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Abstract: A subgroup H of a topological abelian group X is said to be characterized by
a sequence v = (vn) of characters of X if H = {x ∈ X : vn(x) → 0 in T}. We
study the basic properties of characterized subgroups in the general setting, extending results
known in the compact case. For a better description, we isolate various types of characterized
subgroups. Moreover, we introduce the relevant class of auto-characterized groups (namely,
the groups that are characterized subgroups of themselves by means of a sequence of non-null
characters); in the case of locally compact abelian groups, these are proven to be exactly the
non-compact ones. As a by-product of our results, we find a complete description of the
characterized subgroups of discrete abelian groups.
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1. Introduction

For a topological abelian group X , we denote by X̂ its dual group, that is the group of all characters
of X (i.e., continuous homomorphisms X → T). Following [1], for a sequence of characters
v = (vn) ∈ X̂N, let:

sv(X) := {x ∈ X : vn(x)→ 0}
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which is always a subgroup of X . A subgroup H of X is said to be characterized if H = sv(X) for
some v = (vn) ∈ X̂N.

Historically, characterized subgroups were studied exclusively in the case of the circle group T = R/Z
(see [2–5]), also in relation to Diophantine approximation, dynamical systems and ergodic theory
(see [3,6,7]; one can find more on this topic in the nice survey [8], as well as in the more recent [9–12]).
Some general results were then obtained in the case of metrizable compact abelian groups; for example,
it is known that every countable subgroup of a metrizable compact abelian group is characterized
(see [13, Theorem 1.4] and [14]), and it was pointed out in [14,15] that the metrizability is necessary, as a
compact abelian group with a countable characterized subgroup is necessarily metrizable. Only recently,
the case of general compact abelian groups was given full attention in [16], and a reduction theorem (to
the metrizable case) was obtained.

The few exceptions [8,17,18] only confirm the tendency to study the characterized subgroups
of T or, more recently, of compact abelian groups. To say the least, even the simplest case of
characterized subgroups of discrete abelian groups has never been considered in the literature to the
best of our knowledge.

The aim of these notes is to develop a general approach to characterized subgroups of arbitrary
topological abelian groups, collecting the basic properties so far established in the compact case.

We isolate three special types of characterized subgroups, namely T -characterized, K-characterized
andN -characterized subgroups (see Definition 3). Of those, T -characterized subgroups were introduced
by Gabriyelyan in [11], K-characterized subgroups were substantially studied by Kunen and his
coauthors in [13,19,20], while N -characterized subgroups, even if never introduced explicitly, have
been frequently used in the theory of duality in topological abelian groups (being nothing else but
the annihilators of countable sets of the dual group). One of the advantages of this articulation is
the possibility to establish some general permanence properties that fail to be true in the whole class
of characterized subgroups, but hold true in some of these subclasses. Moreover, we see that each
characterized subgroup is eitherN -characterized or coincides with the intersection of anN -characterized
subgroup and a K-characterized subgroup (see Corollary 3).

Inspired by the notion of T -characterized subgroup, we introduce also the stronger one of
TB-characterized subgroup (see Definition 4). The following implications hold, and none of them can
be reversed in general (see Section 5):

TB-characterized +3 T -characterized +3 K-characterized +3 characterized

proper dense characterized

KS

N -characterized

(∗)

OO

+3 closed characterized

KS

where (∗) holds under the assumption that the subgroup is closed and has infinite index (see Corollary 6).

In Section 6, we introduce the prominent class of auto-characterized groups (see Definition 5).
These are the topological abelian groups that are characterized subgroups of themselves by means
of a non-trivial sequence of characters (see (2)). The fact that compact abelian groups are not
auto-characterized is equivalent to the well-known non-trivial fact that the Bohr topology of an infinite
discrete abelian group has no non-trivial convergent sequences. Here, we generalize this fact by proving
that the property of being non-auto-characterized describes the compact abelian groups within the class
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of all locally compact abelian groups (see Theorem 3). Moreover, in the general case, we describe the
auto-characterized groups in terms of their Bohr compactification (see Theorem 5).

We study the basic properties of K- and of N -characterized subgroups respectively in
Sections 7 and 8. For the case of discrete abelian groups, which is considered here for the first time, we
give a complete description of characterized subgroups by showing that these are precisely the subgroups
of index at most c and that a subgroup is characterized precisely when it is K- and N -characterized (see
Corollary 16).

In Section 7, we describe when a closed subgroup of infinite index is both K- and N -characterized,
and we see that this occurs precisely when it is only N -characterized (see Theorem 6); then, we
consider the special case of open subgroups, proving that proper open subgroups of infinite index
(respectively, of finite index) are K-characterized if and only if they are characterized (respectively,
auto-characterized) (see Theorems 7 and 8). In particular, no proper open subgroup of a compact abelian
group is K-characterized.

In Section 8, extending a criterion for compact abelian groups given in [16], we show that for locally
compact abelian groups one can reduce the study of characterized subgroups to the metrizable case
(see Theorem 11). Moreover, we describe the closed characterized subgroups of the locally compact
abelian groups by showing that they are precisely the N -characterized subgroups (see Theorem 12). As
a consequence, we add other equivalent conditions to the known fact from [16] that a closed subgroup
of a compact abelian group is characterized if and only if it is Gδ, namely that the subgroup is K- and
N -characterized (see Theorem 13).

Section 9 concerns T -characterized subgroups of compact abelian groups. We establish a criterion
to determine when a characterized subgroup of a compact abelian group is not T -characterized (see
Theorem 15), which extends results from [11]. The impact on characterized subgroups of connected
compact abelian groups is discussed.

The final Section 10 contains various comments and open problems, both general and specific.

1.1. Notation and Terminology

The symbol c is used to denote the cardinality of continuum. The symbols Z, P, N and N+ are used
for the set of integers, the set of primes, the set of non-negative integers and the set of positive integers,
respectively. The circle group T is identified with the quotient group R/Z of the reals R and carries its
usual compact topology. Let π : R→ T be the canonical projection; the usual group norm ‖ − ‖ on T is
defined by ‖π(x)‖ = d(x,Z) for every x ∈ R. We denote by T+ the image of [−1/4, 1/4] in T. If m is
a positive integer, G[m] = {x ∈ G : mx = 0}, and Z(m) is the cyclic group of order m. Moreover, for
p ∈ P, we denote by Z(p∞) and Jp, respectively, the Prüfer group and the p-adic integers.

We say that an abelian group G is torsion if every element of G is torsion (i.e., for every x ∈ G, there
exists m ∈ N+, such that mx = 0). If M is a subset of G, then 〈M〉 is the smallest subgroup of G
containing M . We denote by Hom(G,T) the group of the homomorphisms G→ T.

For a topological space X = (X, τ), the weight w(X) of X is the minimum cardinality of a base for
τ . For a subset A of X , we denote by A

τ
the closure of A in (X, τ) (we write only A when there is no

possibility of confusion).
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A topological abelian group X is totally bounded if for every open subset U of 0 in X , there exists
a finite subset F of X , such that U + F = X . If X is totally bounded and Hausdorff, we say that X
is precompact. We denote by X̃ the two-sided completion of X; in case X is precompact, X̃ coincides
with the Weil completion.

For a subset A of X , the annihilator of A in X̂ is A⊥ = {χ ∈ X̂ : χ(A) = {0}}, and for a subset B
of X̂ , the annihilator of B in X is B⊥ = {x ∈ X : χ(x) = 0 for every χ ∈ B}.

We say that a sequence v ∈ X̂N is trivially null if there exists n0 ∈ N, such that vn = 0 for every
n ≥ n0, and we say that v is non-trivial if it is not trivially null.

2. Background on Topological Groups

2.1. Basic Definitions

Let G be an abelian group and H a subgroup of Hom(G,T). Let TH be the weakest group topology
on G, such that all elements of H are continuous with respect to TH ; then TH is totally bounded. The
other way around, Comfort and Ross proved that any totally bounded group topology is of this type
(see [21, Theorem 1.2]).

Theorem 1. [21, Theorems 1.2, 1.3 and 1.11, Corollary 1.4] Let G be an abelian group and H a
subgroup of Hom(G,T). Then, TH is totally bounded and:

(a) TH is Hausdorff if and only if H separates the points of G;
(b) TH is metrizable if and only if H is countable.

The following two notions will be often used in the paper.

Definition 1. A topological abelian group X is said to be:

(i) maximally almost periodic (MAP) if X̂ separates the points of X;
(ii) minimally almost periodic (MinAP) if X̂ = {0}.

We recall that two group topologies τ1 and τ2 on an abelian group X are compatible if they have the
same characters, that is (̂X, τ1) = (̂X, τ2).

If X = (X, τ) is a topological abelian group, denote by τ+ its Bohr topology, that is the finest
totally bounded group topology on X coarser than τ (indeed, τ+ = TX̂); we denote X endowed with
its Bohr topology also by X+, and we call τ+ also the Bohr modification of τ . Clearly, τ and τ+ are
compatible. Moreover,

(i) τ is MAP if and only if τ+ is Hausdorff;
(ii) τ is MinAP if and only if τ+ is indiscrete.

A subgroup H of (X, τ) is:

(a) dually closed if H is τ+-closed (or, equivalently, X/H is MAP);
(b) dually embedded if every χ ∈ Ĥ can be extended to X .
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Clearly, dually closed implies closed, since H ≤ H
τ ≤ H

τ+

.

Fact 1. Let X be a locally compact abelian group. Then:

(i) every closed subgroup H of X is dually closed, i.e., X/H is MAP;
(ii) in particular, every locally compact abelian group is MAP;

(iii) X and X+ have the same closed subgroups;
(iv) consequently, X is separable if and only if X+ is separable.

For a topological abelian group X and a subgroup L of X , the weak topology σ(X̂, L) of the dual X̂
is the totally bounded group topology of X̂ generated by the elements of L considered as characters of
X̂; namely, for every x ∈ L, consider ξx : X̂ → T defined by ξx(χ) = χ(x) for every χ ∈ X̂ . A local
base of σ(X̂, L) is given by the finite intersections of the sets ξ−1

x (U), where x ∈ L and U is an open
neighborhood of 0 in T. Clearly, if L1 ≤ L2, then σ(X̂, L1) ≤ σ(X̂, L2).

