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Abstract: In 1937, Boas gave a smart proof for an extension of the Bernstein theorem
for trigonometric series. It is the purpose of the present note (i) to point out that a formula
which Boas used in the proof is related with the Shannon sampling theorem; (ii) to present
a generalized Parseval formula, which is suggested by the Boas’ formula; and (iii) to show
that this provides a very smart derivation of the Shannon sampling theorem for a function
which is the Fourier transform of a distribution involving the Dirac delta function. It is also
shows that, by the argument giving Boas’ formula for the derivative f ′(x) of a function f(x),
we can derive the corresponding formula for f ′′′(x), by which we can obtain an upperbound
of |f ′′′(x) + 3R2f ′(x)|. Discussions are given also on an extension of the Szegö theorem for
trigonometric series, which Boas mentioned in the same paper.
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1. Introduction

Pólya and Szegö has taken up the Bernstein theorem for trigonometric series in their famous
book [1]. In [2] ([ Vol. II, p. 11]), the theorem is given as follows.
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Theorem 1. Let fT (x) be a trigonometric polynomial of orderRT ∈ Z>0, which is expressed as follows:

fT (x) =
1

2
a0 +

RT∑
n=1

(an cosnx+ bn sinnx), (1)

MT ∈ R>0, and |fT (x)| 5 MT hold for all x ∈ R. Then |f ′T (x)| 5 MTRT , with equality if and only if
fT (x) is of the form MT cos(nx+ c) for n ∈ Z and c ∈ R.

Here R and Z denote the sets of all real numbers and all integers, respectively, and R>0 := {x ∈
R|x > 0}, Z>0 := {n ∈ Z|n > 0} and Z[a,b] := {n ∈ Z|a ≤ n ≤ b} for a ∈ Z and b ∈ Z satisfying
a ≤ b. We use also C which denotes the set of all complex numbers.

Boas [3] gave generalizations of this theorem and a related Szegö theorem for trigonometric series,
which are Theorems 2 and 9 given below. The generalized theorems are concerned with a function f(x)
which can be expressed as follows:

f(x) =

∫ R

−R
eixtdα(t). (2)

Here and throughout the present paper, α(t) is a complex-valued function of bounded variation,
and R ∈ R>0.

The generalized Bernstein theorem is the following.

Theorem 2. Let a function f(x) be given by (2), M ∈ R>0, and |f(x)| 5 M hold for all x ∈ R. Then
|f ′(x)| 5MR.

In a later paper [4], Boas said that the proofs in [3] are lengthy and complicated, and gave a
very smart proof for this theorem. That proof was based on the following formula, which we shall
call Boas’ formula:

f ′(x) =
4R

π2

∞∑
n=−∞

(−1)n

(2n+ 1)2
f(x+

π

2R
+
nπ

R
). (3)

Proof of Theorem 2 By using |f(x)| 5M and the well-known summation formula:
∞∑

n=−∞

1

(2n+ 1)2
=
π2

4
, (4)

in (3), we obtain |f ′(x)| 5MR. A derivations of (4) is given in Remark 4 in Section 3.1. �

When we see the formula (3), we expect that there must exist a sampling theorem which is applicable
to the function f(x), and (3) must be obtained by its differentiation. This is the motivation of the present
paper. To achieve this object, we present the following sampling theorem.

Theorem 3. Let a function f(x) be given by (2) in terms of α(t) which is continuous in a neighbourhood
of t = −R as well as of t = R. Then f(x) is expressed as follows:

f(x) = lim
N→∞

N∑
n=−N

f(y +
nπ

R
)
sin(xR− yR− nπ)
xR− yR− nπ

, (5)

where y is any real number.
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This theorem is proved in Section 3.

Remark 1. If we put y = 0, (5) takes the form of the ordinary well-known Shannon sampling
theorem [5].

We confirm the following proposition in Section 3.1.

Proposition 1. By taking the term-by-term differentiation of (5) with respect to x, and then putting
y = x+ π

2R
, we obtain (3).

