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Abstract: Recently, probability models with thicker or thinner tails have gained more
importance among statisticians and physicists because of their vast applications in random
walks, Lévi flights, financial modeling, etc. In this connection, we introduce here a new
family of generalized probability distributions associated with the Mittag–Leffler function.
This family gives an extension to the generalized gamma family, opens up a vast area
of potential applications and establishes connections to the topics of fractional calculus,
nonextensive statistical mechanics, Tsallis statistics, superstatistics, the Mittag–Leffler
stochastic process, the Lévi process and time series. Apart from examining the properties,
the matrix-variate analogue and the connection to fractional calculus are also explained.
By using the pathway model of Mathai, the model is further generalized. Connections to
Mittag–Leffler distributions and corresponding autoregressive processes are also discussed.

Keywords: generalized Mittag–Leffler density and process; gamma density; Lévi density;
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1. Introduction

In model building situations in physical, biological, social and engineering sciences, the usual
procedure is to select a probability model from a parametric family of distributions. In many practical
problems, it is often found that the selected model is not a good fit for the experimental data, because
it requires a model with a thicker or thinner tail than the ones available from the parametric family of
distributions. In order to make the tail thicker or thinner, a technique is introduced here by augmenting
a series to the original density. Our first step is to construct the thicker or thinner tailed distribution
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associated with the Mittag–Leffler function, because this function is connected to fractional calculus, the
Mittag–Leffler stochastic process, non-Gaussian time series, Lévi flights and in a limiting process to the
topics of Tsallis statistics, superstatistics, as well as to statistical distribution theory.

In reaction rate theory, input-output type situations and reaction-diffusion problems in physics and
chemistry, when the integer derivatives are replaced by fractional derivatives, the solutions automatically
go in terms of Mittag–Leffler functions and their generalizations; see Haubold and Mathai (2000) [1].
The ordinary and generalized Mittag–Leffler functions interpolate between a purely exponential law
and power-law-like behavior of phenomena governed by ordinary kinetic equations and their fractional
counterparts; see Kilbas et al. (2004) [2], Kiryakova (2000) [3], Mathai (2010) [4] and Mathai et al.
(2010) [5]. This paper examines a new family of statistical distributions associated with Mittag–Leffler
functions, which gives an extension to the gamma family, which will then connect to fractional calculus
and statistical distribution theory through the theory of special functions. The model investigated in this
paper is useful in the study of life testing problems, reliability analysis, in physical situations to describe
stable solutions, as well as unstable and chaotic neighborhoods, etc. We will start with the definition of
the Mittag–Leffler function.

A two-parameter Mittag–Leffler function is defined as follows:

Eα,β(xα) =
∞∑
k=0

xαk

Γ(αk + β)
, <(α) > 0, <(β) > 0, (1)

where <(·) denotes the real part of (·). Observe that the Mittag–Leffler function is an extension of the
exponential function. When α = 1, β = 1, Equation (1) reduces to ex. In statistical model building,
usually, the parameters are real, but since the results to be discussed hold for complex parameters, as well,
we will state the corresponding relevant conditions. Various properties, generalizations and applications
of the Mittag–Leffler function can be seen from Kilbas et al. (2004) [2].

Consider a probability density of the form:

f(x) =

{
aβ[1 + δ

aα
] xβ−1e−axEα,β(−δxα), β > 0, α > 0, a > 0, x ≥ 0

0, elsewhere,
(2)

where C is the normalizing constant and Eα,β(−δxα) is the Mittag–Leffler function. Some interesting
special cases of Equation (2) are the following: The density in Equation (2) includes two-parameter
gamma, exponential, chi square, noncentral chi square and the like. When δ = 0, Equation (2) reduces
to the two-parameter gamma density:

f1(x) = C1x
β−1e−ax, x ≥ 0. (3)

For α = β = 1 in Equation (2), we have the exponential density. For β = n
2

and a = 1
2

in f1(x),
we have the chi square density with n degrees of freedom. For β = p, p = 2, 3, · · · in Equation (3), we
have the Erlang density. For p = 1 in Erlang density, we have the exponential density. For fixed values
of a,β and for various values of δ, we can look at the graphs that give a suitable interpretation to the
model in Equation (2).

The above figures show a comparison between gamma density and gamma Mittag–Leffler density for
different values of δ. Observe that δ = 0 corresponds to the gamma density. In Figure 1, as the value of
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δ decreases, the right tail of the new density becomes thicker and thicker compared to that of a gamma
density. Similarly the peakedness of the curve slowly decreases. In Figure 2, also, δ = 0 corresponds to
the gamma density. When the values of δ increases from δ = 0, the right tail of the new density becomes
thinner and thinner compared to that of a gamma density. Similarly, the peakedness of the curve slowly
increases. Hence, when we look for a model with a thicker or thinner tail while a gamma density is
found to be more or less a proper fit, then a member from the new family of densities introduced here
will become quite useful and handy. Observe that the new density is mathematically and computationally
easily tractable, just like a gamma density.

The moment-generating function of Equation (2) is given by:

Mx(t) = aβ[1 +
δ

aα
]

∫ ∞
0

xβ−1e−(a−t)x
∞∑
0

(−δxα)k

Γ(αk + β)
dx

= aβ[1 +
δ

aα
]
∞∑
0

(−δ)k

Γ(αk + β)

∫ ∞
0

xαk+β−1e−(a−t)xdx.