Note that the weak topology σ(X̂,X) is coarser than the compact-open topology on X̂ . If L separates
the points of X̂ (e.g., when L is dense in X or when L = X), then σ(X̂, L) is precompact.

Fact 2. If X is a reflexive topological abelian group, then σ(X̂,X) coincides with the Bohr topology
of X̂ .

We recall that a sequence v in an abelian groupG is a T -sequence (respectively, TB-sequence) if there
exists a Hausdorff (respectively, precompact) group topology τ on G, such that v is a null sequence in
(G, τ).

Lemma 1. Let X be a topological abelian group and v ∈ X̂N. Then:

(i) for a subgroup L of X , vn(x)→ 0 in T for every x ∈ L if and only if vn → 0 in σ(X̂, L);
(ii) if sv(X) is dense in X , then v is a TB-sequence.

Proof. (i) follows from the definition of σ(X̂, L).
(ii) As sv(X) is dense in X , then σ(X̂, sv(X)) is precompact. By item (i), vn → 0 in σ(X̂, sv(X));

hence, v is a TB-sequence.

Let G be a discrete abelian group. For a sequence v ∈ GN, the group topology:

σv := Tsv(Ĝ) (1)

is the finest totally bounded group topology on G, such that v is a null sequence in (G, σv).

Fact 3. [1, Lemma 3.1, Proposition 3.2] Let G be a discrete abelian group and v ∈ GN. The following
conditions are equivalent:

(i) v is a TB-sequence;
(ii) σv is Hausdorff;
(ii) sv(Ĝ) is dense in Ĝ.
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2.2. Useful Folklore Results

We recall the following basic properties that will be used in the paper. Although most of them are
well known, we offer proofs for the reader’s convenience.

Lemma 2. Let X be a topological abelian group and H a subgroup of X . Then:

(i) X̂/H is algebraically isomorphic to H⊥;
(ii) X̂/H⊥ is algebraically isomorphic to a subgroup of Ĥ .

Proof. (i) Let ψ : X̂/H → X̂ be defined by χ 7→ χ ◦ π, where π : X → X/H is the canonical
projection. Then, ψ is injective, and its image is H⊥.

(ii) Let ρ : X̂ → Ĥ be defined by χ 7→ χ �H . Then, ker ρ = H⊥, and so, we get the thesis.

The following fact follows from the equivalence of items (a) and (e) of [4, Exercise 3.8.25]. Since no
proofs are given there, we offer a proof for the reader’s convenience.

Lemma 3. A compact abelian group K is separable if and only if w(K) ≤ c.

Proof. The inequality w(K) ≤ c holds for every separable regular topological space K.
Assume that w(K) ≤ c. The discrete abelian group X = K̂ has size |X| = w(K) ≤ c. Consider

the embedding i : X → D(X), where D(X) is the divisible hull of X . Then, |D(X)| ≤ c and
D(X) =

⊕
i∈I Di, for some countable divisible abelian groups Di and a set of indices I with |I| ≤ c.

Therefore, î :
∏

i∈I D̂i → X̂ = K is a surjective continuous homomorphism, and each D̂i is a metrizable
compact abelian group. By the Hewitt–Marczewski–Pondiczery Theorem, since |I| ≤ c, we have that∏

i∈I D̂i is separable; hence, K is separable, as well.

Lemma 4. Let X be a precompact abelian group. Then, the singleton {0} is Gδ if and only if there
exists a continuous injection X → TN.

Proof. If there exists a continuous injection X → TN, then {0} is Gδ in X , as it is Gδ in TN.
Assume now that {0} =

⋂
n∈N Un, where each Un is an open subset of X , and we can assume that Un

is in the prebase of the neighborhoods of 0 in X . Therefore, for every n ∈ N, there exist vn ∈ X̂ and
an open neighborhood Vn of 0 in T containing no non-trivial subgroup of T, such that Un = v−1

n (Vn).
Then, {0} =

⋂
n∈N ker vn. Hence, j : X → TN defined by j(x) = (vn(x))n∈N is a continuous injective

homomorphism.

Theorem 2. Let X be a locally compact abelian group. Then, X is metrizable with |X| ≤ c if and only
if there exists a continuous injective homomorphism X → TN.

Proof. If there exists a continuous injective homomorphism X → TN, then clearly X is metrizable and
|X| ≤ |TN| = c.

Suppose now that X is metrizable and has cardinality at most c. It is well known (for example,
see [22]) that X = Rn × X0, where n ∈ N and X0 is a locally compact abelian group admitting an
open compact (metrizable) subgroup K. Clearly, there exist two continuous injective homomorphisms
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j1 : Rn ↪→ TN and j2 : K ↪→ TN. Therefore, j3 = (j1, j2) : Rn ×K → TN × TN ∼= TN is an injective
continuous homomorphism, too. Since TN is divisible and Rn×K is open inX , j3 extends continuously
to j̃3 : X → TN. Let π : X → X/(Rn ×K) be the canonical projection. Since X/(Rn ×K) is discrete,
there exists a continuous injective homomorphism j4 : X/(Rn ×K)→ TN. Let ϕ = j4 ◦ π : X → TN.

X
ϕ

&&
π
��

X/(Rn ×K)
j4

// TN

Let now j : X → TN × TN ∼= TN be defined by j(x) = (ϕ(x), j̃3(x)) for every x ∈ X . Then, j
is continuous, since ϕ and j̃3 are continuous. Moreover, j is injective, as j(x) = 0 for some x ∈ X

implies ϕ(x) = 0 and j̃3(x) = 0; therefore, x ∈ Rn ×K, and so, since j̃3 �Rn×K= j3 is injective, one
has x = 0.

3. General Permanence Properties of Characterized Subgroups

Let X be a topological abelian group, and denote by Char(X) the family of all subgroups of X that
are characterized.

We start by observing that:

if v ∈ X̂N is trivially null, then X = sv(X) (2)

The following are basic facts on characterized subgroups (see [1,13,16,23]); we give a proof for the
reader’s convenience.

Lemma 5. Let X be a topological abelian group and v ∈ X̂N. Then:

(i) for every subgroup J of X , sv∗(J) = sv(X) ∩ J , where v∗n = vn �J for every n ∈ N;
(ii) sv(X) = su(X) if u is any permutation of v;

(iii) Char(X) is stable under taking finite intersections;
(iv) sv(X) is an Fσδ-set (i.e., countable intersection of countable unions of closed subsets).

Proof. Items (i) and (ii) are obvious. To prove (iii), if u,v ∈ X̂N, define w = (wn), where
w2n = un and w2n+1 = vn for every n ∈ N; hence, su(X) ∩ sv(X) = sw(X). To prove (iv),
note that sv(X) =

⋂
m

⋃
k

⋂
n≥k Sn,m, where each Sn,m =

{
x ∈ X : ‖vn(x)‖ ≤ 1

m

}
is a closed subset

of X .

Now, we prove that, under suitable hypotheses, the relation of being a characterized subgroup
is transitive:

Proposition 1. Let X be a topological abelian group and X0, X1, X2 subgroups of X with
X0 ≤ X1 ≤ X2 and such that X1 is dually embedded in X2. If X0 ∈ Char(X1) and X1 ∈ Char(X2),
then X0 ∈ Char(X2).
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Proof. Let v ∈ X̂1

N
, such that X0 = sv(X1), and let w ∈ X̂2

N
, such that X1 = sw(X2). As X1 is

dually embedded in X2, vn extends to a character v∗n of X2 for every n ∈ N; so, let v∗ = (v∗n) ∈ X̂2

N
.

Define w∗ ∈ X̂2

N
by letting w∗2n = v∗n and w∗2n+1 = wn for every n ∈ N. Then, by Lemma 5(i),

sw∗(X2) = sv∗(X2) ∩ sw(X2) = sv∗(X2) ∩X1 = sv(X1) = X0,

so X0 ∈ Char(X2), as required.

Clearly, two compatible group topologies have the same characterized subgroups:

Lemma 6. If τ1 and τ2 are compatible group topologies on an abelian group X , then
Char(X, τ1) = Char(X, τ2).

In particular, for a topological abelian group (X, τ), since τ and its Bohr modification τ+ are
compatible, Char(X, τ) = Char(X, τ+).

4. The Γ-Radical

Definition 2. Let X be a topological abelian group. For a subset Γ of X̂ , define the Γ-radical of X by:

nΓ(X) :=
⋂
χ∈Γ

kerχ = Γ⊥.

Clearly, nΓ(X) is a closed subgroup of X .

The motivation for the choice of the term Γ-radical is the special case Γ = X̂ , when

n(X) := nX̂(X)

is usually called the von Neumann radical of X . Then, n(X) = {0} (respectively, n(X) = X) precisely
when X̂ separates the points of X (respectively, X̂ = {0}); in other words:

(i) X is MAP if and only if n(X) = {0};
(ii) X is MinAP if and only if n(X) = X .

Remark 1. Let X be a topological abelian group and Γ a subset of X̂ .

(i) If Γ = ∅, then nΓ(X) = X .
(ii) If Γ is countable, then nΓ(X) is a characterized subgroup of X (indeed, nΓ(X) = sv(X) for

v ∈ X̂N, such that each character in Γ appears infinitely many times in v).

For a given sequence v ∈ X̂N, the support Γv = {vn : n ∈ N} of v is the set of all characters
appearing in v. We abbreviate the notation of the Γv-radical by writing:

nv(X) := nΓv(X),

and we call this subgroup the v-radical of X .
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Lemma 7. Let X be a topological abelian group and v ∈ X̂N. Then:

(i) nv(X) ≤ sv(X);
(ii) nv(X) is dually closed;

(iii) nv(X) is characterized;
(iv) nv(X) is closed, and {0} is Gδ in X/nv(X) (so, nv(X) is Gδ);
(v) [X : nv(X)] ≤ c.

