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Abstract: In 1940 Naimark showed that if a set of quantum observables are positive  

semi-definite and sum to the identity then, on a larger space, they have a joint resolution as 

commuting projectors. In 1955 Sz.-Nagy showed that any set of observables could be so 

resolved, with the resolution respecting all linear sums. Crucially, both resolutions return the 

correct Born probabilities for the original observables. Here, an alternative proof of the  

Sz.-Nagy result is given using elementary inner product spaces. A version of the resolution 

is then shown to respect all products of observables on the base space. Practical and 

theoretical consequences are indicated. For example, quantum statistical inference problems 

that involve any algebraic functionals can now be studied using classical statistical methods 

over commuting observables. The estimation of quantum states is a problem of this type. 

Further, as theoretical objects, classical and quantum systems are now distinguished by only 

more or less degrees of freedom. 
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1. Introduction 

For a finite dimensional quantum system in an arbitrary state consider a set of positive semi-definite 

observables that sum to the identity. These define a POVM, or, positive operator valued measure. Their 

central importance in quantum theory and practice flows from a beautiful result of Naimark, derived in 
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1940; see [1,2]. It shows that any POVM can be realized as commuting projectors on a larger space, and 

such that the projectors return the correct Born probabilities for any state of the system. Also, on this 

larger space the realizations of the original observables allow measurements over them without 

disturbing the state, and the realizations do not depend on the state. For these reasons POVMs are often 

assigned the coveted status of most general type of quantum measurement possible, and are often a 

starting point for foundational discussions in quantum information theory. Background POVM details 

are given in [3–17] and proofs of Naimark’s result appear in [3–8]. 

Following Naimark’s insight, Sz.-Nagy showed in 1955 how all observables on a finite system could 

be simultaneously realized as simple linear functions of commuting projectors on a single larger space; 

see the Appendix in [3]. It is paradoxical that this equally wonderful result of Sz.-Nagy is rarely 

discussed. Summarizing, from Sz.-Nagy resolutions are surrogate classical random variables with 

respect to all linear functions of observables. And as now shown below, the resolutions are also surrogate 

classical random variables with respect to all algebraic functions of observables. 

In this project the result of Sz.-Nagy is re-derived and discussed using an elementary inner product 

space construction. It is motivated by a proof of Naimark’s result as was sketched in [8], but where [8] 

itself makes no mention of Sz.-Nagy’s result. 

There are three other goals in this project. 

First, along theoretical lines, it is shown that a version of the resolution respects products of 

arbitrary—possibly noncommuting—observables on the base space. Under this scheme all the 

resolutions of the observables commute, exactly as in the Naimark and Sz.-Nagy results. However, this 

product property is not part of either result. Therefore, as the resolution retains the algebraic structure of 

the observables on the base space, acquires commutativity for them, and has the correct Born 

probabilities, the notion of a POVM as representing the most general quantum measurement might be 

open to further discussion. 

Second, along practical lines, as with the Naimark and Sz.-Nagy results, the resolution captures the 

marginal and conditional probabilities on the base space. This, coupled with the product property, 

suggests applications of classical statistical methods to quantum statistical inference problems. For 

example, consider a search for solutions of a functional parametric equation written over sums and 

products as defined by a quantum statistical inference problem on the base space. Utilizing the product 

property these functionals can be studied using entirely classical statistical methods over commuting 

observables in the resolution. Specific statistical inference examples of this process are discussed below. 

Finally, Third, the details presented here are much more than necessary for the essential arguments. 

This project therefore is an effort in learning and teaching, an attempt to parse the machinery of  

the methods, at least for the sake of the authors. It is hoped that doing so makes these two distinctive  

results—these happy inventions—more transparent and accessible. 

2. Naimark’s Theorem and the Sz.-Nagy Extension 

Recall that a POVM is a set of positive semi-definite observables that sum to the identity. The original 

result of Naimark is the scheme by which any POVM, or, generalized resolution of the identity, is 

realized as a set of commuting projectors on a larger space; see [1–17]. Shortly after the derivation by 

Naimark, an extension was presented by Sz.-Nagy [3] such that:  
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(i) The original observables need not be positive semi-definite or sum to the identity; 

(ii) The resolution of any observable on the base system is given as a linear sum over orthogonal 

projectors on the larger space; 
(iii) The derivation is state independent; 

(iv) The resolution returns the correct Born probabilities with respect to the state of the base system. 