In the formulas (3) and (5), f ′(x) and f(x) are expressed in terms of an enumerable set {f(xn)}n∈Z.
We shall call such a formula a sampling formula (S-formula).

We can use the argument deriving Boas’ formula (3) to derive the corresponding formula for f ′′′(x).
We prove the following theorem in Section 3.2.

Theorem 4. Let the assumption in Theorem 2 be satisfied. Then |f ′′′(x) + 3R2f ′(x)| 5 2MR3.

In Section 2, we give a generalized Parseval formula and the lemmas that provide the conditions under
which the formula holds. By using these, we show that it readily provides a very simple derivation of the
S-formulas (3) and (5) and of S-formulas for some functions defined similarly to (2), in Section 3. Some
comments are given on the derivation of the Boas’ formula (3), in Section 3.1. In Section 4, discussions
are given on the generalized Szegö theorem. Concluding remarks are presented in Section 5.

Here we note that a function f(x) expressed as (2) is continuous and bounded. In fact, if we denote
the total variation of α(t) by T , then (2) shows |f(x)| 5 T for all x ∈ R.

2. Generalized Parseval Formula

In the present paper, we are concerned with integrals of the form:

I = 〈h, g〉 :=
∫ R

−R
h(t)g(t)dα(t) (6)

Here we assume that g(t) is continuous in [−R,R], and h(t) is integrable in (−R,R) and has the
Fourier series, so that h(t) is expressed as follows:

h(t) = lim
N→∞

N∑
n=−N

cne
inπt/R (7)

for t ∈ (−R,R) at which h(t) is continuous.
When α(t) is absolutely continuous in [−R,R], and its derivative F (t) is defined by F (t) = dα(t)/dt,

I is expressed as I =
∫ R
−R h(t)g(t)F (t)dt. If the squares of h(t) and of g(t)F (t) are integrable in

(−R,R), we have the Parseval formula:

I = 〈h, g〉 = lim
N→∞

N∑
n=−N

cndn (8)

where cn are the coefficients in (7) and dn are given by dn =
∫ R
−R e

inπt/Rg(t)F (t)dt.
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We now present two lemmas which guarantee the validity of the formula (8) for the I defined by (6),
assuming that dn are defined by:

dn =

∫ R

−R
einπt/Rg(t)dα(t). (9)

Lemma 1. Let the Fourier series (7) of h(t) converge uniformly, and let dn be defined by (9). Then the
formula (8) holds for I = 〈h, g〉 defined by (6).

Proof Substituting (7) in (6), we obtain (8) by term-by-term integration, which is allowed, since the
convergence of the Fourier series (7) is uniform and α(t) is of bounded variation. �

Remark 2. If h(t) is of bounded variation and continuous in [−R,R] and satisfies h(R) = h(−R),
then its Fourier series (7) converges uniformly, by Theorem (8.6) in [2] (Vol. I, p. 58) or by the Fejér
theorem [2] (Vol. I, p. 89).

Lemma 2. Let h(t) be of bounded variation and piecewise continuous in [−R,R], and let α(t) be
continuous at every discontinuous point of h(t), as well as at t = −R and t = R when h(t) is
discountinuous at t = −R, t = R or both, or when h(−R) 6= h(R), and let dn be defined by (9).
Then the formula (8) holds for I = 〈h, g〉 defined by (6).

Proof We use the notations that:

h̃N(t) =
N∑

n=−N

cne
inπt/R, ĨN = 〈h̃N , g〉 =

∫ R

−R
h̃N(t)g(t)dα(t), (10)

and Dε is the sum of neighbourhoods of the points at which α(t) is not continuous. There exists such
a B ∈ R>0 that |h(t)g(t)| < B and |h̃N(t)g(t)| < B for N ∈ Z>0, since the partial sums h̃N(t) of
the Fourier series are uniformly bounded [2] (Vol. I, p. 90, Theorem (3.7)). For an arbitrary ε ∈ R>0,
we choose Dε such that the the total variation of α(t) in Dε is less than ε, and then choose N ∈ Z>0

such that |h(t) − h̃N(t)| · |g(t)| < ε outside Dε. This is possible since h̃N(t) converges uniformly
outside Dε, as seen in Remark 2. If we denote the total variation of α(t) by T , we have the inequality
|I − ĨN | < 2B · ε+ ε · T . This shows that ĨN → I as N →∞. �

The two generalized theorems in Boas’ paper [4] are proved below with the aid of Lemma 1 and
Remark 2.