Proof. (i) and (ii) are clear from the definitions, and (iii) follows from Remark 1(ii).
(iv) Let ϕ : X → TN be defined by ϕ(x) = (v0(x), . . . , vn(x), . . . ) for every x ∈ X . Since {0} is Gδ

in TN, we conclude that {0} is Gδ in X/nv(X). Moreover, kerϕ = ϕ−1(0) = nv(X), so nv(X) is Gδ

in X .
(v) Since X/nv(X) is algebraically isomorphic to ϕ(X) ≤ TN and |TN| = c, we conclude that

[X : nv(X)] ≤ c.

Remark 2. Let X be a topological abelian group and v ∈ X̂N. Then, nv(X) is closed and Gδ in every
group topology on X that makes vn continuous for every n ∈ N. In particular, nv(X) is closed and Gδ

in every group topology on X compatible with the topology of X , so in the Bohr topology of X .

Lemma 7 gives a bound for the index of the characterized subgroups:

Corollary 1. Every characterized subgroup of a topological abelian group X has index at most c.

Proof. Let v ∈ X̂N. Since nv(X) ≤ sv(X) by Lemma 7(i); hence, [X : sv(X)] ≤ [X : nv(X)] ≤ c by
Lemma 7(v).

The set Γv can be partitioned as
Γv = Γ∞v ∪̇Γ0

v,

where:

(i) Γ∞v := {vn ∈ Γv : vn = vm for infinitely many m ∈ N};
(ii) Γ0

v := Γv \ Γ∞v .

In other words, Γ∞v is the set of all characters appearing infinitely many times in v, while each
character in its complement Γ0

v appears finitely many times in v. Clearly, v is a finitely many-to-one
sequence if and only if Γ∞v = ∅.

In case Γ∞v 6= ∅, let v∞ be the largest subsequence of v with Γv∞ = Γ∞v . Then, clearly,
sv∞(X) = nv∞(X).

In case Γ0
v is finite, the subsequence v∞ of v is cofinite, so sv(X) = sv∞(X). In other words, one

can safely replace v by v∞. This is why from now on, we shall always assume that:

either Γ0
v = ∅ or Γ0

v is infinite. (3)

If Γ0
v is infinite, we denote by v0 the subsequence of v such that Γv0 = Γ0

v. If Γ∞v 6= ∅, we have the
partition

v = v∞∪̇v0
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of v in the two subsequences v∞ and v0. Moreover, always Γ∞v0 = ∅, and so, if Γv0 is infinite
(equivalently, Γ0

v 6= ∅ by (3)), v0 is a finitely many-to-one sequence and sv0(X) = sw(X), where
w is a one-to-one subsequence of v0 such that Γw = Γv0 = Γ0

v.

We see now how we can obtain the subgroup of X characterized by v by considering separately the
v∞-radical of X and the subgroup of X characterized by v0.

Lemma 8. Let X be a topological abelian group and v ∈ X̂N satisfying (3).

(i) If Γ0
v = ∅, then v∞ = v, so Γ∞v 6= ∅ and sv(X) = nv∞(X).

(ii) If Γ0
v is infinite and Γ∞v 6= ∅, then sv(X) = sv0(X) ∩ nv∞(X).

Proof. (i) Since Γ0
v = ∅, we have sv(X) = sv∞(X), and as observed above, sv∞(X) = nv∞(X).

(ii) Since v∞ and v0 are subsequences of v, it follows that sv(X) ≤ sv0(X) ∩ nv∞(X). Let now
x ∈ sv0(X)∩nv∞(X). Since both v∞(x)→ 0 and v0(x)→ 0 and since v = v∞∪̇v0, we conclude that
v(x)→ 0, that is x ∈ sv(X). This concludes the proof.

For v = (vn) ∈ X̂N and m ∈ N, let

v(m) := (vn)n≥m. (4)

Note that nv(m)
(X) ≤ nv(m+1)

(X) for every m ∈ N.

5. A Hierarchy for Characterized Subgroups

The following definition introduces three specific types of characterized subgroups.

Definition 3. Let X be a topological abelian group. A subgroup H of X is:

(i) T -characterized if H = sv(X) where v ∈ X̂N is a non-trivial T -sequence;
(ii) K-characterized if H = sv(X) for some finitely many-to-one sequence v ∈ X̂N (i.e., Γ∞v = ∅);

(iii) N -characterized if H = nv(X) for some v ∈ X̂N.

In analogy to Definition 3(i), we introduce the following smaller class of characterized subgroups (see
also Problem 1).

Definition 4. A subgroup H of a topological abelian group X is TB-characterized if H = sv(X),
where v ∈ X̂N is a non-trivial TB-sequence.

The N -characterized subgroups are clearly closed, and they are always characterized as noted above.
Every TB-characterized subgroup is obviously T -characterized. Moreover, every T -characterized
subgroup is also K-characterized. Indeed, let H = sv(X), where v ∈ X̂N is a non-trivial T -sequence,
and without loss of generality, assume that vn 6= 0 for all n ∈ N; then, Γ∞v = ∅, that is v contains no
constant subsequences, and so, H is K-characterized.

Furthermore, proper dense characterized subgroups are TB-characterized by Lemma 1(ii),
so also T -characterized and, in particular, K-characterized, but they are not N -characterized
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(as N -characterized subgroups are necessarily closed). We shall see below that closed (even
open) subgroups need not be K-characterized in general. Denote by CharK(X) (respectively,
CharN(X), CharT (X), CharTB(X)) the family of all K-characterized (respectively, N -characterized,
T -characterized, TB-characterized) subgroups of the topological abelian group X . Then, we have the
following strict inclusions:

CharTB(X) ( CharT (X) ( CharK(X) ( Char(X) ) CharN(X).

We start giving some basic properties that can be proven immediately.

Corollary 2. LetX be a topological abelian group andX0,X1,X2 subgroups ofX withX0 ≤ X1 ≤ X2

and such that X1 is dually embedded in X2.

(i) If X0 ∈ CharK(X1) and X1 ∈ CharK(X2), then X0 ∈ CharK(X2).
(ii) If X0 ∈ CharN(X1) and X1 ∈ CharN(X2), then X0 ∈ CharN(X2).

Proof. (i) It suffices to note that if in the proof of Proposition 1, v is one-to-one and w is one-to-one,
then w∗ is finitely many-to-one.

(ii) It suffices to note that if in the proof of Proposition 1, Γv = Γ∞v and Γw = Γ∞w , then also
Γw∗ = Γ∞w∗ .

By Lemma 8, we have directly the following:

Corollary 3. Every characterized subgroup of a topological abelian group X is either N -characterized
or it is the intersection of an N -characterized subgroup of X and a K-characterized subgroup of X .

The following stability property is clear for N -characterized subgroups, while it is not known for
characterized subgroups.

Lemma 9. Countable intersections of N -characterized subgroups are N -characterized.

The next correspondence theorem was proven in [16] for characterized subgroups of compact
abelian groups.

Proposition 2. Let X be a topological abelian group and F a closed subgroup of X , and let π :

X → X/F be the canonical projection. If H is a characterized (respectively, K-characterized,
N -characterized, T -characterized) subgroup of X/F , then π−1(H) is a characterized (respectively,
K-characterized, N -characterized, T -characterized) subgroup of X .

Proof. Let u = (un) ∈ X̂/F
N

, and consider π̂ : X̂/F → X̂ . For every n ∈ N, let vn = π̂(un) =

un ◦ π ∈ F⊥ ≤ X̂ and v = (vn).
(i) Assume that H = su(X/F ). Then, π−1(H) = sv(X), as x ∈ sv(X) if and only if

vn(x) = un(π(x))→ 0, and this occurs precisely when π(x) ∈ H .
(ii) Assume now that H is K-characterized, that is assume that H = su(X/F ) and that Γ∞u = ∅. By

(i), π−1(H) = sv(X), and moreover, Γ∞v = ∅.
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(iii) If H is N -characterized, then assume that H = nu(X/F ). By (i), π−1(H) = sv(X),
and moreover, π−1(H) = nv(X), since vn(x) = un(π(x)) = 0 for every n ∈ N precisely when
π(x) ∈ H = nu(X/F ).

(iv) If H is T -characterized, that is if H = su(X/F ) and u is a T -sequence, it remains to verify that
v is a T -sequence, as well, since π−1(H) = sv(X) by (i). Let τ be a Hausdorff group topology on X̂/F ,
such that un → 0 in (X̂/F , τ). By Lemma 2(i), one can identify X̂/F with the subgroup F⊥ of X̂ by
the algebraic monomorphism ψ : X̂/F → X̂ defined by χ 7→ χ ◦ π. Let τ ∗ be the group topology on
X̂ having as a local base at 0 the open neighborhoods of 0 in (X̂/F , τ). Then, τ ∗ is a Hausdorff group
topology on X̂ and vn → 0 in (X̂, τ ∗), as vn = ψ(un) ∈ F⊥ for every n ∈ N by definition.

Lemma 10. Let X be a topological abelian group and H a subgroup of X , such that n(X) ≤ H .
Then, H is characterized (respectively, K-characterized, N -characterized, T -characterized) if and only
if H/n(X) is characterized (respectively, K-characterized, N -characterized, T -characterized).

Proof. Let H = sv(X) for some v ∈ X̂N, and denote by π : X → X/n(X) the canonical projection.
For every n ∈ N, since n(X) ≤ ker vn, the character vn factorizes as vn = un ◦ π, where un ∈ X̂/n(X).

Then, H/n(X) = su(X/n(X)). Vice versa, if H/n(X) = su(X/n(X)) for some u ∈ X̂/n(X)
N

, let
vn = un ◦ π for every n ∈ N. Hence, H = sv(X). Moreover, v is a finitely many-to-one sequence
if and only if u is a finitely many-to-one sequence, so H is K-characterized if and only if H/n(X) is
K-characterized. Similarly, Γ0

u is finite, precisely when Γ0
v is finite; hence, H is N -characterized if and

only if H/n(X) is N -characterized.
It remains to check that v is a T -sequence precisely when u is a T -sequence. This follows from the

fact that the natural homomorphism X̂/n(X) → X̂ sending (the members of) u to (the members of) v
is an isomorphism, so certainly preserving the property of being a T -sequence.

The following lemma gives equivalent conditions for a subgroup to be characterized.