As necessary background for the extension of Sz.-Nagy, the original Naimark result is this: Naimark’s 

Theorem (1940 [1]; 1943 [2]; and see the Appendix in [3]). Suppose given a quantum system in a specific 

state, and a finite set of observables that are positive semi-definite and sum to the identity. Then the 

system can be embedded in a larger one such that the observables are simultaneously realized as 

commuting projectors that return the original Born probabilities with respect to the state. 

A matrix-based proof of the result is outlined in [5]; an alternative matrix derivation is given in [6]; 

a spectral measure proof is presented in [7]; and an inner product space construction sketched in [8]. The 

discussion in [5] is self-contained, offering a proof of Naimark and a completely worked example for a 

two-dimensional base space. The proof in [6] offers an approach that enables other matrix examples of 

the Naimark scheme; see especially [6] (pp. 80–83). 

Using the proof of Naimark given in [8], the result of Sz.-Nagy is re-derived. It leads to a proof that 

all products of observables are respected on a suitable subspace of the Naimark resolution. 

The re-derivation is itself a slight extension of the Sz.-Nagy result, and is given by: 
Theorem. Suppose given any two sets of observables {Aj :1 ≤ j ≤ m} and {Bi :1 ≤ i ≤ k} acting on a 

finite dimensional Hilbert space H. Then: 

(1)  There exists an embedding of H in a larger Hilbert space, 
⌣
H , and extensions of {Aj} and {Bi} to 

operators {
⌣
Aj} and {

⌣
Bi} acting on 

⌣
H , such that all the

⌣
Bi  commute pairwise;  

(2)  The embedding is an isometry and is trace-preserving in this sense: 
tr[Aj Bi] = tr[

⌣
Aj

⌣
Bi], 1≤ j ≤ m, 1≤ i ≤ k  (1)

Proof. If Σ Bi ≠ 1 then introduce Bk+1 = I − Σ Bi . If extensions {
⌣
Bi :1 ≤ i ≤ k +1}  are found such that 

the 
⌣
Bi  commute pairwise, then the same is true of the subset {

⌣
Bi :1 ≤ i ≤ k}. Moreover, given some 

extensions 
⌣
Aj , if tr[

⌣
Aj

⌣
Bi ] = tr[Aj Bi ], for all 1 ≤ j ≤ m, 1 ≤ i ≤ k +1, then the same is true for all the 

⌣
Aj

and the subset {
⌣
Bi :1 ≤ i ≤ k}.  Hence without loss of generality re-number the {Bi :1 ≤ i ≤ k +1}  as 

{Bi :1 ≤ i ≤ k},  and assume that Σ Bi = I . 
Next, let a be any real number such that a > max | λ |,  for λ  equal to any eigenvalue of any Bi .  

It follows that 

 (2)

is positive definite and  Again, without loss of generality, re-label every  as Bi .  

Introduce the tensor product space 
⌣

H ≡ H ⊗ HE  with HE  a Hilbert space of dimension k. Let any 

positive definite inner product on H be given by (ϕ,ζ ),  and let {ω i} be any basis for HE . For ϕ in H 

define a mapping ϕ → ⌣ϕ  into 
⌣

H  by 
⌣ϕ = Σ[ϕ ⊗ω i ] = ϕ ⊗ω , where ω = Σω i . 

Since an arbitrary element in 
⌣

H can be written as ψ = Σ[ϕi ⊗ω i ],  for any selected set of elements in 

H, introduce the inner product on 
⌣

H  given by 
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(ψ ,ψ ) ⌣H ≡ (ψ ,ψ
⌣
) ≡ Σ (ϕi , Biϕi )  (3)

that averages over the inner products induced by each Bi  on H. Because Σ Bi = I  this embedding of H 

in is such that: 

(
⌣ϕ,
⌣ϕ
⌣
) = (ϕ ⊗ω ,ϕ ⊗ω

⌣
) = Σ (ϕ , Biϕ ) = (ϕ ,(Σ Bi )ϕ ) = (ϕ,ϕ)  (4)

The embedding is therefore an isometry. Define projection operators Ei  acting on 
⌣

H  by  

( [ ])i t t i iE Σ ⊗ ≡ ⊗ϕ ω ϕ ω  (5)