Figure 1. For a = 1.5, β = 2 and δ < 0.
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Figure 2. For a = 1.5, β = 2 and δ > 0.

On simplification, we obtain mgfas:

Mx(t) =
aβ

(a− t)β
(1 + δ

aα
)

(1 + δ
(a−t)α )

, | δ

(a− t)α
| < 1, (a− t) > 0. (4)

The characteristic function can be obtained if we replace t by it, i =
√
−1. If we put −t

instead of t, then we will obtain the Laplace transform of the density. Using the Laplace transform or
moment-generating function, we can easily obtain the integer moments by using the following formula:

µ′r = E(xr) = (−1)r
dr

dtr
Lf (t)|t=0.

Thus, the mean value will be obtained as:

µ′1 =
β

a
− δ α

a(aα + δ)
, (5)

and:

µ′2 =
1

a2

{
2α2(

δ

aα + δ
)2 − (α2 + α(2β + 1))(

δ

aα + δ
) + β(β + 1)

}
. (6)

Variance:
µ2 =

β

a2
− δα[(α + 1)aα + δ]

a2(aα + δ)2
.
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Arbitrary moments can be obtained in terms of the generalized Wright hypergeometric function. That
is,

µ′γ = E(xγ) =

∫ ∞
0

xγ f(x)dx

which is nothing but the Mellin transform of the function f with γ = s− 1.

µ′γ =
(1 + δ

aα
)

aγ
2Ψ1

[
(1,1),(β+γ,α)
(β,α) | − δ

aα

]
(7)

where pΨq(z) is the generalized Wright’s hypergeometric function defined for z ∈ C, complex ai, bj ∈ C
and αi,βj ∈ <+ = (0,∞), ai, bj 6= 0; i = 1, 2, . . . , p; j = 1, 2, . . . , q by the series:

pΨq(z) ≡ pΨq

[(ai,αi)1,p
(bj ,βj)1,q

|z
]

=
∞∑
k=0

{
∏p

i=1 Γ(ai + αik)} zk

{
∏q

j=1 Γ(bj + βjk)}k!
. (8)

The function in Equation (8) was introduced by Wright and is called the generalized Wright’s
hypergeometric function. For convergence conditions, the existence of various contours and other
properties, see Wright (1940) [6] or the theory of H-function to be discussed later. If we take γ as
integers in Equation (7), then we will obtain integer moments. It may be observed that the distribution
function is available in terms of a series of incomplete gamma functions.

2. Estimation of Parameters

In this section, we have given explicit forms of the estimators of the parameters using the method
of moments. The motivation for the method of moments comes from the fact that the sample moments
are consistent estimators for the corresponding population moments. To start with, let us consider the
case for a = 1, β = 1 in Equation (2), then the model will become the Mittag–Leffler extension of the
standard exponential distribution and has the density of the form:

g1(x) = (1 + δ)e−xEα(−δxα). (9)

The moments can be obtained from Equations (5) and (6) with the parameter value a = 1, β = 1.
The moment estimators of δ and α are given by:

α̂ =

∑
(xi − x̄)2 − nx̄2

n(x̄− 1)
+ 1, x̄ 6= 1

and:

δ̂ =
n(x̄− 1)2

nx̄−
∑

(xi − x̄)2
, nx̄−

∑
(xi − x̄)2 6= 0.

Now, consider the Mittag–Leffler extension of standard gamma density. For that, we take a = 1 in
Equation (2); thus, the model has the following form:

g2(x) = (1 + δ)xβ−1e−xEα,β(−δxα). (10)
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Using the same procedure as above, one can obtain the estimators as:

β̂ =

∑
(xi − x̄)3 − [

∑
(xi − x̄)2][

∑
x2
i + nx̄] + 2nx̄[nx̄3 − x̄2]∑

x2
i [4nx̄− 3n− 3] + nx̄2[8nx̄+ 13n] + n2x̄

α̂ =

∑
(xi − x̄)2 − n(x̄− β̂)2 − nx̄

n(x̄− β̂)
, n(x̄− β̂) 6= 0

and:

δ̂ =
(β̂− x̄)

α̂ + x̄− β̂
.

If we retain all parameters α, β, δ and a, then the analytical solution is quite difficult, but the
numerical solution can be obtained by using software like MATLAB and MAPLE.

3. The Q-Analogue of Generalized Gamma Mittag–Leffler Density

In this section, a generalized density of Equation (2) is considered. Mathai (2005) [7] introduced the
pathway model, where the scalar version of the pathway density is given as follows:

f1(x) = c1 |x|β−1 [1 + a(q − 1)|x|ρ]−
1
q−1 (11)

for a > 0, β > 0, q > 1, −∞ < x <∞

where c1 =
ρ[a(q−1)]

β
ρ Γ( 1

q−1
)

2Γ(β
ρ

)Γ( 1
q−1
−β
ρ

)
, 1

q−1
> β

ρ
.

For q < 1, writing q − 1 = −(1− q), we have the form:

f2(x) = c2 |x|β−1 [1− a(1− q)|x|ρ]
1

1−q (12)

for a > 0, β > 0, q < 1, 1− a(1− q)|x|ρ > 0

where c2 =
ρ[a(1−q)]

β
ρ Γ( 1

1−q+β
ρ

+1)

2Γ(β
ρ

)Γ( 1
1−q+1)

.