Lemma 11. Let X be a topological abelian group and H a subgroup of X . The following conditions
are equivalent:

(i) H ∈ Char(X);
(ii) there exists a closed subgroup F of X , such that F ≤ H and H/F ∈ Char(X/F );

(iii) there exists v ∈ X̂N, such that for every closed F ≤ nv(X), one has thatH/F = su(X/F ), where
u = (un), and each un is the factorization of vn through the canonical projection π : X → X/F .

Proof. (iii)⇒(ii) Take F = nv(X).
(ii)⇒(i) Since F ≤ H , one has H = π−1(H/F ), and one can conclude, by Proposition 2.
(i)⇒(iii) Let H = sv(X) for some v ∈ X̂N and F ≤ nv(X). Let π : X → X/F be the canonical

projection. For every n ∈ N, let un be the character of X/F defined by π(x) 7→ vn(x). Then, un is
well defined, since F ≤ nv(X) ≤ ker vn. Hence, un ◦ π = vn for every n ∈ N, and H/F = su(X/F ).
Indeed, for every h ∈ H , we have un(π(h)) = vn(h)→ 0, and hence, H/F ≤ su(X/F ). Conversely, if
π(x) ∈ su(X/F ), then vn(x) = un(π(x))→ 0. Hence, x ∈ H , and so, π(x) ∈ H/F .
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6. Auto-Characterized Groups

The following consequence of [16, Proposition 2.5] motivates the introduction of the notion of
auto-characterized group (see Definition 5).

Proposition 3. Let X be a compact abelian group. Then, sv(X) = X for some v ∈ X̂N if and only if
the sequence v is trivially null.

Proof. It is clear from (2) that sv(X) = X if v is trivially null. Assume now that X = sv(X)

for some v ∈ X̂N. By [16, Proposition 2.5], being sv(X) compact, there exists m ∈ N, such that
X = sv(X) = nv(m)

(X), and so, vn = 0 for all n ≥ m.

If one drops the compactness, then the conclusion of Proposition 3 may fail, as shown in the
next example.

Example 1.

(i) LetN be an infinite countable subgroup of T. As mentioned in the Introduction,N is characterized
in T; hence, N = sv(T) for a non-trivial sequence v ∈ ZN. If u = v �N , then u is non-trivial
(since N is dense in T), and su(N) = N .

(ii) Let X = R, let π : R → T be the canonical projection and let v = (vn) ∈ R̂N, such that v0 = 0

and vn(x) = π(x
n
) ∈ T for every x ∈ R and n ∈ N+. Obviously, sv(R) = R, even though v

is non-trivial.
(iii) Let X = Qp, where p is a prime. For every n ∈ N, let vn = pn ∈ Q̂p. Obviously, sv(Qp) = Qp,

even though v is non-trivial.

Motivated by Proposition 3 and Example 1, we give the following:

Definition 5. A topological abelian group X is auto-characterized if X = sv(X) for some non-trivial
v ∈ X̂N.

Items (ii) and (iii) of Example 1 show that R and Qp are auto-characterized.

Remark 3. (i) Let X be an auto-characterized group, so let v ∈ X̂N be non-trivial and such that
X = sv(X). Then, there exists a one-to-one subsequence u of v, such that un 6= 0 for every
n ∈ N and X = su(X).
Indeed, if χ ∈ Γ∞v , then X = sv(X) ≤ kerχ, and so, χ = 0; therefore, Γ∞v is either empty or {0}.
Since v is non-trivial, Γ0

v is infinite; hence, X = sv(X) = sv0(X) by Lemma 8(ii). Let u be the
one-to-one subsequence of v0, such that Γu = Γv0; therefore, X = su(X).

(ii) The above item shows that auto-characterized groups are K-characterized subgroups of
themselves. However, one can prove actually that they are T -characterized subgroups of
themselves (indeed, TB-characterized subgroups of themselves; see [24]).
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6.1. Basic Properties of Auto-Characterized Groups

We start by a direct consequence of Lemma 10:

Lemma 12. Let X be a topological abelian group and H a subgroup of X , such that n(X) ≤ H . Then,
H is auto-characterized if and only if H/n(X) is auto-characterized.

The next proposition, describing an auto-characterized group in terms of the null sequences of its
dual, follows from the definitions and Lemma 1:

Proposition 4. A topological abelian group X is auto-characterized if and only if (X̂, σ(X̂,X)) has
a non-trivial null sequence v (in such a case, X = sv(X)).

In the next lemma, we see when a subgroup of an auto-characterized group is auto-characterized, and
vice versa.

Lemma 13. Let X be a topological abelian group and H a subgroup of X .

(i) If X is auto-characterized and H is dense in X , then H is auto-characterized.
(ii) IfH is auto-characterized and one of the following conditions holds, thenX is auto-characterized:

(a) H is a topological direct summand of X;
(b) H is open and has a finite index.

Proof. (i) Let X = sv(X) for v ∈ X̂ with vn 6= 0 for every n ∈ N, and let un = vn �H∈ Ĥ . Then, each
un is non-zero and H = su(H).

(ii) Let H = sv(H) for some v ∈ ĤN with vn 6= 0 for every n ∈ N.
(a) Let X = H × Z. For every n ∈ N, let un be the unique character of X that extends vn and such

that un vanishes on Z. Then, un 6= 0 for every n ∈ N, and X = su(X).
(b) Arguing by induction, we can assume without loss of generality that [X : H] = p is prime. Let

X = H + 〈x〉 with x 6∈ H and px ∈ H . If px = 0, then H is an open direct summand of X , so
H is also a topological direct summand of X; hence, item (a) applies. Assume now that px 6= 0, and
let an = vn(px) for every n ∈ N. If an = 0 for infinitely many n, extend vn to un ∈ X̂N for those
n by letting un(x) = 0. Then, obviously, the sequence u obtained in this way is not trivially null and
X = su(X), so X is auto-characterized. Assume now that an 6= 0 for infinitely many n ∈ N; for those
n, pick an element bn ∈ T with pbn = an, and extend vn by letting un(h + kx) = vn(h) + kbn. Let
wn = pun. Then, wn(x) = an 6= 0, so w is not trivially null. Moreover, X = su(X) as pX ≤ H .

Lemma 14. Let X be a topological abelian group and v ∈ X̂N. If F is a subgroup of X , such that
F ≤ sv(X) and F is not auto-characterized, then F ≤ nv(m)

(X) for some m ∈ N.

Proof. Let un = vn �F for every n ∈ N and u = (un) ∈ F̂N. Then, F = su(F ), so the sequence u must
be trivially null. Let m ∈ N, such that un = 0 for every n ≥ m. Therefore, F ≤ nv(m)

(X).

The following consequence of Lemma 14 is a generalization of Lemma 2.6 in [16], where the group
X is compact.
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Corollary 4. Let X be a topological abelian group, F and H subgroups of X , such that F is compact
and F ≤ H . Then, H/F ∈ Char(X/F ) if and only if H ∈ Char(X).

Proof. Denote by π : X → X/F the canonical projection. If H/F is a characterized subgroup of X/F ,
then H = π−1(H/F ) is a characterized subgroup of X by Proposition 2. Assume now that H = sv(X)

for some v ∈ X̂N. Since F is compact, Proposition 3 implies that F is not auto-characterized. By
Lemma 14, F is contained in nv(m)

(X) for a sufficiently large m ∈ N. Let π′ : X/F → X/nv(m)
(X) be

the canonical projection and q = π′ ◦ π, then q−1(H/nv(m)
(X)) = H = sv(X) = sv(m)

(X). Therefore,
one deduces from Lemma 11 that H/nv(m)

(X) is a characterized subgroup of X/nv(m)
(X). Hence, by

Proposition 2, H/F = (π′)−1(H/nv(m)(X)) ∈ Char(X/F ).

The argument of the above proof fails in case F is not compact. For example, take F = H = X = N ,
where N is as in Example 1; then, one cannot conclude that v �F is trivially null and, hence, that F is
contained in nv(m)

(X).

6.2. Criteria Describing Auto-Characterized Groups

Here, we give two criteria for a group to be auto-characterized. We start below with a criterion for
locally compact abelian groups, while a general one, in terms of the Bohr compactification, will be given
at the end of the section.

We established in Proposition 3 that no compact abelian group is auto-characterized; now, we prove
in Theorem 3 that this property describes the compact abelian groups within the larger class of all locally
compact abelian groups. This follows easily from Lemma 13(ii) for the locally compact abelian groups
that contain a copy of R, while the general case requires the following deeper argument.

Theorem 3. If X is a locally compact abelian group, then X is auto-characterized if and only if X is
not compact.

Proof. If X is auto-characterized, then X is not compact according to Proposition 3. Assume now
that X is not auto-characterized. Then, by Fact 2 and Proposition 4, the dual X̂ has no non-trivial null
sequences in its Bohr topology. However, since X̂ is locally compact, it has the same null sequences as
its Bohr modification X̂+. Therefore, X̂ is a locally compact group without non-trivial null sequences.
We have to conclude that X is compact.

This follows from the conjunction of several facts. The first one is the deep result that non-discrete
locally compact abelian groups have non-trivial null sequences. (This follows, in turn, from that fact that
a non-discrete locally compact abelian group either contains a line R or an infinite compact subgroup.
Since compact groups are dyadic compacts, i.e., continuous images of Cantor cubes, they have non-trivial
null sequences.) Now, we can conclude that the locally compact group X̂ is discrete. It is a well known
fact that this implies the compactness of X .

Remark 4. An alternative argument to prove that non-discrete locally compact abelian groups have
non-trivial null sequences is based on a theorem by Hagler, Gerlits and Efimov (proven independently
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also by Efimov in [25]). It states that every infinite compact group K contains a copy of the Cantor cube
{0, 1}w(K), which obviously has plenty of non-trivial null sequences.

In order to obtain a general criterion describing auto-characterized groups we need another relevant
notion in the theory of characterized subgroups:

Definition 6. [1] Let X be a topological abelian group and H a subgroup of X . Let:

gX(H) =
⋂{

sv(X) : v ∈ X̂N, H ≤ sv(X)
}
.

A subgroup H of X is said to be:

(i) g-dense if gX(H) = X;
(ii) g-closed if gX(H) = H .

We write simply g(H) when there is no possibility of confusion. Clearly, g(H) is a subgroup
of X containing H . Moreover, g({0}) is the intersection of all characterized subgroups of X and
g({0}) ≤ n(X).

