 5.



(b) Under magma homotopies, the class of magmas in [image: there is no content] forms the object class of a category, the homotopy category of magmas in [image: there is no content]. The magma isotopies are the isomorphisms in this category.





Definition 6.

Consider a symmetric monoidal category [image: there is no content]. Let [image: there is no content] be a bimagma in [image: there is no content], for [image: there is no content]. Then, an automorphism [image: there is no content] of the object [image: there is no content] of [image: there is no content] is a principal bimagma isotopy


[image: there is no content]








in [image: there is no content] if the decagon diagram


 [image: Axioms 05 00025 i004]



(18)




commutes in [image: there is no content]. Here, the superfix ⊗r is used for the r-th tensor power of an object or morphism in [image: there is no content]. The lower part of the decagon diagram is called the nonagon diagram or enneagon diagram.





Remark 6.

The commuting of the upper triangle within the decagon diagram means that the pair [image: there is no content] is a principal magma isotopy.





For the following, compare [9] (Proposition 5.5), which used a dual convention for labeling the domain and codomain of an isotopy.



Proposition 6.

Suppose that [image: there is no content], for [image: there is no content], are bimagmas in [image: there is no content], with permutations [image: there is no content] and [image: there is no content]. Then, the validity of the equations


L1gf=fL2,L1g2=gL2,R1f2=fR2,R1fg=gR2



(19)




is equivalent to the commuting of the enneagon diagram (18) for a principal bimagma isotopy


[image: there is no content]








composed from [image: there is no content] and [image: there is no content].





Corollary 7.

Consider a magma [image: there is no content] in [image: there is no content], with commuting automorphisms f and g:

	(a) 

	
There is a bimagma


[image: there is no content]








in [image: there is no content].




	(b) 

	
There is a bimagma


[image: there is no content]








in [image: there is no content].




	(c) 

	
There is a principal bimagma isotopy


f⊗g:(Q,∇1,Δ1)⇝(Q,∇2,Δ2).



















Remark 7.

In Corollary 7b, duality interchanges and inverts the respective components [image: there is no content] of the magma isotopy to yield the corresponding components [image: there is no content] of the comultiplication.






3.4. Isotopy of Quantum Distributive Structures


In this section, some results from [9] (Section 6) concerning the preservation of quantum distributivity under principal isotopy are summarized.



Proposition 7.

Suppose that [image: there is no content] are bimagmas on an object Q of [image: there is no content] for [image: there is no content], such that the following conditions are satisfied:

	(a) 

	
The comultiplication component [image: there is no content] is surjective;




	(b) 

	
The comultiplication components [image: there is no content] and [image: there is no content] commute for [image: there is no content];




	(c) 

	
The bimagma [image: there is no content] is quantum left distributive;




	(d) 

	
There is a principal magma isotopy


[image: there is no content]








whose components [image: there is no content] are commuting automorphisms of [image: there is no content];




	(e) 

	
The equations [image: there is no content] and [image: there is no content] hold.



Then, [image: there is no content] is quantum left distributive.











The chiral dual of Proposition 7 is formulated as follows.



Corollary 8.

Suppose that [image: there is no content] are bimagmas on an object Q of [image: there is no content] for [image: there is no content], such that the following conditions are satisfied:

	(a) 

	
The comultiplication component [image: there is no content] is surjective;




	(b) 

	
The comultiplication components [image: there is no content] and [image: there is no content] commute for [image: there is no content];




	(c) 

	
The bimagma [image: there is no content] is quantum right distributive;




	(d) 

	
There is a principal magma isotopy


[image: there is no content]








whose components [image: there is no content] are commuting automorphisms of [image: there is no content];




	(e) 

	
The equations [image: there is no content] and [image: there is no content] hold.



Then, [image: there is no content] is quantum right distributive.











The conditions of Proposition 7 and Corollary 8 are simplified and unified for quantum quasigroups in the symmetric monoidal category of finite sets and Cartesian products.



Theorem 4.

Suppose that [image: there is no content] are quantum quasigroups on an object Q of [image: there is no content] for [image: there is no content], such that the following conditions are satisfied:

	(a) 

	
The comultiplication components [image: there is no content] and [image: there is no content] commute for [image: there is no content];




	(b) 

	
The quantum quasigroup [image: there is no content] is quantum distributive;




	(c) 

	
There is a principal bimagma isotopy


[image: there is no content]








whose components [image: there is no content] are commuting automorphisms of [image: there is no content].



Then, [image: there is no content] is quantum distributive.













4. Commutative Moufang Loops


4.1. Moufang Loops


Proposition 8.

[11] (I Proposition 4.1.5) In a loop [image: there is no content], the following three identities are equivalent:


(zy.z)x=z(y.zx);zx·yz=(z·xy)z;x(z·yz)=(xz·y)z.



(20)









Definition 7.

(a) The identities (20) of Proposition 8 are known as the Moufang identities.



(b) A loop satisfying the Moufang identities is known as a Moufang loop.