3. Generalized Sampling Theorem

We consider four functions hl(t) of t ∈ [−R,R] for l ∈ Z[1,4], which are:

h1(t) = 1, h2(t) = −i
t

|t|
, h3(t) = i

t

R
, h4(t) =

|t|
R
. (11)

We define four functions Il(x) of x ∈ R for l ∈ Z[1,4], by:

Il(x) = 〈hl, eixt〉 =
∫ R

−R
hl(t)e

ixtdα(t). (12)
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By (2), I1(x) = f(x). We now define the function f̃(x) by:

f̃(x) = I2(x) = −i ·
∫ R

−R

t

|t|
eixtdα(t). (13)

We then note that the derivatives of f(x) and f̃(x) are expressed as follows:

f ′(x) = R · I3(x) = i

∫ R

−R
t · eixtdα(t), f̃ ′(x) = R · I4(x) =

∫ R

−R
|t|eixtdα(t). (14)

We confirm that the exchange of integration and differentiation in each of these relations and (17)
given below is allowed, with the aid of the method presented in [6] (Section 4.2).

We define hl,a(t) by hl,a(t) = hl(t)e
iat for a ∈ R and t ∈ [−R,R]. They are listed in the second

column of Table 1. For a ∈ R and y ∈ R, we define Il,a(y) by:

Il,a(y) = 〈hl,a, eiyt〉 =
∫ R

−R
hl,a(t)e

iytdα(t). (15)

The following lemma is easily confirmed.

Lemma 3. Let a = x− y. Then Il(x) = Il,a(y).

Since hl,a(t) depends on l and a, its Fourier coefficients cn depend on l and a, and hence we express
them by cn(l, a), and the Fourier series (7) as:

hl,a(t) = lim
N→∞

N∑
n=−N

cn(l, a)e
inπt/R. (16)

In the third column of Table 1, cn(l, a) satisfying (16) are given for four functions hl,a(t). We note
that hl,a(t) = 1

R
∂
∂a
hl−2,a(t) for l = 3, 4, and hence:

cn(l, a) =
1

R

∂

∂a
cn(l − 2, a), l = 3, 4. (17)

Because of (9) and (2), when g(t) = eiyt, dn is given by dn = f(y + nπ/R).
Now the Parseval formula (8) for (6) gives:

Il,a(y) = lim
N→∞

N∑
n=−N

cn(l, a)f(y +
nπ

R
), (18)

for (15). By using this in Lemma 3, we obtain:

Il(x) = lim
N→∞

N∑
n=−N

cn(l, x− y)f(y +
nπ

R
), (19)

for arbitrary value of y ∈ R.

Definition 1. We call the formula (19) the sampling formula (S-formula) for the function Il(x).
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Lemma 4. The formula (5) for f(x) and the corresponding S-formulas for f̃(x), f ′(x) and f̃ ′(x), are
obtained by using cn(l, a) and Il(x), for l = 1, 2, 3 and 4, respectively, of Table 1, in (19), where we put
a = x− y.