As q → 1, f1(x) and f2(x) tend to f3(x), which we refer to as the extended symmetric generalized
gamma distribution, where f3(x) is given by:

f3(x) =
ρa

β
ρ

2Γ(β
ρ
)
|x|β−1e−a|x|

ρ

, −∞ < x <∞, a, β, ρ > 0. (13)

Now, generalize Equation (2) by using Equation (11). Since the normalizing constants obtained in
this section are in terms of H-functions, a definition of the H-function is given here.

Hm,n
p,q

[
z
∣∣(a1,α1),...,(ap,αp)

(b1,β1),...,(bq ,βq)

]
=

1

2πi

∫
L

φ(s) z−sds, (14)

where:

φ(s) =

{∏m
j=1 Γ(bj + βjs)

} {∏n
j=1 Γ(1− aj − αjs)

}{∏q
j=m+1 Γ(1− bj − βjs)

} {∏p
j=n+1 Γ(aj + αjs)

}
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where αj, j = 1, 2, ..., p, βj, j = 1, 2, ..., q are real positive numbers, aj, j = 1, 2, ..., p and bj, j =

1, 2, ..., q are complex numbers and L is a contour separating the poles of Γ(bj + βjs), j = 1, 2, ...,m

from those of Γ(1− aj −αjs), j = 1, 2, ..., n. The details of convergence conditions, various properties
and applications of H-function are available in Mathai et al. (2010) [5].

Consider:
f4(x) = C4x

β−1[1 + a(q − 1)xρ]−
1
q−1Eα

ρ
,β
ρ
(−δxα), (15)

x ≥ 0, q > 1, a > 0, ρ > 0, α > 0, β > 0

where:

C−1
4 =

1

ρ Γ( 1
q−1

)[a(q − 1)
β
ρ ]
H2,1

1,2

[ δ

[a(q − 1)]
α
ρ

∣∣(0,1)

(0,1),( 1
q−1
−β
ρ
,α
ρ

)

]
, q > 1. (16)

The general density in Equation (15), for q > 1, includes the Mittag–Leffler extension of Type 2 beta
density and F density. If x > 0 is replaced by |x|, −∞ < x < ∞, with the appropriate change in the
normalizing constant, then we have the Student t density and Cauchy density as special cases, and many
more. As q → 1, f4(x) reduces to f5(x), where:

f5(x) = C5x
β−1e−ax

ρ

Eα
ρ
,β
ρ
(−δxα), C5 = ρa

β
ρ (1 +

δ

a
α
ρ

). (17)

This includes the Mittag–Leffler extension of generalized gamma, Weibull, chi-square,
Maxwell–Boltzmann and related densities. If δ = 0, Equation (17) reduces to the generalized gamma
density. When ρ = 1, Equation (17) reduces to Equation (2). In particular, if ρ = β, the Mittag–Leffler
extension of Weibull density is obtained,

f6(x) = C6x
β−1e−ax

β

Eα
ρ
,1(−δxα). (18)

For x > 0 and q < 1, f4(x) takes the following form:

f7(x) = C7x
β−1[1− a(1− q)xρ]

1
1−qEα

ρ
,β
ρ
(−δxα), (19)

0 ≤ x ≤ 1

[a(1−q)]
1
ρ
, a, α, β > 0, q < 1

where:

C−1
7 =

Γ(1 + 1
1−q )

ρ [a(1− q)
β
ρ ]
H1,1

1,2

[ δ

[a(1− q)]
α
ρ

∣∣(0,1)

(0,1),(− 1
1−q−

β
ρ
,α
ρ

)

]
, q < 1. (20)

This general density includes the Mittag–Leffler extension of Type 1 beta density, triangular density,
uniform density and many more. As q → 1, Equation (15) reduces to Equation (17). For ρ = β, then
Equations (15) and (19) will give the two forms of extended q-Weibull density as given below.

f8(x) = C8x
β−1[1 + a(q − 1)xβ]−

1
q−1Eα

β
,1(−δxα), (21)

x ≥ 0, q > 1, a > 0, α > 0, β > 0

f9(x) = C9x
β−1[1− a(1− q)xβ]

1
1−qEα

β
,1(−δxα), (22)
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0 ≤ x ≤ 1

[a(1−q)]
1
β
, a, α, β > 0, q < 1

where the normalizing constants C8 and C9 are obtained from Equations (16) and (20), respectively. In
particular, if δ = 0, then f8(x) and f9(x) will coincide with q-Weibull density. In particular, for β = 1

and ρ = 1, the integral of Equation (19) can be treated as the pathway fractional integral transform of
the Mittag–Leffler function with appropriate transformation of the variable. More details about pathway
fractional integral transform can be found in Seema Nair ((2009) [8], (2011) [9]).