By inspection these are orthogonal and Σ Ei =
⌣
I . Most importantly,  

(
⌣ϕ , Ei

⌣ϕ
⌣
) = (ϕ, Ei (ϕ ⊗ω )

⌣
) = (

⌣ϕ ,ϕ ⊗ω i

⌣
) = (ϕ , Biϕ)  (6)

so that each Ei  is an inner product conserving extension of each Bi .  Next, let Aj = (ϕ j )(ϕ j )
∗

 be a  

one-dimensional observable acting on H, and define 
⌣
Aj  by 

  
⌣
Aj = (ϕ j ⊗ω )(ϕ j ⊗ω )∗ = (

⌣ϕ j )(
⌣ϕ j )

∗  (7)

where the conjugate transpose is with respect to the product in 
⌣

H  as at (4). Finally, check that for every Ei : 

tr[
⌣
Aj Ei] = tr[(

⌣ϕ j )(
⌣ϕ j )

∗ Ei] = (
⌣ϕ j , Ei

⌣ϕ j

⌣
) = (ϕ j , Biϕ j ) = tr[ Aj Bi]  (8)

As any operator Aj  can be written as a sum over projectors, by linearity the proof is complete. 

The notion of Naimark space is next introduced, followed by the definition of Naimark model. 

3. Naimark Spaces and Naimark Models 

Acting on the extension space
⌣

H , let N be defined as the family of observables that is spanned by the 

commutative realizations {
⌣
Bi}  of the observables {

⌣
Bi}.  Call space N the Naimark space and write

N = N ({
⌣
Bi})  for this set of observables. Several comments are in order. 

First, letting m = 1 and {Aj} = {ρ} for density ρ  on the base space, and assuming the set {Bi}  

consists of a set of positive definite observables that sum to the identity, the Theorem now implies the 
original Naimark result. Note, importantly, the proof of the Theorem does not depend on the {Aj} and 

thus also does not depend on the state of the base system. The flexibility in the Theorem for an arbitrary 
finite family of observables {Aj} for 1 ≤ j ≤ k,  with 1 < k,  allows for problems that have many possible 

densities on the base system under consideration. An example of the need for such a family is the 

problem of quantum state discrimination over multiple, possible unknown states. 
Second, suppose the {Bi}  are a spanning set of operators on H, but are not necessarily linearly 

independent, or positive semi-definite, or commuting. Since every operator on H now has a linear 

realization over a commutative space of projectors, this implies that there always exists a single classical 

joint distribution function over these commuting extensions of the original observables. This joint 


⌣

H
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probability distribution is exactly that given by the standard von Neumann spectral resolution result for 

commuting observables, and the Born marginal probabilities for the realizations agree with those in the 

base space. 
Third, the two sets of observables, {Aj} and {Bi}, in the Theorem do not extend in the same way. 

That is, arbitrary observables Bi  extend to linear sums over the projectors Ei ,  while observables given 

by states ρ = (ϕ)(ϕ )∗extend to operators (ϕ )(ϕ )∗ ⊗ P = ρ ⊗ P,  for P  defined as the projector on the one 

dimensional space spanned by ω ,  and by linearity otherwise. By inspection, the conclusion of the 

Theorem also obtains by using the alternative embedding that extends states ρ = (ϕ)(ϕ )∗ to operators of 

the form (ϕ )(ϕ )∗ ⊗ I = ρ ⊗ I . Thus, a Naimark space will not necessarily render states as commutative 
in the larger space if they are given as observables in the set {Aj}, but will do so if they appear as 

observables in the set {Bi}. 

And Fourth, a given Naimark space, N = N({
⌣
Bi}),  is not uniquely specified by the base operators 

{Bi}  acting on H, so that N = N({
⌣
Bi}) = N({

⌣
Ci*}),  is possible with the {Bi} ≠ {Ci*}. 

Additional technical facts and distinctions are these:  

(a) Consider the subspace in 
⌣

H  given by H ⊗ {ω i}, where {ω i}  is the space in HE  spanned by ω i . 