Table 1. Fourier coefficients cn(l, a) of function hl,a(t) = hl(t)e
iat in [−R,R], and Il(x)

satisfying (12).

l hl,a(t) cn(l, a) Il(x)

1 eiat sin(a·R−nπ)
a·R−nπ f(x)

2 −i t|t|e
iat 1−cos(a·R−nπ)

a·R−nπ f̃(x)

3 i t
R
eiat cos(a·R−nπ)

a·R−nπ − sin(a·R−nπ)
(a·R−nπ)2

1
R
f ′(x)

4 |t|
R
eiat sin(a·R−nπ)

a·R−nπ − 1−cos(a·R−nπ)
(a·R−nπ)2

1
R
f̃ ′(x)

Proof of Theorem 3 Lemma 4 shows that the formula (5) for f(x) takes the form (19) which is (8) for
the present case, and hence is proved by using Lemma 2. �

Theorem 5. Let α(t) be continuous at t = −R and t = R. Then the S-formulas for f̃(x), f ′(x) and
f̃ ′(x) obtained in Lemma 4, are valid. In the case of f̃(x), α(t) is required to be continuous also at
t = 0.

Proof The proof follows to the proof of Theorem 3 given above. �

Lemma 5. Let l = 1 or l = 2. Then if the formula (19) is valid when hl,a(t) = hl(t)e
iat, and if α(t)

satisfies the condition for it in Lemma 2 for hl,a(t) = i · t · hl(t)eiat, then we have:

i

∫ R

−R
t · hl(t)eiateiytdα(t) = lim

N→∞

N∑
n=−N

f(y +
nπ

R
)
d

da
cn(l, a). (20)

Proof We use (17). �

Remark 3. Formula (20) is obtained from (8) by term-by-term differentiation with respect to a. The
hl,a(t), cn(l, a) and Il(x) given in rows for l = 3 and l = 4 in Table 1 are obtained from those in the
rows for l = 1 and l = 2, respectively, by differentiation with respect to a or to x, and then dividing
by R.

As a consequence of Remark 3, we have the following lemma.

Lemma 6. The S-formulas for f ′(x) and f̃ ′(x) are obtained by term-by-term differentiation of the
corresponding S-formulas for f(x) and f̃(x), respectively.
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3.1. Derivation of Boas’ Formula (3)

In this section, we put y∗ = x+ π
2R

and a∗ = − π
2R

.

Lemma 7. Boas’ formula (3) is derived by putting y = y∗ in the S-formula for f ′(x) obtained in
Lemma 4.

Proof When y = y∗, cn(3, a) = cn(3, a
∗) = 4

π2

(−1)n
(2n+1)2

, as seen from Table 1. �

Theorem 6. Boas’ formula (3) is valid, without the additional assumptions on α(t) given in Theorem 3.

Proof Lemmas 4 and 7 show that (3) takes the form of (19), and hence of the form (8), with
h(t) = h3,a∗(t) = i t

R
e−iπt/(2R). For this h3,a(t), the validity of (3) is concluded by Lemma 1, with

the aid of Remark 2 or (21) given below, without invoking Lemma 2. �

Remark 4. When (3) is proved in the proof of Lemma 7, (16) is expressed as follows:

h3,a∗(t) = i
t

R
e−iπt/(2R) =

4

π2

∞∑
n=−∞

(−1)n

(2n+ 1)2
einπt/R, t ∈ [−R,R]. (21)

By putting t = R in (21), we obtain the summation formula (4), which was used in the proof of
Theorem 2.

Proof of Proposition 1 This is a consequence of Lemmas 6 and 7. �

Remark 5. We can use the steps in Proposition 1 to derive (3) from (5). In the course of the steps, it is
assumed that α(t) is continuous at t = R and t = −R. But in the final form (3), the proof of Theorem 6
shows that Lemma 1 applies, and the additional assumption on α(t) is not necessary.

3.2. Proof of Theorem 4

Theorem 7. Let I5(x),h5,a(t) and cn(5, a) be defined by:

I5(x)=
1

R3
f ′′′(x), h5,a(t) = −i

t3

R3
eiat, (22)

cn(5, a)=
1

R3

d3

da3
S(a)

D(a)
= −C(a)

D(a)
+ 3

S(a)

D(a)2
+ 6

C(a)

D(a)3
− 6

S(a)

D(a)4
, (23)

where C(a) = cos(a ·R− nπ), S(a) = sin(a ·R− nπ) and D(a) = a ·R− nπ. Then (19) and (16) for
l = 5 are valid.