The model in Equation (15) can be connected to the superstatistics of Beck and Cohen (2003) [10]
and Beck (2006) [11] for q = 2, δ = 0. There is a vast literature on Beck–Cohen superstatistics
in statistical mechanics with many physical interpretations; see, for example, Beck ((2010) [12],
(2009) [13]). From a statistical point of view, it can be obtained as an unconditional density from Bayes’
setup, by considering generalized gamma as a conditional density with the assumption that the scale
parameter a has a prior gamma density; see Nair and Kattuveettil (2010) [14]. For β = 1, ρ = 1, a = 1

and δ = 1, we have Tsallis statistics for q > 1 and q < 1, respectively, from the models in Equations
(15) and (19). Thus, we can make a connection to nonextensive statistical mechanics; see, for example,
Tsallis ((1988) [15], (2004) [16], (2009) [17]) and Mathai et al. (2010) [5]. (It is stated that over 3000
papers have been published on this topic during the past 20 years, and over 5000 people from around the
globe are working in this area).

4. Connection to Mittag–Leffler Distributions and Autoregressive Processes

Especially when a = 0, β = α, such that 0 < α ≤ 1 in Equation (2), we have the Mittag–Leffler
density, which has the probability density function:

g1(x) = δ xα−1Eα,α(−δxα), 0 < α ≤ 1, δ > 0 (23)

and has Laplace transform δ(sα+δ)−1, a special case of the general class of Laplace transforms discussed
by Mathai et al. (2006) [18]. Similarly, for a = 0 in (2) and replacing β by αγ and δ by 1

ρ
, one can

arrive at the generalized Mittag–Leffler density, which has the probability density function:

g(x) =
xαγ−1

ργ
Eγ

α,αγ(−
xα

ρ
), 0 < α < 1, γ, ρ > 0, x ≥ 0 (24)

where Eδ
α,β(·) is the generalized Mittag–Leffler function defined as:

Eδ
α,β(z) =

∞∑
k=0

(δ)k z
k

Γ(αk + β)k!
, α > 0, β > 0, γ > 0,

where (δ)k = δ(δ + 1)(δ + 2) · · · (δ + k − 1) and Equation (24) has the Laplace transform of the form:

Lg(t) = [1 + ρtα]−γ, |ρtα| < 1. (25)

The Laplace transform in Equation (25) is associated with infinitely-divisible and geometrically
infinitely-divisible distributions, α-Laplace and Linnik distributions. The class of Laplace transforms
relevant in geometrically infinitely-divisible and α-Laplace distributions is of the form L(p) = 1

1+η(p)
,
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where η(p) satisfies the condition η(bp) = bαη(p) and η(p) is a periodic function for fixed α.
In Mathai (2010) [4], it is noted that there is a structural representation in terms of the positive Lévi
random variable by using Equation (25).

A positive Lévi random variable u > 0, with parameter α is such that the Laplace transform of the
density of u > 0 is given by e−t

α . That is:

E[e−tu] = e−t
α

. (26)

Theorem 4.1. Let y > 0 be a Lévi random variable with Laplace transform as in (26) and x ≥ 0 an
exponential random variable with parameter δ, and let x and y be independently distributed. Then,
u = yx

1
α is distributed as generalized Mittag–Leffler random variable with Laplace transform (see [4]):

Lu(t) = [1 + ρtα]−γ

Proof: For proving this result, we will make use of the following lemma of the conditional argument.

Lemma 1.1. For two random variables u and v having a joint distribution,

E(u) = E[E(u|v)] (27)

whenever all of the expected values exist, where the inside expectation is taken in the conditional space
of u given v and the outside expectation is taken in the marginal space of v.

Now, by applying Equation (27), we have the following: Let the density of u be denoted by g(u).
Then, the conditional Laplace transform of g, given x, is given by:

E[e−(tx
1
α )y|x] = e−t

αx. (28)

However, the right side of Equation (28) is in the form of a Laplace transform of the density of x with
parameter tα. Hence, the expected value of the right side, with respect to x, is available by replacing the
Laplace parameter t in [1 + ρt]−γ (the Laplace transform of a gamma density with the scale parameter ρ
and shape parameter γ) by tα,

Lg(t) = [1 + ρtα]−γ, ρ > 0, γ > 0 (29)

which establishes the result. From Equation (27), one can observe that if we consider an arbitrary random
variable y with the Laplace transform of the form:

Lg(t) = e−[φ(t)] (30)

whenever the expected value exists, where φ(t) is such that:

φ(tx
1
α ) = xφ(t), lim

t→0
φ(t) = 0, (31)

then from Equation (28), we have:

E[e−(tx
1
α )y|x] = e−x[φ(t)]. (32)
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Now, let x be an arbitrary positive random variable having Laplace transform, denoted by Lx(t) where
Lx(t) = ψ(t). Then, from Equations (27) and (30), we have:

Lg(t) = ψ(φ(t)).

In particular, when δ = 1 in Equation (23), we have the standard Mittag–Leffler density introduced
by Pillai (1990) [19]. For the properties of Mittag–Leffler distributions connected to the autoregressive
process, see the papers of Pillai and Jayakumar (1995) [20] and Jayakumar (2003) [21].