Remark 5. Let X = (X, τ) be a topological abelian group and H a subgroup of X .

(i) If X1 is another topological abelian group and φ : X → X1 a continuous homomorphism, then
φ(gX(H)) ≤ gX1

(φ(H)) (see [1, Proposition 2.6]).

(ii) Moreover, gX(H) ≤ H
τ+

. Indeed, H
τ+

=
⋂
{kerχ : χ ∈ X̂, H ≤ kerχ} and

kerχ = nv(X) = sv(X) for v ∈ X̂N with Γv = Γ∞v = {χ} (i.e., v is the constant sequence
given by χ). Item (i) says, in terms of [15,26], that g is a closure operator in the category of
topological abelian groups. The inclusion gX(H) ≤ H

τ+

says that g is finer than the closure
operator defined by H 7→ H

τ+

.
(iii) If H is dually closed, then H is g-closed by item (ii).
(iv) If (X, τ) is a locally compact abelian group, then every closed subgroup of (X, τ) is dually closed,

and so, (ii) implies that g(H) ≤ H
τ

for every subgroup H of X . Therefore, g-dense subgroups
are also dense in this case.

(v) The inclusion g(H) ≤ H may fail if the groupH is not MAP (e.g., ifX is MinAP, then g(H) = X

for every H , while X may have proper closed subgroups).

The next result shows that the auto-characterized precompact abelian groups are exactly the dense
non-g-dense subgroups of the compact abelian groups.

Theorem 4. Let X be a precompact abelian group. The following conditions are equivalent:

(i) X is auto-characterized;
(ii) X is not g-dense in its completion X̃ .

Proof. (ii)⇒(i) Assume that X is not g-dense in K := X̃ . Then, there exists a sequence v ∈ K̂N, such
that X ≤ sv(K) < K. By Proposition 3 (see also Remark 3), we may assume without loss of generality
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that vn 6= 0 for every n ∈ N. Let un = vn �X for every n ∈ N. Since X is dense in K, clearly un 6= 0

for every n ∈ N. Moreover, X = su(X); hence, X is auto-characterized.
(i)⇒(ii) Suppose that X is auto-characterized, say X = su(X) for u ∈ X̂N, such that un 6= 0 for

every n ∈ N. For every n ∈ N, let vn ∈ K̂ be the extension of un to K. Then, X ≤ sv(K) < K by
Proposition 3, so X is not g-dense in K.

If X is a MAP abelian group, then τ+ is precompact, and the Bohr compactification of X is rX :

X → bX , where bX is the completion of (X, τ+) and rX is an injective homomorphism. If X is not
MAP, then n(X) 6= {0}. Consider the quotient X/n(X), which is a MAP group. Then, take the Bohr
compactification rX/n(X) : X/n(X)→ b(X/n(X)). The Bohr compactification of X is rX : X → bX ,
where bX := b(X/n(X)) and rX = rX/n(X) ◦ π, where π : X → X/n(X) is the canonical projection.

Corollary 5. Let X be a MAP abelian group. The following conditions are equivalent:

(i) X is auto-characterized;
(ii) X is not g-dense in bX .

Proof. Since X is MAP, X embeds in bX . By Lemma 6, X and X+ have the same characterized
subgroups. Moreover, X+ is precompact, and by definition, bX is the completion of X+. Then, it
suffices to apply Theorem 4.

Theorem 5. Let X be a topological abelian group. The following conditions are equivalent:

(i) X is auto-characterized;
(ii) rX(X) is not g-dense in bX .

Proof. SinceX is auto-characterized precisely whenX/n(X) is auto-characterized by Lemma 12, apply
Corollary 5 to conclude.

7. K-Characterized Subgroups

We start by recalling [23, Lemma 3.19]: if X is a compact abelian group and v ∈ X̂N is a one-to-one
sequence, then sv(X) has Haar measure zero in X . Since K-characterized subgroups are characterized
by finitely many-to-one sequences (which obviously contain a one-to-one subsequence), this result
applies to K-characterized subgroups and gives the following (formally weaker) result, which will be
necessary and more convenient to apply in the current paper:

Lemma 15. If X is a compact abelian group and H ∈ CharK(X), then H has Haar measure zero
(hence, [X : H] is infinite). In particular, no open subgroup of X is K-characterized.

Lemma 15 cannot be inverted; take, for example, the constant sequence u = (1) in T̂N.

Remark 6. If X is a connected compact abelian group, then the conclusion of Lemma 15 holds for all
non-trivial sequences in X̂ , since every measurable proper subgroup H of X has measure zero (indeed,
X is divisible, so the proper subgroup H of X has infinite index; hence, the measure of H must be 0, as
X has measure 1).
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Example 2. Here, we provide examples of non-auto-characterized non-compact abelian groups.

(i) A relatively simple example can be obtained by taking a dense non-measurable subgroup X of
a connected compact abelian group K. Since we intend to deduce that X is not auto-characterized
by using Theorem 4, we have to check that X is g-dense in K. Indeed, every measurable proper
subgroup of K has measure zero as noted in Remark 6; therefore, every proper characterized
(hence, every non-g-dense) subgroup of K has measure zero. Therefore, X is not contained in any
proper characterized subgroup of K, i.e., X is g-dense in K.

(ii) More sophisticated examples of g-dense subgroups of metrizable compact abelian groups were
given in [27] (under the assumption of Martin Axiom) and in [19] (in ZFC). These groups have
the additional property of being of measure zero (so that the above elementary argument cannot be
used to verify the g-density).

7.1. When Closed Subgroups of Infinite Index are K-Characterized

The next theorem gives a sufficient condition (see item (iii)) for a closed subgroup of infinite index H
to be K-characterized. This condition implies, as a by-product, that H is also N -characterized.

The easier case of open subgroups will be tackled in Theorem 7, by applying Theorem 6.

Theorem 6. Let X be a topological abelian group and H a closed subgroup of X of infinite index. The
following conditions are equivalent:

(i) H ∈ CharK(X) ∩ CharN(X);
(ii) H ∈ CharN(X);

(iii) X/H is MAP, and (X̂/H, σ(X̂/H,X/H)) is separable.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii) Since H is N -characterized, then H is dually closed by Lemma 7(ii), that is X/H is MAP.

Let H = nv(X) for some v ∈ X̂N, and let π : X → X/H be the canonical projection. Since kerπ =

H ≤ ker vn for every n ∈ N, one can factorize vn : X → T through π, i.e., write vn = v̄n ◦ π for
appropriate v̄n ∈ X̂/H . It remains to verify that D = {v̄n : n ∈ N} is dense in (X̂/H, σ(X̂/H,X/H)).
To this end, let ȳ = π(y) ∈ X/H; if ξȳ(D) = {0}, then v̄n(ȳ) = vn(y) = 0, and so, y ∈ H , that is,
ȳ = 0.

(iii)⇒(i) Let Y = X/H , equipped with the quotient topology. By hypotheses, Y is infinite and
MAP, while Ŷ is an infinite topological abelian group with a countably infinite dense subgroup D.
According to Proposition 2 applied to the canonical projection π : X → Y , it suffices to prove that
{0} is a K-characterized subgroup of Y . Let D = {vn : n ∈ N} be a one-to-one enumeration of
D and v = (vn). To prove that sv(Y ) = {0}, we have to show that for every non-zero y ∈ Y ,
there exists a neighborhood U of 0 in T, such that vn(y) 6∈ U for infinitely many n ∈ N. Actually,
we show that U = T+ works for all non-zero y ∈ Y . In fact, for every y ∈ Y \ {0}, one has that
Ny := {d(y) : d ∈ D} = {vn(y) : n ∈ N} is a non-trivial subgroup of T, as Y is MAP and y 6= 0.

Let y ∈ Y \ {0}. If Ny is infinite, then Ny is dense in T; so, Ny \U is infinite, and we are done. Now,
consider the case when Ny is finite. As Ny 6= {0} and U contains no non-trivial subgroups of T, there
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exists a ∈ Ny, such that a 6∈ U . Then, the map fy : D → T defined by fy(d) = d(y) is a homomorphism
with fy(D) = Ny finite. Therefore, K := ker fy is a finite-index subgroup of D, so K is infinite. Let
a = vm(y) for some m ∈ N. Then, vm + K = {d ∈ D : d(y) = a} is infinite, as well. This means that
vn(y) = a 6∈ U for infinitely many n (namely, those n for which vn ∈ vm + K). Therefore, vn(y) 6→ 0,
and so, y 6∈ sv(Y ).

Finally, let us note that the above argument shows also that H is N -characterized, as obviously
H ≤ nv(X).

The following is an obvious consequence of Theorem 6.

Corollary 6. Let X be a topological abelian group and H a closed subgroup of X of infinite index.
If H ∈ CharN(X), then H ∈ CharK(X).

Next, we rewrite Theorem 6 in the case of locally compact abelian groups.

Corollary 7. Let X be a locally compact abelian group and H a subgroup of X . Then, H ∈ CharN(X)

if and only if H is closed and X̂/H is separable.

Proof. As both conditions imply thatH is closed, we assume without loss of generality thatH is closed.
SinceX/H and X̂/H are locally compact abelian groups, X/H is MAP, and the Bohr topology on X̂/H
coincides with σ(X̂/H,X/H) by Fact 2, so the separability of X̂/H is equivalent to the separability of

X̂/H
+

by Fact 1. If H has a infinite index in X , apply Theorem 6 to conclude. If H has a finite index
in X , then the equivalence is trivially satisfied; indeed, H is a finite intersection of kernels of characters,
so it is N -characterized, and X̂/H is finite, so separable.

As a consequence of Theorem 6, we find a sufficient condition for an open subgroup of infinite index
to be K-characterized:

Theorem 7. LetX be a topological abelian group andH an open subgroup ofX of infinite index. Then,
the following conditions are equivalent:

(i) H ∈ Char(X);
(ii) H ∈ CharK(X);

(iii) [X : H] ≤ c;
(iv) X̂/H is separable.