Lemma 8. We put a = a∗ := − π
2R

and t = R. ThenD(a∗) = π
2
(−1−2n), C(a∗) = 0, S(a∗) = −(−1)n,

h5,a(t) = h5,a∗(t) = −1, and

cn(5, a
∗) = −12

π2

(−1)n

(2n+ 1)2
+

96

π4

(−1)n

(2n+ 1)4
. (24)
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Now (19) and (16) are:

f ′′′(x)=R3

∞∑
n=−∞

cn(5, a
∗)f(x+

π

2R
+
nπ

R
), (25)

h5,a∗(R)=−1 = −12

π2

∞∑
n=−∞

1

(2n+ 1)2
+

96

π4

∞∑
n=−∞

1

(2n+ 1)4
. (26)

By comparing (26) with (4), we have the well-known formula:
∞∑

n=−∞

1

(2n+ 1)4
=
π4

48
. (27)

Comparing (25) with (3), we have:

f ′′′(x) + 3R2f ′(x)=
96R3

π4

∞∑
n=−∞

(−1)n

(2n+ 1)4
f(x+

π

2R
+
nπ

R
). (28)

We confirm Theorem 4 by using this with (27).

4. Generalized Szegö Theorem and Its Proof

In [3], the Szegö theorem is given as follows.

Theorem 8. Let fT (x) be the trigonometric polynomial of order RT ∈ Z>0, given by (1) in Theorem 1,
MT ∈ R>0, |fT (x)| 5MT hold for all x ∈ R, and let AT (x) be defined by:

AT (x) = RT · σT (x) + f ′T (x) cos θ + f̃ ′T (x) sin θ, (29)

where θ is any real number, and

σT (x)=
a0
2

+

RT−1∑
n=1

(1− n

RT

)(an cosnx+ bn sinnx),

f̃ ′T (x)=
a0
2

+

RT∑
n=1

n(an cosnx+ bn sinnx). (30)

Then |AT (x)| 5MTRT .

In the paper by Boas [4], the generalized Szegö theorem is given without proof. It is as follows.

Theorem 9. Let f(x), f̃ ′(x) and f̃(x) be defined by (2), (13) and (14), respectively, and let A(x) be
defined by:

A(x) :=R · σ(x) + σ′2(x), (31)

where

σ(x) :=f(x)− 1

R
f̃ ′(x), σ2(x) := f(x) cos θ + f̃(x) sin θ, (32)

and θ is any real number. If |f(x)| 5M ∈ R>0 holds for all x ∈ R, then |A(x)| 5MR.
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A proof of this theorem is given in Section 4.1 below.

Lemma 9. By using the S-formulas for f(x), f̃ ′(x) and f̃(x) obtained in Lemma 4, in (32), we obtain:

σ(x)=
∞∑

n=−∞

f(y +
nπ

R
) · 1− cos(a ·R− nπ)

(a ·R− nπ)2
, (33)

σ2(x)= lim
N→∞

N∑
n=−N

f(y +
nπ

R
) · sin θ + sin(a ·R− nπ − θ)

a ·R− nπ
, (34)

where a = x− y.

Remark 6. From the rows for l = 1 and l = 4 in Table 1, the formula (19) for σ(x) given by (32),
becomes (33), and the corresponding Fourier series (16) is given by:

(1− |t|
R
)eiat =

∞∑
n=−∞

1− cos(a ·R− nπ)
(a ·R− nπ)2

einπt/R, t ∈ [−R,R]. (35)

Writing this formula (35) with a · R = −(ξ + 1)π/2 for t = 0 and for t = R, we derive the
summation formulas:

∞∑
m=−∞

1

(ξ + 2m+ 1)2
=
π2

4
sec2

πξ

2
,

∞∑
m=−∞

(−1)m

(ξ + 2m+ 1)2
= −π

2

4
sec2

πξ

2
sin

πξ

2
. (36)

4.1. Proof of Theorem 9

In this section, we put y∗ = x− (θ − π
2
)/R and a∗ = (θ − π

2
)/R.