4.1. Moments from Mellin–Barnes Integral Representation

It is shown in Mathai (2010) [4] that for handling problems connected to Mittag–Leffler densities,
it is convenient to use the Mellin–Barnes representation of a Mittag–Leffler function and then proceed
from there. The following gives the Mellin–Barnes integral representation of g(x).

g(x) =
1

Γ(γ)

1

2πi

∫ c+i∞

c−i∞

Γ(s)Γ(γ − s)
Γ(αγ − αs)

xαγ−1x−αsds, <(γ) > 0

=
1

αΓ(γ)

1

2πi

∫ c+i∞

c−i∞

Γ(γ − 1
α

+ s
α
)Γ( 1

α
− s

α
)

Γ(1− s)
x−sds, (33)

by taking αγ − 1− αs = −s1. One can also look upon the Mellin transform of the density of a positive
random variable as the (s − 1)-th moment, and therefore, from Equation (33), one can write the Mellin
transform as an expected value. That is,

Mg(s) = E(xs−1) in g

=
1

Γ(γ)

Γ(γ − 1
α

+ s
α
)Γ( 1

α
− s

α
)

αΓ(1− s)
,

for 1− α < <(s) < 1, 0,α ≤ 1, γ > 0

=
1

Γ(γ)

Γ(γ − 1
α

+ s
α
)Γ(1 + 1

α
− s

α
)

Γ(2− s)
. (34)

If we replace s − 1 by ρ, then one can obtain the ρ-th moment of the generalized Mittag–Leffler
density as follows:

E(xρ) =
Γ(γ + ρ

α
)Γ(1− ρ

α
)

Γ(γ)Γ(1− ρ)
, − α < <(ρ) < α < 1.

In particular, for γ = 1, we can arrive at the ρ-th moment of the Mittag–Leffler density of
Pillai (1990) [19], Pillai and Jayakumar (1995) [20]. For α→ 1, Equation (34) reduces to:

Mg(t) =
1

Γ(γ)
Γ(γ − 1 + s).

Its inverse Mellin transform is then:

g1(x) =
1

Γ(γ)

1

2πi

∫
L

Γ(γ − 1 + s)x−sds =
1

Γ(γ)
xγ−1e−x, x ≥ 0, γ > 0 (35)

which is the one-parameter gamma density, and for γ = 1, it reduces to the exponential density. Hence,
the generalized Mittag–Leffler density g can be taken as an extension of a gamma density, such as
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the one in Equation (35), and the Mittag–Leffler density g1 as an extension of exponential density
for γ = 1. It is shown that generalized Mittag–Leffler density (GMLD(α, γ, ρ)) is infinitely and
geometrically infinitely divisible for 0 < α ≤ 1, 0 < γ ≤ 1, and also, it belongs to the class L; see [21].
Jose et al. (2010) [22] discussed the first order autoregressive process with GMLD(α,β) marginals. In
a similar manner, we shall construct a first order autoregressive process withGMLD(α, γ, ρ) marginals,
which will be stated as a remark.
Remark: The first order autoregressive process Xn = aXn−1 + ηn, a ∈ (0, 1) is strictly stationary
Markovian with GMLD(α, γ, ρ) if and only if the {ηn} are distributed independently and identically as
the γ-fold convolution of the random variable {Vn} where:

Vn =

{
0 with probability aα

Mn with probability 1− aα
(36)

where {Mn} are independently and identically distributed Mittag–Leffler random variables, provided
X0

d
= GMLD(α, γ, ρ) and independent of ηn.

5. Applications in Reaction-Diffusion Problems

We can look at the model Equation (2) in another way, as well; consider the total integral as:

1 = C

∫ ∞
0

xβ−1e−axEα,β(−δxα)dx, (37)

which can be treated as the Laplace transform of the function xβ−1Eα,β(−δxα), and hence, C−1 = aα−β

aα+δ
,

where C is the normalizing constant of Equation (2), is nothing but the Laplace transform of the given
function. It is shown to be very relevant in fractional reaction-diffusion problems in physics, since it
naturally occurs in the derivation of the inverse Laplace transform of the functions of the type aα(d+baβ),
where a is the Laplace transform parameter and d and b are constants.

For more details, see the papers of [8,18,23]. Reaction-diffusion equations are modeling tools for
the dynamics presented by a competition between two or more species, activators and inhibitors or
production and destruction, that diffuse in a physical medium. As an example, [1] considered the
evolution of a star like the Sun, which is governed by a second order system of differential equations, the
kinetic equations, describing the rate of change of chemical composition of the star for each species
in terms of the reaction rates for destruction and production of that species [24–26]. Methods for
modeling processes of destruction and production have been developed for bio-chemical reactions and
their unstable equilibrium states [27] and for chemical reaction networks with unstable states, oscillations
and hysteresis [28].

Consider an arbitrary reaction characterized by a time-dependent quantity N = N(t). It is possible
to equate the rate of change dN

dt
to a balance between the destruction rate d and the production rate p of

N , that is dN
dt

= −d+ p. In general, through feedback or other interaction mechanisms, destruction and
production depend on the quantity N itself: d = d(N) or p = p(N). This dependence is complicated,
since the destruction or production at time t depends not only on N(t), but also on the past history
N(τ), τ < t, of the variable N . This may be formally represented by:

dN

dt
= −d(Ni) + p(Ni) (38)



Axioms 2015, 4 376

where Ni denotes the function defined by Ni(t
∗) = N(t − t∗), t∗ > 0. The production and destruction

of species is described by kinetic equations governing the change of the number density Ni of species i
over time, that is,

dNi

dt
= −

∑
j

NiNj < σν >ij +
∑
k,l 6=i

NkNl < σν >kl, (39)

where < σν >mn denotes the reaction probability for an interaction involving species mand n, and the
summation is taken over all reactions, which either produce or destroy the species i [29]. The first sum
in Equation (39) can also be written as:

−
∑
j

NiNj < σν >ij= −Ni(
∑
j

Nj < σν >ij) = Niai, (40)

where ai is the statistically expected number of reactions per unit volume per unit time destroying the
species i. It is also a measure of the speed at which the reaction proceeds. In the following, we are
assuming that there are Nj(j = 1, . . . i, . . .) species j per unit volume and that for a fixed Ni, the number
of other reacting species that interact with the i-th species is constant in a unit volume. Following the
same argument, for the second sum in Equation (39) accordingly,

+
∑
k,l 6=i

NkNl < σν >kl= +Nibi, (41)

whereNibi is the statistically expected number of the i-th species produced per unit volume per unit time
for a fixed Ni. Note that the number density of species i, Ni = Ni(t), is a function of time, while the
< σν >mn, containing the thermonuclear functions (see Haubold and Kumar (2008) [30]), are assumed
to depend only on the temperature of the gas, but not on the time t and number densities Ni. Then,
Equation (38) implies that:

dNi(t)

dt
= −(ai − bi)Ni(t). (42)

For Equation (42), we have three distinct cases, ci = ai − bi > 0, ci < 0 and ci = 0, of which
the last case says that Ni does not vary over time, which means that the forward and reverse reactions
involving species i are in equilibrium; such a value for Ni is called a fixed point and corresponds to
a steady-state behavior. The first two cases exhibit that either the destruction (ci > 0) of species i or
production (ci < 0) of species i dominates.

For the case ci > 0, we have:
dNi(t)

dt
= −ciNi(t), (43)

with the initial condition that Ni(t = 0) = N0 is the number density of species i at time t = 0, and it
follows that:

Ni(t)dt = N0e−citdt. (44)

The exponential function in Equation (44) represents the solution of the linear one-dimensional
differential Equation (43) in which the rate of destruction of the variable is proportional to the value of the
variable. Equation (43) does not exhibit instabilities, oscillations or chaotic dynamics, in striking contrast
to its cousin, the logistic finite-difference equation [26,29]. A thorough discussion of Equation (43) and
its standard solution in Equation (44) is given in [25].
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Let us consider the standard fractional kinetic equation:

N(t)−N0 = −cν 0D
−ν
t N(t), ν > 0 (45)

which is derived by [1]. 0D
−ν
t is the Riemann–Liouville fractional integral of order ν. It is very easy

to find the solution of this equation. On applying Laplace transforms on both sides, with parameter p,
one has:

L{N(t)} −N0L{1} = −cν L{0D
−ν
t N(t)}

L{N(t)} − N0

p
= −cν p−νL{N(t)}

(1 + cν p−ν)L{N(t)} =
N0

p

L{N(t)} =
N0

p[1 + (p
c
)−ν ]

= N0

[ ∞∑
k=0

(−1)kcνkp−(νk+1)

]
.

Now, applying inverse Laplace transform,

N(t) = N0

∞∑
k=0

(−1)kcνkL−1{p−(νk+1)} = N0

∞∑
k=0

(−1)k
(ct)νk

Γ(νk + 1)
.

This solution can be written in terms of the Mittag–Leffler function as:

N(t) = N0 Eν(−cνtν), ν > 0. (46)

Theorem 5.1. For ν > 0, let the coefficient of N0 of the fractional integral equation be g(t) an arbitrary
function, so that the fractional integral becomes:

N(t)−N0 g(t) = −cν 0D
−ν
t N(t). (47)

Then, the Laplace transforms of the fractional integral equation will be:

L{N(t)} =
N0 G(p)

1 + ( c
p
)ν
, where G(p) = L{g(t)} (48)

Now, one can take various forms for G(p); all of the special cases are considered in [23,31]. For
example:

Let us consider G(p) = p−β 1F1(γ1,β1, p
−α) for α > 0, β > 0, ν > 0, c > 0, then

Equation (47) becomes:

L{N(t)} = N0 p
−β

∑∞
k=0

(γ1)k
(β1)k

p−αk

k![
1 + ( c

p
)ν
] (49)

= N0 p
−β

∞∑
k=0

(γ1)k
(β1)k

p−αk

k!

∞∑
n=0

(−1)n(
c

p
)νn

= N0

∞∑
k=0

(γ1)k
(β1)k k!

∞∑
n=0

(−1)ncνnp−(νn+αk+β)
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On applying inverse Laplace transform, we get:

N(t) = N0

∞∑
k=0

(γ1)k
(β1)k k!

∞∑
n=0

(−1)ncνn
tνn+αk+β−1

Γ(νn+ αk + β)

= N0 t
β−1

∞∑
k=0

(γ1)k
(β1)k k!

tαkEν,αk+β(−cνtν) (50)

Haubold and Mathai (2000) [1] generalized the standard kinetic Equation (43) to a standard fractional
kinetic Equation (45), derived solutions of a fractional kinetic equation that contains the particle reaction
rate (or thermonuclear function) as a time constant and provided the analytic technique to further
investigate possible modifications of the reaction rate through a kinetic equation. The Riemann–Liouville
operator in the fractional kinetic equation introduces a convolution integral with a slowly-decaying
power-law kernel, which is typical for memory effects referred to in [32]. This technique may open
an avenue to accommodate changes in standard solar model core physics as proposed by [33]. In the
solution of the standard fractional kinetic Equation (45), given in Equation (46), the standard exponential
decay is recovered for ν = 1. However, the Equation (46), for 0 < ν < 1, shows a power-law behavior
for t→∞ and is constant (initial value N0) for t→ 0.