This space is a copy in 
⌣

H  of the base space H. Assume now that the ω i  form an orthogonal basis for 

HE . Then the projector Pi  from HE  onto the space {ω i} can be written as Pi = (ω i )(ω i )
∗ ,  where 

the transpose here is with respect to the inner product on HE .  By inspection it follows that: 

Ei = I ⊗ Pi;  

(b) Note that the inner product on 
⌣

H  is not the same as the multiplication over the separate inner products 
H and HE . That is, in general, 

(ϕ ⊗ω ,ζ ⊗ν
⌣
) = (ϕ ⊗ω ,ζ ⊗ν ) ⌣H ≠ (ϕ,ζ )H (ω ,ν )E  (9)

for ϕ,ζ  in H and ω ,ν  in HE;  

(c) As further indication of the distinction just noted in (b), check that the projectors Ei = I ⊗ Pi  as 

defined in the Theorem can also be written as: 

Ei = {Σ i} ⊗ Pi  (10)

where 

Σi = Σ (ϕi( j ))(ϕi( j)

⌣
) and Pi = (ω i )(ω i )

∗ (11)

and where {ϕi( j)},  for 1 ≤ j ≤ dim H ,  is an orthogonal basis of H with respect to the inner product 

induced by the specific observable Bi , so that: 

  
Ei = ((Σϕi( j) ) ⊗ω i )((Σϕi( j) ) ⊗ω i

⌣
)  (12)

(d) For any U in the Naimark space, that is for U = Σα iEi , with complex coefficients α i ,  inspection 

shows that (X ⊗ IE )U = U(X ⊗ IE ),  since Σ Pi = IE ,  for IE  the identity on HE ,  and Ei = IH ⊗ Pi  

for IH  the identity on H. 
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4. Naimark Models 

It is advantageous to formalize the embedding of a copy of the base space in the resolving space. As 

above, introduce a basis for 
⌣

H  that begins with a isomorphic copy of the base system defined as 
H ⊗ {ω}, where {ω}  denotes the one dimensional space spanned by the vector ω  in HE . 

Continuing, for any operator U on 
⌣

H , introduce the observable U H  acting on H ⊗ {ω}, where: 

[ ] [ ] 1 , dimH ij ijU U i j n H= ≤ ≤ =  (13)

Call UH  the Naimark component of U, and call the set of all such observables a Naimark model. The 

model contains, for example, the projections onto H ⊗ {ω} of all the observables in N. 

Some clarifications are these: 

(a) The term Naimark model is only a convenient name introduced here for operators in the Naimark 
space that fix the subspace H ⊗ {ω}, and Naimark space is itself an introduced term. Both directly 

follow from the combined results of Naimark and Sz.-Nagy. Since dim H = dim (H ⊗ HE ), the space 

on which operators in the Naimark model act has the same dimension as the base space H. On the 
other hand the space, H ⊗ {ω},  viewed as a subspace of 

⌣
H ,  is equipped with the inner product 

constructed in the Theorem, and this is distinct from whatever product is defined on H; see (b) in 

Section 3 above for details; 

(b) For any observable X acting on H, and any U in the Naimark space:  

[( ) ] [( ) ] [ ]Htr X I U tr X P U tr XU⊗ = ⊗ =  (14)

It follows that every observable in the Naimark model correctly returns the Born probability for the 
associated observable UH  on the base space. This is the same probability as that given for the 

observable on H, for which observable U is the Naimark resolution acting on 
⌣

H . In simpler terms, 

Naimark models are probability preserving;  

(c) For any pair of observables on the base system, in state D, the quantum conditional probabilities are 

given by 
Pr[ | ] Pr [ | ] [ ] / [ ]

Pr[ | ] Pr [ | ] [ ] / [ ]
D

D

A B A B tr BDBA tr DB

B A B A tr ADAB tr DA

= =
= =  (15)

Consequently 

| |Pr[ | ] [ ], Pr[ | ] [ ]A B B AA B tr DC B A tr DC= =  (16)

for the two observables on the base system as defined by 

| |/ [ ], / [ ]A B B AC BAB tr DB C ABA tr DA= =  (17)

Since any observables in the base system are expressible as simple linear sums over any spanning set, 

it follows that their resolutions in the Naimark model are also thus expressible, in terms of the 

commuting projectors in the Naimark model. In particular the pair of observables in Equation (17) 

have linear resolutions in the model. On the other hand, from classical probability any joint 

distribution on a pair of random variables is specified by the two marginal probabilities and the two 

conditional probabilities. Since elements of the Naimark model correctly return all marginal Born 
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probabilities for observables on the base system, from Equations (16) and (17) it now follows that the 

model also correctly returns the correlation structure for any pair of observables on the base system;  

(d) The Naimark component is defined for any operator U on 
⌣

H  and not only for those in a Naimark 

space, N;  
(e) For any U acting on 

⌣
H , (UH

⌣
)  is always in N; and if U is in N then (UH

⌣
) = U;  

(f) For any B acting on H: (
⌣
B)H = B. 