Groups are Moufang loops. By Moufang’s Theorem [12] (Section VII.4), Moufang loops are diassociative. The loop [image: there is no content] of unit octonions is a non-commutative, non-associative Moufang loop. Following Zassenhaus, Bruck constructed the free commutative Moufang loop on three generators by equipping the abelian group


Z3⊕(Z/3Z)={x=(x1,x2,x3,x4)∣x1,x2,x3∈Z,x4∈Z/3Z}








with a non-associative product [image: there is no content] defined as


[image: there is no content]











A representation-theoretic interpretation of this construction is given in [13] (Theorem 11.6). Another powerful method for constructing commutative Moufang loops is discussed in [19].



Proposition 9.

Let [image: there is no content] be a commutative Moufang loop. Define [image: there is no content] and [image: there is no content]. In the category [image: there is no content], the structure [image: there is no content] forms a unital, commutative and cocommutative quantum quasigroup.





Proof. 

By the commutativity and diassociativity of [image: there is no content], the inversion mapping [image: there is no content]; [image: there is no content] is an automorphism of the multiplication ∇. By Corollary 3, it follows that [image: there is no content] is a quantum quasigroup in [image: there is no content]. The remaining statements are immediate. ☐





Remark 8.

Consider the context of Proposition 9:

	(a) 

	
If A is nontrivial, say with non-identity element a, then


[image: there is no content]








while


aΔ(1A⊗Δ)=(a−1⊗a−1)(1A⊗Δ)=a−1⊗a⊗a,








so that [image: there is no content] is not coassociative.




	(b) 

	
The quantum quasigroup [image: there is no content] is associative if and only if the loop [image: there is no content] is associative.




	(c) 

	
The quantum quasigroup [image: there is no content] is always unital.












4.2. Commutative Moufang Loops of Exponent 3


Since Moufang loops are diassociative, one may define their exponents as for groups. (Generally, definition of the exponent for an individual quasigroup, or a class of quasigroups, requires the use of representation theory [13] (Section 11.2).) The following result shows how commutative Moufang loops of exponent 3 yield QYBE solutions when paired with an appropriate comultiplication.



Theorem 5.

[10] (Theorem 6.6) Suppose that [image: there is no content] is a commutative Moufang loop of exponent 3. Define [image: there is no content] and [image: there is no content]. Consider the unital, commutative and cocommutative quantum quasigroup [image: there is no content] given by Proposition 9:

	(a) 

	
The quantum quasigroup [image: there is no content] is quantum idempotent.




	(b) 

	
The quantum quasigroup [image: there is no content] is quantum distributive.











Remark 9.

In the context of Theorem 5, Proposition 5 shows that the quantum quasigroup [image: there is no content] is counital only when A is trivial.





Remark 10.

Manin actually takes the identity [image: there is no content] as a defining axiom for commutative Moufang loops, within the class of loops [20] (I.1.4(4)) (cf. [21] (Theorem II.7B)). Substituting [image: there is no content] for x and using the exponent 3 condition [image: there is no content] then directly produces the equation


[image: there is no content]








that interprets the identity (12) of Corollary 6 for the left quantum distributivity of the quantum quasigroup [image: there is no content] of Theorem 5.






4.3. Belousov’s Theorem and Quantum Distributivity


The classical Belousov Theorem states that for each element e of a distributive quasigroup [image: there is no content], there is an isotopic commutative Moufang loop


Q,∇1:x⊗y↦(xR(e)−1⊗yL(e)−1)∇2,η:1↦e








[22] (Teorema 1), [23] (Teorema 8.1). This section (summarizing [9] (Section 7)) shows how Belousov’s Theorem may be used in the context of quantum quasigroups to obtain new solutions of the QYBE.



Lemma 2.

Let e be an element of a distributive quasigroup [image: there is no content]:

	(a) 

	
The left and right multiplications [image: there is no content] and [image: there is no content] are automorphisms of [image: there is no content] [23] (p. 131);




	(b) 

	
The element e is idempotent: [image: there is no content] [23] (p. 131);




	(c) 

	
The multiplications [image: there is no content] and [image: there is no content] commute [23] (8.3).











Theorem 6.

Suppose that [image: there is no content] is a distributive quasigroup with an element e. Set [image: there is no content] and [image: there is no content]. Let [image: there is no content] be the commutative Moufang loop with multiplication


[image: there is no content]



(21)




given by Belousov’s Theorem. Then, with the comultiplication


Δ1:Q→Q⊗Q;x↦xL(e)⊗xR(e),



(22)




there is a quantum distributive quantum quasigroup [image: there is no content] in the symmetric monoidal category [image: there is no content].





Corollary 9.

In the context of Theorem 6, with the comultiplication


Δ2:Q→Q⊗Q;x↦x⊗x,








Corollary 7 yields a principal bimagma isotopy


f⊗g:(Q,∇1,Δ1)⇝(Q,∇2,Δ2).













Remark 11.