Proof. (ii)⇒(i) is clear, and (i)⇒(iii) is Corollary 1.
(iii)⇒(iv) Since X̂/H is a compact abelian group of weight at most c, it is separable by Lemma 3.
(iv)⇒(ii) As [X : H] is infinite, we can apply Theorem 6 to conclude that H is K-characterized.

The following is another direct consequence of Theorem 6.

Corollary 8. If X is a metrizable compact abelian group, then every closed non-open subgroup of X is
K-characterized.
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7.2. When Closed Subgroups of Finite Index are K-Characterized

We start by giving the following useful technical lemma.

Lemma 16. LetX be a topological abelian group andH an open subgroup ofX , such thatX = H+〈x〉
for some x ∈ X \H . If H is auto-characterized, then H ∈ CharK(X).

Proof. Let u ∈ ĤN, such that H = su(H). By Remark 3, we can assume that u is one-to-one and that
un 6= 0 for every n ∈ N.

Assume first that H ∩ 〈x〉 = {0}. If o(x) is infinite, then fix an irrational number α ∈ R, and for
every n ∈ N, let vn(x) = α+Z and vn(h) = un(h) for every h ∈ H . If o(x) = k is finite, then for every
n ∈ N, let vn(x) = 1

k
+ Z and vn(h) = un(h) for every h ∈ H . In both cases, it is straightforward to

prove that H = sv(X). Moreover, since u is one-to-one, then also v is one-to-one.
Suppose now that H ∩ 〈x〉 = 〈mx〉 for some m ∈ N, with m ≥ 1. As x 6∈ H , one has m ≥ 2.
For every n ∈ N, let an = un(mx) ∈ T. Since un(mx)→ 0, there exists n0, such that ‖an‖ < 1

m2 for
every n ≥ n0. As su(n0)

(H) = H , we shall assume for simplicity that ‖an‖ < 1
m2 every n ∈ N.

Claim 1. For every a ∈ T with ‖a‖ < 1
m2 , there exists b ∈ T, such that

mb = a and ‖kb‖ > 1

m2
for every k ∈ N, 1 ≤ k < m. (5)

Proof. We tackle the problem in R, that is identifying T with [0, 1). First, assume that 0 ≤ a < 1
m2 ,

and let:
b =

a

m
+

1

m

Then, mb = a+ 1 ≡Z a and 1
m
≤ b ≤ 2

m
. Let now k ∈ N with 1 ≤ k ≤ m− 1, then:

1

m2
<

k

m
≤ kb = k

a

m
+
k

m
<
m− 1

m2
+
m− 1

m
= 1− 1

m2
(6)

Therefore, ‖kb‖ > 1
m2 . This establishes condition (5) in the current case.

It remains to consider the case m2−1
m2 < a < 1. Let a∗ = 1 − a, i.e., a∗ = −a in T. Then, obviously,

‖a∗‖ < 1
m2 and 0 ≤ a∗ < 1

m2 . Hence, by the above case applied to a∗, there exists b∗ ∈ T satisfying
condition (5) with −a in place of a (i.e., mb∗ = −a). Let b = −b∗ ∈ T. Then, condition (5) holds true
for b and a, as ‖k(−b)‖ = ‖kb‖ for every k ∈ N with 1 ≤ k < m.

For every n ∈ N, apply Claim 1 to an to get bn as in Equation (5), then define vn : X → T by letting
vn(x) = bn for every n ∈ N and vn(h) = un(h) for every h ∈ H . As un(mx) = vn(mx) = mvn(x) =

mbn = an, this definition is correct. Moreover, since H is open in X , vn ∈ X̂ . Since u is one-to-one,
then v = (vn) is one-to-one, too.

We show that
vn(kx)→ 0 for k ∈ N if and only if k ∈ mZ. (7)

In fact, if k = k′m for some k′ ∈ N,

vn(kx) = k′vn(mx) = k′an → 0.
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The other way around, assume that k = k′m+ r, where k′ ∈ N and 1 ≤ r ≤ m− 1. Then,

vn(kx) = k′vn(mx) + rvn(x) = k′an + rbn 6→ 0

since k′an → 0 and ‖rbn‖ ≥ 1
m2 by Equation (5).

We deduce finally that H = sv(X). Indeed, H = su(H) ≤ sv(X), so it remains to prove that
sv(X) ≤ H . To this end, let y ∈ X \H , that is y = h+kx for some h ∈ H and k ∈ N with 1 ≤ k < m.
Then,

vn(y) = vn(h+ kx) = un(h) + vn(kx).

Since h ∈ H = su(H), that is, un(h) → 0, while vn(kx) 6→ 0 by condition (7), we conclude that
vn(y) 6→ 0, that is, y 6∈ sv(X). Hence, H = sv(X).

Every open finite-index subgroup is a finite intersection of kernels of characters, so it is
N -characterized. In the next theorem we describe when a proper open finite-index subgroup is
K-characterized.

Theorem 8. Let X be a topological abelian group and H a proper open subgroup of X of finite index.
Then, H ∈ CharK(X) if and only if H is auto-characterized.

Proof. Assume thatH ∈ CharK(X). We can writeH = su(X) for u ∈ X̂N one-to-one. Let vn = un �H
for every n ∈ N. Then, the map un 7→ vn is finitely many-to-one, as X/H is finite. Therefore, v = (vn)

is finitely many-to-one. Obviously, H = sv(H), so H is auto-characterized.
Now, assume thatH is auto-characterized. SinceH has finite index inX , there exist x1, . . . , xn ∈ X ,

such that X = H + 〈x1, . . . , xn〉 and that, letting Xi := H + 〈x1, . . . , xi〉 for i = 1, . . . , n and
X0 := H , the subgroupXi−1 is a proper subgroup ofXi for i = 1, . . . , n. We shall prove by induction on
i = 1, . . . , n, that

H ∈ CharK(Xi). (8)

As X = Xn, this will give H ∈ CharK(X), as desired.
Before starting the induction, we note that according to Lemma 13(ii), all subgroups Xi, for

i = 1, . . . , n, are auto-characterized, as each Xi−1 is open in Xi. For i = 1, the assertion in condition
(8) follows from Lemma 16. Assume that 1 < i ≤ n and condition (8) holds true for i − 1, i.e.,
H ∈ CharK(Xi−1). Since Xi−1 is open in Xi, again Lemma 16 applied to Xi = Xi−1 + 〈xi〉 gives that
Xi−1 ∈ CharK(Xi). As H ∈ CharK(Xi−1) by our inductive hypothesis, we conclude with Corollary
2(i) that H ∈ CharK(Xi).

7.3. Further Results on K-Characterized Subgroups

The next corollary resolves an open question from [28]:

Corollary 9. Let X be an infinite discrete abelian group and H a subgroup of X . The following
conditions are equivalent:

(i) H ∈ Char(X);
(ii) H ∈ CharK(X);
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(iii) [X : H] ≤ c.

Proof. (ii)⇒(i) is clear, and (i)⇒(iii) is Corollary 1.
(iii)⇒(ii) If [X : H] is infinite, then H ∈ Char(X) by Theorem 7. Therefore, assume that [X : H] is

finite, then H is infinite, and hence, H is auto-characterized by Theorem 3; therefore, H ∈ CharK(X)

by Theorem 8.

We give now sufficient conditions for a non-closed characterized subgroup to be K-characterized.

Theorem 9. Let X be a topological abelian group and H ∈ Char(X) a non-closed subgroup of X ,
such that:

(i) X/H is MAP, and (X̂/H, σ(X̂/H,X/H)) is separable;
(ii) if 1 < [X : H] < ω, then H is auto-characterized.

Then, H ∈ CharK(X).

Proof. As H 6= H is dense in H and obviously H ∈ Char(H), we deduce that H ∈ CharK(H),
as dense characterized subgroups are TB-characterized by Lemma 1(ii). If H = X , we are done.
Therefore, assume that H is proper.

Our aim now is to apply Corollary 2, so we need to check that H ∈ CharK(X). If H has finite index
in X , then H is auto-characterized by hypothesis, and so, Theorem 8 yields H ∈ CharK(X). If H has
infinite index in X , then H ∈ CharK(X) by Theorem 6.

Corollary 10. LetX be a divisible topological abelian group andH ∈ Char(X) a non-closed subgroup

of X , such that H is dually closed. If (X̂/H, σ(X̂/H,X/H)) is separable, then H ∈ CharK(X). In

particular, H ∈ CharK(X) whenever X̂/H is separable.

Proof. The first part of our hypothesis entails thatX/H is MAP. Moreover, divisible topological abelian
groups have no proper closed subgroup of finite index. Therefore, the first assertion follows directly from
Theorem 9.

The topology σ(X̂/H,X/H) of the dual X̂/H is coarser than the compact-open topology of X̂/H ,

so that the separability of X̂/H yields the separability of (X̂/H, σ(X̂/H,X/H)). Hence, the second
assertion can be deduced from the first one.

In the case of connected locally compact abelian groups, one obtains the following
stronger conclusion:

Corollary 11. Let X be a connected locally compact abelian group. Then:

CharK(X) =

Char(X), if X is not compact

Char(X) \ {X}, if X is compact.

Proof. The group X is divisible, as connected locally compact abelian groups are divisible.

Let H ∈ Char(X). Our next aim will be to check that X̂/H is separable. Indeed, if H = sv(X) for

v ∈ X̂N, then one has the chain of subgroups nv(X) ≤ H ≤ H ≤ X . If H = X , then X̂/H is trivially
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separable. Otherwise, H has infinite index in X , since X/H is divisible, so ̂X/nv(X) is separable
by Corollary 7; since H contains nv(X), the quotient group X/H is a quotient group of X/nv(X).

Therefore, X̂/H is isomorphic to a subgroup of the separable group ̂X/nv(X), so X̂/H is separable, as
well (see [29]). Furthermore, H is dually closed (so X/H is MAP) by Fact 1.

If H is not closed, Corollary 10 gives that H ∈ CharK(X). If H is a proper closed subgroup of
X , then H has infinite index, as X/H is divisible, so H ∈ CharK(X) by Theorem 6. This proves the
inclusion Char(X) \ {X} ⊆ CharK(X) \ {X}, which, along with the obvious inclusion CharK(X) ⊆
Char(X), proves the equality Char(X) \ {X} = CharK(X) \ {X}.