The product property of Naimark models is next presented. 

5. Products and Naimark Models 

Given the number, k, of observables in the set {Bi},  and the dimension, m, of the base space H, it  

is convenient to expand the size of H. This is most simply done by tensoring H over k copies of H. Then 

the dimension of the base space becomes is t = mk, and the dimension of 
⌣

H  becomes n = mk2. Further, 
the observables {Bi}  can be trivially extended to observables of the form {Bi ⊗ I} on the expanded 

base space. But not so trivial is this: the extension of an observable to an operator on the expanded base 

space is not the same as its resolution in the Naimark space, or in the Naimark model. 

One possible objective for an expansion of the base space is proposed in [8], if the dimension of the 

base space is not a multiple of k. Doing so as in [8] yields a simpler, block matrix representation of the 
projectors Ei . However, the goal of the expansion used here is different, and the utility of this particular 

increase in the size of H is given by the following facts, later applied in Section 6. 

Begin by letting G be the projector of 
⌣

H  onto the base space, H, where that space now has adjusted 

dimension t = mk. Then, the following several conclusions obtain: 

(i) By definition (G)H = IH ,  the identity on H. Recall that IH = Σ Bi ,  for {Bi}  as in the Theorem. Also 

(IH

⌣
) = (ΣBi

⌣
) = ΣEi = I ⌣

H =
⌣
I . It follows that (GH

⌣
) =

⌣
I ≠ G. 

(ii) Consider any two observables C1 = A1 ⊗ B1, C2 = A2 ⊗ B2,  acting on 
⌣

H ,  such that A1, A2  act on 

H ⊗ {ω}, and B1, B2  act on HE . If A1A2 = A2A1, and B1B2 = B2B1 then trivially: C1C2 = C2C1. 

Next, under the base space dimension adjustment just described it follows that the projector G can be 
written as G = Z ⊗ Ik ,  for a matrix Z, of order mk,  having the identity matrix Im  in the upper left 

corner, the zero matrix (0)t ,  in the lower right corner, with t = m(k −1), and zeros elsewhere. With the 

adjusted dimension, the projector G is an operator on 
⌣

H ,  with Z in the Naimark model, that is, an 
operator acting on H ⊗ {ω},  a space of dimension mk, and with Ik  acting on HE ,  a space of  

dimension k; 

(iii) Using (d) in Section 3, and (ii) just given, and for any U in the Naimark space N: GU = UG. Note 
that G is not necessarily in N, but upon using the set {Bi} = {G, N} and then applying the Theorem, the 

resolutions of G and all elements of N would then commute; 

(iv)  From (iii) just given, and for any U, V in the Naimark space N: (UV )H = UHVH . That is 

( ) ( ) ( )( )H H HUV G UV G GUG GVG U V= = =  (18)
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This is the product property of the Naimark model mentioned in the Introduction. It immediately extends 

to any linear function over finite products of observables in the model. Moreover, for U, V in  
N it is always true that UV = VU,  and this implies: UHVH = VHUH ;  

(v) The extensions of the base space operators from {Bi}  to {Bi ⊗ Ikm} work consistently with respect 

to the expansion of the base space. That is, a sum over operators of the form Bi ⊗ Ikm  has the same form, 
since B = Σ Bi  implies: Σ (Bi ⊗ Ikm ) = (Σ Bi )⊗ Ikm = B ⊗ Ikm ;  

(vi) Every observable UH  in the Naimark model is by definition the Naimark component of the observable 

U in the associated Naimark space N. However, if an observable already fixes the base space it will not 

necessarily have a resolution in the Naimark space whose Naimark component is the original observable. 

Yet, the Naimark component will still return the correct Born probability for the original observable; 

(vii) Given observable U0  acting on the base space H, it follows that 
⌣

U0  is in the associated Naimark 

space N, and (
⌣

U0 )H  is in the associated Naimark model;  

(viii) Finally, every observable in the Naimark model correctly returns the Born probabilities: 
tr[ρ(

⌣
U0 )H ] = tr[(ρ ⊗ I )

⌣
U0] (19)

6. Applications of Naimark Models 

Consider any outcomes for any finite set of observables on the base space, X = {Xi},  and a 

multivariate polynomial functional equation of the form f (X,β ) = 0. Using the outcomes considered as 

a data vector X, an estimated value of the parameter β  is required, such that it solves the equation to 

sufficient accuracy. By definition any such equation is a linear sum over products of the observables. 