(a) If the distributive quasigroup [image: there is no content] in Theorem 6 is not commutative, choose an element e which does not commute with each element of Q. Then, the quantum quasigroup [image: there is no content] will not be cocommutative. This immediately distinguishes it from the cocommutative quantum quasigroups [image: there is no content] that are provided by Theorem 5, even though those quantum quasigroups also have a commutative Moufang loop multiplication.



(b) The left composite morphism of [image: there is no content] is


x⊗y↦x⊗xy,








while the left composite morphism of [image: there is no content] is


x⊗y↦xe⊗x·yL(e)−1.











These automorphisms of [image: there is no content] give two distinct solutions of the QYBE in [image: there is no content].










Conflicts of Interest


The author declares no conflict of interest.




References


	1. 
Benkart, G.; Madariaga, S.; Pérez-Izquierdo, J.M. Hopf algebras with triality. Trans. Am. Math. Soc. 2012, 365, 1001–1023. [Google Scholar] [CrossRef]

	2. 
Klim, J.; Majid, S. Hopf quasigroups and the algebraic 7-sphere. J. Algebra 2010, 323, 3067–3110. [Google Scholar] [CrossRef]

	3. 
Klim, J.; Majid, S. Bicrossproduct Hopf quasigroups. Comment. Math. Univ. Carolin. 2010, 51, 287–304. [Google Scholar]

	4. 
Pérez-Izquierdo, J.M. Algebras, hyperalgebras, nonassociative bialgebras and loops. Adv. Math. 2007, 208, 834–876. [Google Scholar] [CrossRef]

	5. 
Smith, J.D.H. Quantum quasigroups and loops. J. Algebra 2016, 456, 46–75. [Google Scholar] [CrossRef]

	6. 
Smith, J.D.H. One-sided quantum quasigroups and loops. Demonstr. Math. 2015, 48, 620–636. [Google Scholar] [CrossRef]

	7. 
Chari, V.; Pressley, A. A Guide to Quantum Groups; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]

	8. 
Drinfeld, V.G. On some unsolved problems in quantum group theory. In Quantum Groups; Kulish, P.P., Ed.; Springer: Berlin, Germany, 1992; Volume 1510, pp. 1–8. [Google Scholar]

	9. 
Smith, J.D.H. Belousov’s Theorem and the quantum Yang–Baxter equation. Bul. Acad. Sţiinţe Repub. Mold. Mat. 2016, 80, 7–23. [Google Scholar]

	10. 
Smith, J.D.H. Quantum idempotence, distributivity, and the Yang–Baxter equation. Comment. Math. Univ. Carol. 2016. accepted. [Google Scholar]

	11. 
Smith, J.D.H.; Romanowska, A.B. Post-Modern Algebra; Wiley: New York, NY, USA, 1999. [Google Scholar]

	12. 
Bruck, R.H. A Survey of Binary Systems; Springer: Berlin, Germany, 1971. [Google Scholar]

	13. 
Smith, J.D.H. An Introduction to Quasigroups and Their Representations; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]

	14. 
Elhamdadi, M.; Nelson, S. Quandles; American Mathematical Society: Providence, RI, USA, 2015. [Google Scholar]

	15. 
Crans, A.S. Lie 2-Algebras. Ph.D. Thesis, University of California Riverside, Riverside, CA, USA, 2004. [Google Scholar]

	16. 
Hofmann, K.H.; Strambach, K. Idempotent multiplications on surfaces and aspherical spaces. Rocky Mt. J. Math. 1991, 21, 1279–1315. [Google Scholar] [CrossRef]

	17. 
Albert, A.A. Non-associative algebras I. Fundamental concepts and isotopy. Ann. Math. 1942, 43, 685–707. [Google Scholar] [CrossRef]

	18. 
Albert, A.A. Quasigroups I. Fundamental concepts and isotopy. Trans. Am. Math. Soc. 1943, 54, 507–519. [Google Scholar] [CrossRef]

	19. 
Smith, J.D.H. Exterior algebra representations of commutative Moufang loops. Arch. Math. 1980, 34, 393–398. [Google Scholar] [CrossRef]

	20. 
Manin, Y.I. Cubic Forms: Algebra, Geometry, Arithmetic; Nauka, USSR: Moscow, Russian, 1972. [Google Scholar]

	21. 
Bruck, R.H. Contributions to the theory of loops. Trans. Am. Math. Soc. 1946, 60, 245–354. [Google Scholar] [CrossRef]

	22. 
Belousov, V.D. On the structure of distributive quasigroups (Russian). Mat. Sbornik 1960, 50, 267–298. [Google Scholar]

	23. 
Belousov, V.D. Foundations of the Theory of Quasigroups and Loops; Nauka, USSR: Moscow, Russian, 1967. [Google Scholar]





© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).







nav.xhtml


  axioms-05-00025


  
    		
      axioms-05-00025
    


  




  





media/file3.png





media/file0.png





media/file1.png





media/file2.png