It remains to consider the (closed) subgroup H = X , which obviously belongs to Char(X). If
X is compact, then X 6∈ CharK(X), by Lemma 15, so CharK(X) = Char(X) \ {X}. If X is not
compact, then H = X ∈ CharK(X) by Theorem 3 and Remark 3(ii). Hence, CharK(X) = Char(X) in
this case.

In particular, the above corollary yields CharK(T) = Char(T) \ {T} and CharK(R) = Char(R).

Remark 7. As we shall see in Corollary 18, connectedness is necessary in this corollary.

8. N -Characterized Subgroups

The following consequence of Lemma 14 gives a sufficient condition for a characterized subgroup to
be N -characterized:

Corollary 12. Let X be a topological abelian group and H a subgroup of X , which is not
auto-characterized. If H ∈ Char(X), then H ∈ CharN(X).

Proof. Let H = sv(X) for some v ∈ X̂N. Then, H ≤ nv(m)
(X) for some m ∈ N by Lemma 14. Since

H = sv(X) = sv(m)
(X) ≥ nv(m)

(X), we deduce that H = nv(m)
(X).

Here comes an easy criterion establishing when a subgroup is N -characterized.

Theorem 10. Let X be a topological abelian group and H a subgroup of X . The following conditions
are equivalent:

(i) H is closed, and there exists a continuous injection X/H → TN;
(ii) H ∈ CharN(X);

(iii) H is closed, and {0} is Gδ in (X/H)+.

Proof. (i)⇒(ii) Suppose that there exists a continuous injection j : X/H → TN. Let π : X → X/H be
the canonical projection. For every n ∈ N, let pn : TN → T be n-th projection, and let vn = pn ◦ j ◦ π.

X/H
j // TN

pn

��
X

π

OO

vn
// T

Therefore, vn ∈ X̂N for every n ∈ N and H = nv(X), where v = (vn).
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(ii)⇒(i) Let H = nv(X) for v ∈ X̂N. Let π : X → X/nv(X) be the canonical projection, and define
j : X/nv(X) → TN by j(π(x)) = (vn(x))n∈N for every x ∈ X . Since nv(X) =

⋂
n∈N ker vn, then j is

well defined and injective. Moreover, j is continuous.
Finally, (i) and (iii) are obviously equivalent.

The above criterion simplifies in the case of open subgroups:

Corollary 13. Let X be a topological abelian group and H an open subgroup of X . The following
conditions are equivalent:

(i) H ∈ Char(X);
(ii) H ∈ CharN(X);

(iii) [X : H] ≤ c.

Proof. (ii)⇒(i) is obvious, and (i)⇒(iii) is Corollary 1.
(iii)⇒(ii) Since H is open, X/H is discrete. By hypothesis |X/H| ≤ c, so there exists a continuous

injection X/H → TN. Hence, H ∈ CharN(X) by Theorem 10.

The next is another consequence of Theorem 10.

Corollary 14. Let X be a metrizable precompact abelian group and H a subgroup of X . The following
conditions are equivalent:

(i) H is closed;
(ii) H is closed and H ∈ Char(X);

(iii) H ∈ CharN(X).

Proof. (iii)⇒(ii) and (ii)⇒(i) are clear.
(i)⇒(iii) Since X is metrizable, X/H is metrizable, as well, and so, {0} is Gδ in X/H . By Lemma 4,

there exists a continuous injective homomorphism X/H → TN. Therefore, H is N -characterized by
Theorem 10.

According to Theorem 6, one can add to the equivalent conditions in Corollaries 13 and 14 also
“H ∈ CharK(X)”, in case [X : H] ≥ ω.

In the sequel, we consider the case of locally compact abelian groups. The following theorem was
proven in Theorem B of [16] for compact abelian groups.

Theorem 11. Let H be a locally compact abelian group and H a subgroup of X . Then, H ∈ Char(X)

if and only if H contains a closed Gδ-subgroup K of X , such that H/K ∈ Char(X/K), where X/K is
a metrizable locally compact abelian group.

Proof. The equivalence follows from Lemma 11, since the subgroup nv(X) is closed and Gδ for
every v ∈ X̂N, by Lemma 7(iv). Since K is closed and Gδ, X/K is a metrizable locally compact
abelian group.
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By Lemma 7, nv(X) is always closed and characterized. Theorem 12 describes the closed
characterized subgroups of the locally compact abelian groups X by showing that these are precisely
the N -characterized subgroups of X .

Theorem 12. Let X be a locally compact abelian group and H a subgroup of X . The following
conditions are equivalent:

(i) H is closed and H ∈ Char(X);
(ii) H ∈ CharN(X);

(iii) H is closed and Gδ in the Bohr topology;
(iv) H is closed, Gδ and [X : H] ≤ c.
(v) H is closed, and X̂/H is separable.

Proof. (iii)⇒(ii) follows from Theorem 10, (ii)⇒(i) by Lemma 7, and (ii)⇔(v) is Corollary 7.
(iv)⇒(iii) The group X/H is locally compact, metrizable and has cardinality at most c; therefore, by

Theorem 2, there exists a continuous injective homomorphism j : X/H → TN. Then, Theorem 10 gives
the thesis.

(i)⇒(iv) Let H = sv(X) for v ∈ X̂N, and let π : X → X/nv(X) be the canonical projection.
By Corollary 1, [X : H] ≤ c. By Lemma 7, nv(X) ≤ sv(X), and nv(X) is closed and Gδ. Then,
X/nv(X) is a metrizable locally compact abelian group, and by hypothesis, sv(X) is closed. Therefore,
sv(X)/nv(X) is closed and, hence, Gδ in X/nv(X). Therefore, sv(X) = π−1(sv(X)/nv(X)) is closed
and Gδ in X .

We see now the following result from [16] as a consequence of Theorem 12.

Corollary 15. [16, Theorem A] Let X be a compact abelian group and H a closed subgroup of X .
Then, H ∈ Char(X) if and only if H is Gδ.

Proof. If H is characterized, then H is Gδ by Theorem 12. Vice versa, assume that H is Gδ. Then,
X/H is compact and metrizable, hence |X/H| ≤ c. Therefore, again Theorem 12 implies that H is
characterized.

In the following theorem, we use that theGδ-subgroups of a locally compact abelian group are always
closed (see [28] (Theorem A.2.14)).

Theorem 13. Let X be a compact abelian group and H a subgroup of X . The following conditions
are equivalent:

(i) H ∈ CharK(X) and H is closed;
(ii) H is Gδ and non-open;

(iii) H ∈ CharN(X) and H is non-open;
(iv) H ∈ Char(X) and H is closed and non-open.

Proof. (i)⇒(iv) Since Lemma 15 implies that H is non-open, (iv)⇔(iii) by Theorem 12, and (iv)⇔(ii)
by Corollary 15.



Axioms 2015, 4 484

(ii)⇒(i) Since X/H is a metrizable compact non-discrete (hence infinite) abelian group, {0} is
closed and non-open in X/H; hence, {0} is K-characterized in X/H by Corollary 8. Therefore, H
is K-characterized by Proposition 2.

This theorem generalizes Corollary 15 as it implies that, for a closed non-open subgroup H of
a compact abelian group X , one has:

H is Gδ ⇔ H ∈ Char(X) ⇔ H ∈ CharN(X) ⇔ H ∈ CharK(X).

The following immediate consequence of Corollaries 13 and 9 shows that for a discrete abelian group
all characterized subgroups are N -characterized.

Corollary 16. Let X be an infinite discrete abelian group and H a subgroup of X . The following
conditions are equivalent:

(i) H ∈ Char(X);
(ii) H ∈ CharN(X);

(iii) H ∈ CharK(X);
(iv) [X : H] ≤ c.

9. T -Characterized Closed Subgroups of Compact Abelian Groups

In [30, Theorem 4], Gabriyelyan observed that if u is a T -sequence of an infinite countable abelian
group G, then (see formula (1) for the definition of σv)

n(G, σv) ∼= sv(Ĝd)
⊥ algebraically,

whereGd denotes the abelian groupG endowed with the discrete topology. Therefore, the following fact
is an immediate corollary of this result.

Fact 4. Let v be a T -sequence of an infinite countable abelian group G. Then:

(i) (G, σv) is MAP if and only if v is a TB-sequence;
(ii) (G, σv) is MinAP if and only if sv(Ĝd) = {0} and G = 〈v〉.

Recall that a topological abelian group X is almost maximally almost periodic (AMAP) if n(X) is
finite.

Remark 8. In relation to Fact 4, Lukács in [31] found a T -sequence in Z(p∞) that is not a TB-sequence,
providing in this way an example of a non-trivial AMAP group. More precisely, he found a
characterizing sequence v for pmJp ≤ Jp for a fixed m ∈ N+, i.e., sv(Jp) = pmJp. In this way,
being Jp/pmJp finite, then

sv(Jp)⊥ = n(Z(p∞), σv) 6= {0} is finite.

Therefore, (Jp, σv) is AMAP. Further results in this direction were obtained by Nguyen in [32]. Finally,
Gabriyelyan in [33] proved that an abelian group G admits an AMAP group topology if and only if G
has non-trivial torsion elements.
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The following theorem, due to Gabriyelyan, links the notions of T -characterized subgroup and
MinAP topology.

Theorem 14. [11] Let X be a compact abelian group and H a closed subgroup of X . Then,
H ∈ CharT (X) if and only if H is Gδ and H⊥ carries a MinAP topology.

Following [4, §4], for a topological abelian group X and a prime number p, we denote by Tp(X) the
closure of the subgroup Xp = {x ∈ X : pnx→ 0}. In case X is compact, one can prove that

Tp(X) = {mX : m ∈ N+, (m, p) = 1}. (9)

In particular, Tp(X) contains the connected component c(X) of X . More precisely, if
X/c(X) =

∏
p∈P(X(c(X))p is the topologically primary decomposition of the totally disconnected

compact abelian group X/c(X), then:

Tp(X)/c(X) ∼= (X/c(X))p = Tp(X/c(X))

Following [34], we say that d ∈ N is a proper divisor of n ∈ N, provided that d 6∈ {0, n} and dm = n

for some m ∈ N. Note that, according to our definition, each d ∈ N \ {0} is a proper divisor of zero.