Hence by extending the equation on the base space, the observables in the data vector are simply replaced 

by their resolutions in the Naimark model. And then using the product property of the extension, as 

above, it follows that: 

0 = f ( X ,β
⌣
) = f (

⌣
X ,β )  (20)

In the Naimark model the extended observables 
⌣
X  act as classical random variables, and have linear 

representations over a set of commuting projectors. Therefore, if a statistical solution with sufficient 

accuracy can be found in the Naimark model, then the product property, result (iv) in Section 5 above, 

can be applied so that exactly, or at least approximately: 

0 = f (
⌣
X ,β )H = f (

⌣
X H ,β ) = f ( X ,β )  (21)

Significant to note here is that any polynomial equation over the data in the Naimark model, obtained 

by just adding degrees of freedom as in result (v) of Section 5 above, reduces to a solution of the equation 

with the same form in the base space. That is: 

0 ( , ) if  and only if 0 ( , ) if  and only if 0 ( , )f X I f X I f X= ⊗ = ⊗ =β β β  (22)

In still other words, the Naimark model respects all algebraic constraints posed by functional 

equations on the base space, and the observables resolved in the Naimark model are all commuting. 

As one example of this process consider using the Expectation-Maximization (EM) algorithm, a 

scheme from classical statistics, for study of neutron absorption tomography, as given in [12] (Section 10.3). 
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An alternative path here is introduction of the Naimark model, followed by application of the classical 

EM algorithm to the set of classical random variables that represent the commuting observables in the 

model. For more detail on the classical EM algorithm itself see, for example ([18] Chapter 4). 

As another example of a quantum statistical problem that starts from an equation of the form 
f (X,β ) = 0  on the base space, consider quantum state discrimination, or, state estimation. Such is 

presented in a Bayesian solution derived by Holevo, and Yuen et al. For a detailed discussion see [5,12]. 

Important to notice here is that a Naimark model also respects any required algebraic side conditions 

necessary for a quantum statistical problem that involve the original—or possibly additional—observables 

in the data vector. And this is exactly the case in the solution for the Bayesian state estimation problem 

just mentioned, where a certain semi-positivity side condition for these observables on the larger 

Naimark model is required; see [5,12]. Using the commutativity of the observables realized over the 

Naimark model, and since the observables in the Naimark space project onto the Naimark model, the 

resolving observables in the Naimark model must also respect the semi-positivity condition. 

A more detailed resolution of this problem of Bayesian quantum state estimation using a Naimark 

model will be given elsewhere; see [19].  

Continuing, two other classical, and widely deployed statistical estimation techniques are generalized 

linear models and generalized estimating equations, about which see [20]. In these schemes the functional 
equation f (X,β ) = 0 is replaced by: 

f (Y , X,β ) = 0  (23)

where Y is an outcome for which a good approximation or prediction is sought, using observations X as 
mediated by a parameter β, that is to be estimated in (23). Both these methods are now, in principle, 

applicable to quantum estimation problems and such that a classical Naimark model solution over 

classical random variables is then obtained. 
Another application of the Theorem is this. Consider given two POVMs, {Pi} and {Qj},  where the 

number of observables in each set need not be the same in number. In [11] the following problem is 
stated: is it possible to identify a single POVM, {Ri},  such that its elements contain all members of the 

original two POVMs? 

If the purpose of any single POVM is to describe a set of observables having a resolution as 

commuting observables on a larger system, then the Theorem already provides that. In this case the 

resolution over the union of the observables in the two POVMs on a larger system jointly resolves all 

elements of the two POVMs as commuting observables. 

On the other hand, if the task is to identify a single POVM on the base space that contains both sets of 

observables, then the following can be applied. As each POVM separately sums to the identity, the sum 

over all the observables in both POVMs must sum to twice the identity. Now divide all observables by ½. 

Then the full list of observables sums to the identity, and the Theorem applies. The result is a resolution 

that, apart from the factor ½, jointly returns the Born probabilities and is composed of commuting 

observables on the larger space. The central point here is that no loss in generality of quantum 

measurement is incurred in this scheme. 