6. Application in Financial Modeling

In this section, we present an application of generalized gamma Mittag–Leffler density in modeling
currency exchange rates. Here, we considered 1152 observations starting from 2004 to 2008, of U.S.
dollar-Indian rupee foreign exchange rates, which is available at www.rbi.org. The log returns of the
exchange rates are considered. The following Figure 3 is the graph of the log-transformed data embedded
with the generalized gamma Mittag–Leffler density.

From the data, the summary statistics for transformed currency exchange rates obtained are as follows:

Mean = 0.0110

Variance = 2.0805× 10−6

Coefficient of skewness = 0.2728

For convenience, assume that α = 1; by using the method of moments, estimates of parameters are
obtained and are given as:

β̂ = 76.3057

δ̂ = 6227.6449

â = 7413.998

From the figures, we can observe that the generalized gamma Mittag–Leffler density fits well to the
data with the above estimated values of the parameters. Here, we used the chi square statistic to measure
the goodness of fit. The calculated chi square value is 2.44, and the corresponding tabled value is 15.507.
Hence, we conclude that the model in Equation (2) is a good fit to the dataset considered.
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Figure 3. Generalized gamma Mittag–Leffler density fitted to the data on dollar-rupee
exchange rate.

7. Multivariate Generalization

In this section, a multivariate analogue of the density in Equation (2) is considered. The multivariate
Mittag–Leffler function will be defined as:

Ep[α1, · · · ,αp;β1, · · · ,βp;−δ;xα1
1 · · ·xαpp ] =

∞∑
k=0

xα1k
1 · · ·xαpkp (−δ)k

Γ(α1k + β1) · · ·Γ(αpk + βp)
,

where <(αj) > 0, <(βj > 0), j = 1, 2, . . . , p. (51)

A function close to Ep(·) of Equation (51) is the multi-index Mittag–Leffler function of Kiryakova;
see, for example, Kiryakova (2000) [3]. Now, the general density is defined as:

fp(x1, . . . , xp) =


Cpx

β1−1
1 · · ·xβp−1

p e−a1x1−···−apxpEp[α1, · · · ,αp;β1, · · · ,βp;−δ;xα1
1 · · ·x

αp
p ],

0 ≤ xj <∞, <(αj) > 0, <(βj > 0), aj > 0, j = 1, 2, . . . , p

0, elsewhere.

The normalizing constant is available, by proceeding as before, as:

Cp = aβ1
1 · · · aβpp (1 +

δ

aα1
1 · · · a

αp
p

), | δ

aα1
1 · · · a

αp
p
| < 1. (52)

Various properties of one form of a multivariate gamma density can be seen from
Griffiths (1984) [34]. The following sections reveal the joint Laplace transform and product moments of
the density function.
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The Joint Laplace transform is available from Equation (52) by replacing aj by aj + tj, j = 1, . . . , p

and then dividing by the normalizing constant. That is:

E(e−t1x1 · · · e−tpxp) =
aβ1

1 · · · a
βp
p

(a1 + t1)β1 · · · (ap + tp)βp

(1 + δ

a
α1
1 ···a

αp
p

)

(1 + δ
(a1+t1)α1 ···(ap+tp)αp

)
, aj + tj > 0,

| δ

(a1 + t1)α1 · · · (ap + tp)αp
| < 1, j = 1, . . . , p. (53)

The arbitrary product moments are obtained in terms of generalized Wright function and are given
by:

E(xγ11 · · · xpp) =

∫ ∞
0

· · ·
∫ ∞

0

xγ11 · · ·xγpp Cp x
β1−1
1 · · ·xβp−1

p e−a1x1 · · · e−apxp

× Ep(αj;βj, j = 1, . . . , p;−δ;xα1
1 · · ·xαpp )dx1 · · · dxp

=
1

aγ11 · · · a
γp
p

(1 +
δ

aα1
1 · · · a

αp
p

) p+1Ψp

[(β1+γ1,α1),··· ,(βp+γp,αp),(1,1)

(β1,α1),,(βp,αp)

;− δ

aα1
1 · · · a

αp
p

]
,

<(βj + γj) > 0, j = 1, . . . , p. (54)

Conditional density of x1 given x2, . . . , xp is given by:

f(x1|x2, . . . , xp) = aβ11 xβ1−1
1 e−a1x1

Ep(αj; βj, j = 1, . . . , p;−δ;xα1
1 · · ·x

αp
p )

Ep−1(αj; βj, j = 2, . . . , p;− δ
a
α1
1

;xα2
2 · · ·x

αp
p )

. (55)

Regression analysis is concerned with constructing the best predictor of one variable at the
preassigned values of some other variables. Under the minimum mean square principle, the best
predictors can be seen to be the conditional expectation of x1 given x2, · · · , xp. Hence,E(x1|x2, · · · , xp)
is defined as the regression of x1 on x2, · · · , xp. In our case:

E(x1|x2, . . . , xp) =

∫ ∞
0

x1f(x1|x2, . . . , xp)dx1

=
1

K(X)
aβ1

1

∫ ∞
0

xβ1
1 e−a1x1

∞∑
k=0

(−δ)k xα1k
1 · · · xαpkp

Γ(α1k + β1) · · ·Γ(αpk + βp)

where K(X) = Ep−1(αj;βj, j = 2, . . . , p;− δ

aα1
1

;xα2
2 · · · xαpp )

E(x1|x2, . . . , xp) =
β1

a1

− δα1 x
α2
2 · · ·x

αp
p

aα1+1
1

E
(2)
p−1(αj;βj + αj, j = 2, . . . , p;− δ

a
α1
1

;xα2
2 · · ·x

αp
p )

Ep−1(αj;βj, j = 2, . . . , p;− δ

a
α1
1

;xα2
2 · · ·x

αp
p )

, (56)

where E(2)
p−1 is the same function appearing in Equation (51), but with an additional Pochhammer symbol

(2)k sitting in the numerator. The conditional expectation, E(x1|x2), is the best predictor, best in the
sense of minimizing the expected squared error, also known as the regression of x1 on x2, and is given as:

E(x1|x2) =
β1

a1

− δα1 x
α2
2

aα1+1
1 aα3

3 · · · a
αp
p

E
(2)
1 (α2;β2 + α2;− δ

a
α1
1 a

α3
3 ···a

αp
p

;xα2
2 )

E1(α2;β2;− δ

a
α1
1 a

α3
3 ···a

αp
p

;xα2
2 )

. (57)

In a similar manner, we can extend the results in Section 2 to matrix-variate cases, as well. Let
X = (xrs) be m× n, where all xrs’s are distinct, X of full rank and having a joint density f(X), where
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f(X) is a real-valued scalar function ofX . Then, the characteristic function of f(X), denoted by φX(T ),
is given by:

φX(T ) = E[eitr(XT )], i =
√
−1 and T = (trs) (58)

is an m× n matrix of distinct parameters trs’s, and let T be of full rank. As an example, we can look at
the real matrix-variate Gaussian distribution, given by the density geometric:

g(X) =
|A|n2 |B|m2
π
mn
2

e−tr(AXBX′) (59)

where X is m× n, A = A′ > 0, B = B′ > 0 are m×m and n× n positive definite constant matrices,
having Fourier transform as:

φg(T ) = e−
1
4

tr(B−
1
2 TA−1T ′B−

1
2 ) (60)

where T is the parameter matrix. Motivated by Equations (58) and (60), Mathai (2010) [4] defined
matrix-variate Linnik density and gamma-Linnik density. The following result was given recently in
Mathai (2010) [4], which will be needed for the discussion to follow.

Theorem 7.1. Let y be a real scalar random variable, distributed independently of the m× n matrix X
and having a gamma density with the Laplace transform:

Ly(t) = (1 + ρt)−γ, ρ > 0, γ > 0

and let X be distributed as a real rectangular matrix-variate Linnik variable having characteristic
function e−[tr(TΣ1T ′Σ2)]

α
2 , 0 < α ≤ 2; then, the rectangular matrix U = y

1
αX has the

characteristic function:
φU(T ) = [1 + ρ(tr(TΣ1T

′Σ2))
α
2 ]−β (61)

The matrix variable U in Equation (61) will be called a real rectangular matrix-variate Gaussian
Linnik variable when α = 2 and gamma Linnik variable for the general α. By using the
multi-index Mittag–Leffler function of Kiryakova (2000) [3] in Equation (51), one can also define a
gamma-Kiryakova vector or matrix variable. Now, let us consider two independently-distributed real
random variables y and X where y has a general Mittag–Leffler density as in Equation (24) and X has
a real rectangular matrix-variate Gaussian density as in Equation (59). Then, we have the following
results.

Theorem 7.2. Let y follow GMLD(α, γ, ρ) and the real rectangular matrix X have the density
in Equation (59), and let X and y be independently distributed. Then, U1 = y

1
αX has the

characteristic function:
φU1(T ) = [1 +

ρ

4α
(tr(A−1T ′B−1T ))α]−γ (62)

Theorem 7.3. Let U2 = y
1
βX , where y and X are independently distributed with y having the density in

Equation (24), and X is a real rectangular matrix-variate Linnik variable with the parameters γ,A,B;
then U2 has the characteristic function:

φU2(T ) = [1 + ρ(tr(A−1T ′B−1T )
αβ
2 )]−γ, ρ, γ, α, β > 0 (63)
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8. Conclusion

The model introduced in this paper will be useful for investigators in disciplines of physical sciences,
particularly superstatistics of Beck ((2006) [11], (2009) [13]), nonextensive statistical mechanics
Tsallis ((1988) [15], (2004) [16], (2009) [17]), reaction-diffusion problems in physics and
Haubold (2000) [5], statistical distribution theory and model building. In many physical situations,
when the integer derivatives are replaced by fractional derivatives, naturally, the solutions are obtained
in terms of Mittag–Leffler functions and their generalizations. However, fractional integrals are shown
to be connected to Laplace convolutions of positive random variables. Thus, one can connect the ideas
of fractional calculus to statistical distribution theory via the Mittag–Leffler function. the Mittag–Leffler
distribution can also be used as waiting time distributions, as well as first passage time distributions for
certain renewal process.
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