Definition 7. Let G be an abelian group.

(i) For n ∈ N the groupG is said to be of exponent n (denoted by exp(G)) if nG = {0}, but dG 6= {0}
for every proper divisor d of n. We say that G is bounded if exp(G) > 0 and, otherwise, that G is
unbounded.

(ii) [35] If G is bounded, the essential order eo(G) of G is the smallest n ∈ N+, such that nG is finite.
If G is unbounded, we define eo(G) = 0.

In the next theorem, we aim to give a detailed description of the closed characterized subgroups H
of X that are not T -characterized. As stated in Corollary 15, a closed subgroup H of a compact abelian
group X is characterized if and only if H is Gδ (i.e., X/H is metrizable). This explains the blanket
condition imposed on H to be a Gδ-subgroup of X .

Theorem 15. For a compact abelian group X and a Gδ-subgroup H of X , the following conditions
are equivalent:

(i) H 6∈ CharT (X);
(ii) H⊥ does not admit a MinAP group topology;

(iii) there exists m ∈ N, such that m(X/H) is finite and non-trivial;
(iv) eo(X/H) < exp(X/H);
(v) there exists a finite set P of primes, so that:

(a) Tq(X) ≤ H for all q ∈ P \ P ,
(b) for every p ∈ P there exist kp ∈ N with pkpTp(X) ≤ H ,
(c) there exists p0 ∈ P , such that pkp0−1

0 Tp0(X) 6≤ H and pkp0−1
0 Tp0(X) ∩H has finite index in

p
kp0
0 Tp0(X);
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(vi) there exists a finite set P of primes, so that X/H ∼=
∏

p∈P Kp, where each Kp is a compact
p-group, and there exist some p0 ∈ P and k ∈ N, such that pk0Kp0 is finite and non-trivial.

Proof. (i)⇔(ii) is Theorem 14, and (iii)⇔(iv) is clear from the definition.
(ii)⇔(iii) The main theorem in [36] states that an abelian group G does not admit a MinAP group

topology precisely when there exists m ∈ N+, such that mG is finite and non-trivial. In our case,
G = H⊥ is topologically isomorphic to X̂/H , so G does not admit a MinAP group topology if and
only if mX̂/H = ̂m(X/H) is finite and non-trivial, and this occurs precisely when m(X/H) is finite
and non-trivial.

(vi)⇒(v) Write X/H ∼=
∏

p∈P Kp, where each Kp is a compact p-group. Let pkp = exp(Kp) for
every p ∈ P , and let pk0Kp0 be finite and non-trivial for p0 ∈ P and k ∈ N.

Obviously, all q ∈ P \P are coprime to m = exp(X/H). As mX ≤ H , we deduce from the equality
(9) that

Tq(X) ≤ H, for all q ∈ P \ P. (10)

This proves (a). From (10), we deduce that that c(X) ≤ H .
The quotient groups X ′ = X/c(X) and H ′ = H/c(X) are totally disconnected; hence, X ′ =∏
p∈PX

′
p and H ′ =

∏
p∈PH

′
p. Here,

X ′p = Tp(X)/c(X) and H ′p = Tp(H)/c(X) for every p ∈ P. (11)

Furthermore, X ′ =
∏

p∈P X
′
p ×

∏
q∈P\P X

′
q. From (10), we deduce that X ′q ≤ H ′q for all q ∈ P \

P . Therefore,
∏

q∈P\P X
′
q ≤ H ′ and H ′ =

∏
p∈P H

′
p ×

∏
q∈P\P X

′
q. Hence, X/H =

∏
p∈P X

′
p/H

′
p,

and consequently, X ′p/H
′
p
∼= Kp for all p ∈ P . Thus, pkpX ′p ≤ H ′p for all p ∈ P . Equivalently,

pkpTp(X) ≤ H for p ∈ P . This proves (b).
As pk0Kp0 is finite and non-trivial, we deduce that k < kp0 . Therefore, pkp0−1

0 Kp0 is still finite and
non-trivial. Hence, pkp0−1

0 X ′p0 6≤ H ′p0 , and so,

p
kp0−1
0 Tp0(X) 6≤ H.

To prove the second assertion in (c), note that the finiteness of pk0Kp0 yields that:

p
kp0−1

i (X ′p0/H
′
p0

) = (p
kp0−1
0 X ′p0 +H ′p0)/H

′
p0
∼= p

kp0−1
0 X ′p0/(H

′
p0
∩ pkp0−1

0 X ′p0)

is finite. Hence, from (11), we deduce that Tp0(H) ∩ pkp0−1
0 Tp0(X) has finite index in pkp0−1

0 Tp0(X).
Therefore,

H ∩ pkp0−1
0 Tp0(X) = ∩Tp0(H) ∩ pkp0−1

0 Tp0(X)

has finite index in pkp0−1
0 Tp0(X).

(v)⇒(iii) Let m′ be the product of all pkp when p runs over P , and let m = m′/p. Then, an argument
similar to the above argument shows that m(X/H) 6= {0} is finite.

Corollary 17. Let X be a compact abelian group and H a closed subgroup of X that does not contain
the connected component c(X) of X . Then, H ∈ CharT (X) if and only if H ∈ Char(X).
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Proof. Clearly, H T -characterized implies H characterized. Therefore, assume that H is characterized.
Then, H is Gδ in X by Corollary 15. Let π : X → X/H be the canonical projection. Then, π(c(G))

is a non-trivial connected subgroup of X/H; hence, X/H is unbounded, as its connected component
c(X/H) is a non-trivial divisible subgroup. According to Theorem 15, H is T -characterized.

By Corollary 17, for a connected compact abelian group X and H a closed subgroup of X ,

H ∈ CharT (X) ⇔ H ∈ Char(X) \ {X}. (12)

This result was obtained in [11]; actually, the following more precise form holds (the equivalence (i)⇔(ii)
is proven in [11, Theorem 1.14]):

Corollary 18. For a compact abelian group X , the following conditions are equivalent:

(i) X is connected;
(ii) H ∈ CharT (X) ⇔ H ∈ Char(X) \ {X} for every closed subgroup H of G;

(iii) H ∈ CharK(X) ⇔ H ∈ Char(X) \ {X} for every closed subgroup H of G.

Proof. (i)⇒(ii) by (12), and (ii)⇒(iii) is obvious.
(iii)⇒(i) Assume that X is not connected. Then, X has a proper open subgroup H , as the connected

component of X is an intersection of clopen subgroups (see [22]). Then, H ∈ Char(X) \ {X}, but
H 6∈ CharK(X) by Lemma 15.

Obviously, each one of the above equivalent conditions implies that H ∈ CharT (X) ⇔ H ∈ CharK(X)

for every closed subgroup H of a compact abelian group X . To see that in general the latter property
is strictly weaker than H ∈ CharT (X), consider the group X = Z(3) × Z(2)N. Then, for the closed
subgroup H = {0} of X , one has H ∈ CharK(X) by Theorem 13, while H 6∈ CharT (X) by
Theorem 15, as 3X is finite and non-trivial (moreover, X̂ does not admit any MinAP group topology, as
noticed by Remus; see [37]).

10. Final Comments and Open Questions

In this section, we collect various open questions arising throughout the paper.

For a topological abelian group X and v ∈ X̂N, we defined for each m ∈ N the closed
subgroup nv(m)

(X) in (4). Since these subgroups are contained one in each other, the increasing union
Fv(X) :=

⋃
m∈N nv(m)

(X) is an Fσ-subgroup of X , and it is contained in sv(X). We do not know
whether Fv(X) is characterized or not:

Question 1. For a topological abelian group X and v ∈ X̂N, is Fv(X) a characterized subgroup of X?

This question is motivated by [16, Theorem 1.11], where it is proven that under some additional
restraint, the union of a countably infinite increasing chain of closed characterized subgroups of
a metrizable compact abelian group is still characterized. On the other hand, it is known that every
characterized subgroup is Fσδ (see Lemma 5(iv)) and that the characterized subgroup need not be Fσ.
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In analogy to T -characterized subgroups, we have introduced here the notion of the TB-characterized
subgroup (see Definition 4). In relation to what is already known for T -characterized subgroups, one
could consider the following general problem.

Problem 1. Study the TB-characterized subgroups of topological abelian groups.

Next comes a more precise question on the properties of T - and TB-characterized subgroups. In fact,
we do not know whether the counterpart of Corollary 2 is true for T - and TB-characterized subgroups:

Question 2. LetX be a topological abelian group andX0,X1,X2 subgroups ofX withX0 ≤ X1 ≤ X2,
such that X1 is dually embedded in X2.

(i) If X0 ∈ CharT (X1) and X1 ∈ CharT (X2), is then X0 ∈ CharT (X2)?
(ii) If X0 ∈ CharTB(X1) and X1 ∈ CharTB(X2), is then X0 ∈ CharTB(X2)?

A full description of open K-characterized subgroups is given in Theorems 7 and 8, while Theorem 6
describes the closed K-characterized subgroups of infinite index that are also N -characterized.
Moreover, N -characterized closed subgroups of infinite index are K-characterized. This leaves open
the following general problem and question.

Problem 2. For a topological abelian group X , describe CharK(X).

Question 3. Let X be a topological abelian group. Can one add “H ∈ CharK(X)” as an equivalent
condition in Theorem 6? Equivalently, does there exist a closed subgroup H of X , such that
H ∈ CharK(X) \ CharN(X)?

In Theorem 8, we have seen in particular that a proper open finite-index subgroup H of a topological
abelian group X is auto-characterized precisely when H ∈ CharK(X). We do not know whether also
the stronger condition H ∈ CharT (X) is equivalent:

Question 4. Let H be a topological abelian group and H an open subgroup of X of finite index. Does
H ∈ CharT (X) whenever H is auto-characterized? What about the case when H is a topological direct
summand of X?

By looking at Theorem 10 and Corollary 14, the following natural question arises:

Question 5. Are the closed Gδ-subgroups of a precompact abelian groups always N -characterized?

This amounts to asking whether there exists a continuous injection fromX/F into TN for every closed
Gδ subgroup F of a precompact abelian group X; in other words, we are asking for a generalization of
Lemma 4.
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