Finally, here is a method that uses only the original version of Naimark ([1,2]), but now applied twice. 

Let the first POVM be labeled, P and the second Q. Using the original Naimark result embed the original 
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space in a larger one, such that all observables in the extensions of elements of P are commuting among 

themselves and sum to the identity on the larger space. As usual the extensions of the elements of P now 

sum to the identity on the larger space. Further, the elements of Q, as with all other observables apart from 

those in P, will extend in the usual way to observables that are tensor products of the elements of Q, by the 

identity on the larger space. 

At this point inspection of the Naimark result shows that all elements of the extensions of P and Q 

must commute. That is the extensions of P are linear sums over projectors on the larger space and these 

commute with the extensions of Q that are simple tensors by the identity; see the Third note in Section 3. 

However, at this stage, elements of the extensions of Q need not be commuting among themselves. 

Thus, for the next step, apply the classical Naimark result to the observables in the extension of Q on the 

larger space. The extensions of the original observables in P, on the larger space, will extend in the usual 

way for tensor products, to observables on the still larger space that also commute, since they did so on 

the larger space. Finally, note that the doubly extended forms of P and Q must jointly commute on the 

double extension, and the two together sum to the identity. 

In effect, this method uses the Theorem above, where elements of the POVMs, Q and P are 
respectively the subsets {Aj} and {Bi}. 

7. A Theoretical Perspective for Naimark Spaces 

The construction of the resolving Naimark space shows that it, itself, lives in the larger space  

where—also by construction—there are observables that are not necessarily commuting. Hence every 

such Naimark resolution is nested in a space that again reveals quantum and not just classical behavior. 

In turn, the family of all observables in the resolving space is in principle realizable in a still larger space, 

for which the resolved observables would all commute and act classically. Yet this entails introduction 

of still other noncommuting observables, thus continuing the sequence. 

The scheme presented here using Naimark spaces and models suggests that for finite systems there 

may not be a sharply defined or even usefully declared boundary between quantum and classical 

phenomena. If a system is seen as classical in one Naimark representation then there are necessarily 

other observables in the embedding space that are noncommuting and show quantum behavior. In other 

words, classical and quantum phenomena are nested within each other. 

On this view, quantum systems differ from classical ones simply by having different degrees of 

freedom. Further, the introduction of Naimark models shows something else. The Naimark model has 

the same dimension of the base space and this is strictly less than the dimension of the supervening 

Naimark space. Also, the observables on the base space, as trivially extended to those on the Naimark 

model are now all commuting. Finally, all algebraic functionals or constraints given over observables 

on the base space remain valid in the model. 

In words, algebraic functionality on the base space is invariant with respect to its representation as a 

Naimark model, and the Naimark model observables are commuting and in this sense act classically. 
  



Axioms 2015, 4 410 

 

 

8. Conclusions 

The introduction of Naimark spaces leads to a canonical procedure by which any finite dimensional 

quantum system can be rendered as a classical system, such that it appears as a subspace of a larger 

quantum system, and such that all the original observables now have commutative versions, and possess 

a single classical joint distribution. Notably, under the extension it is not required that the original 

observables on the base space be projectors, or positive semi-definite, or sum to the identity, or be 

commuting. This much is all valid using the original results of Naimark and Sz.-Nagy. 

As shown above the resolving Naimark model also respects algebraic constraints over any 

observables on the base space, and this property is not part of the original Naimark result or the  

Sz.-Nagy extension. Thus, the family of jointly measureable observables in a Naimark model can resolve 

some forms of quantum statistical estimation and detection problems, but now using entirely classical 

procedures over commuting observables. 

Naturally any experimental implementation of the results of Naimark and Sz.-Nagy, and solutions 

found in a Naimark model, may not be a feasible. Hence for some problems, the resolving classical 

systems and the derived classical inference solutions might remain theoretical constructions. Still, the 

increasing use of so-called ancilla and ancillary systems suggests that the engineering task of invoking 

Naimark models is increasingly cost efficient. 

Finally, the schemes presented here suggest that a sharp boundary between classical and quantum 

systems is more porous and more fluid than suspected, as the systems are nested within each other and 

distinguished only by counting degrees of freedom. In still other words, quantum behavior arises by 

restriction of classical behavior, and classical systems lurk within quantum ones, and only an engineering 

task separates them. 
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