We obtain the S-formula for A(x) by using (33) and (34) in (31). We then put y = y∗ and a = a∗ in
the obtained S-formula for A(x). Then we obtain:

A(x)=
∞∑

n=−∞

f(y∗ +
nπ

R
)cn(6, a

∗), (37)

where

cn(6, a
∗) = R

1− sin θ − cos(θ − π
2
− nπ)− sin(−π

2
− nπ)

(θ − π
2
− nπ)2

=
{ 2R(1−sin θ)

(θ−π
2
−2mπ)2 , n = 2m,

0, n = 2m+ 1,
(38)

where m ∈ Z. When |f(x)| 5 M for all x ∈ R, we obtain |A(x)| 5 MR from (37) with (38), by using
the first summation formula in (36).

Before we put y = y∗ and a = a∗, the S-formula for A(x) is valid when an additional assumption
on α(t) given in Theorem 3 is assumed. But the coefficients cn(6, a∗) in the final form (37) are such
that the series (16) converges absolutely and uniformly, and hence Lemma 1 applies. As the result, the
additional assumption on α(t) is not required in the validity of (37).

Remark 7. Here we note that A(x) given by (31) with (33) and (34) is expressed as (15), if we put

I6(x) = A(x), h6,a(t) = (R− |t|+ i · t · cos θ + |t| sin θ)eiat. (39)

When y is chosen to be y = y∗, so that a = a∗, h6,a(t) = h6,a∗(t) is continuous as a function of t
in [−R,R], and satisfies h6,a∗(−R) = h6,a∗(R) = R, and hence we obtain (37) by using the Fourier
coefficients cn(6, a∗) of the Fourier series of h6,a∗(t), with the aid only of Lemma 1 and Remark 2.
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5. Concluding Remarks

5.1. Concluding Remark 1

In the present paper, the function f(x) is expressed in the form of the Stieltjes integral as (2),
and hence the sampling theorem presented here applies to the cases when the spectrum is discrete as
well as continuous.

If f(x) is assumed to be expressed in terms of an integrable function F (t) in (−R,R), by

f(x) =

∫ R

−R
eixtF (t)dt, (40)

then a very simple proof of the sampling theorem was presented by Boas [7] and Pollard and Shisha [8].
In this case, 1

2R
f(−nπ

R
) for n ∈ Z are the Fourier coefficients of F (t), and hence

F (t) =
1

2R
lim
N→∞

N∑
n=−N

f(
nπ

R
)e−inπt/R. (41)

Substituting this into the right-hand side of (40) and performing the term-by-term integration, we
obtain the Shannon sampling theorem (5) for y = 0. The term-by-term integration in this case is justified
by the Lebesgue theorem [9] (p. 37).

It is recalled here that Campbell [10] presented the sampling theorem for the case when F (t) is a
distribution. In that paper, the author mentioned that the Shannon sampling theorem (5) for y = 0 is
valid when F (t) is a Dirac’s delta function.

For the case when (40) applies, an extensive review of works related on the Shannon sampling theorem
is found in the book [11]. In recent papers [12,13], extensions of the sampling theorem to the Hilbert
and the Banach space are discussed.

5.2. Concluding Remark 2

In this section, we denote the scalar product of two functions h(t) and G(t) which are integrable
in (−R,R), by (h,G) :=

∫ R
−R h(t)G(t)dt. The quantity calculated in (40) is expressed as (h,G) for

h(t) = eixt and G(t) = F (t). When the squares of both of these functions are integrable in (−R,R),
and the Fourier series of the two functions in the interval (−R,R) are expressed as follows:

h(t) = lim
N→∞

N∑
n=−N

cnφn(t), G(t) =
1

2R
lim
N→∞

N∑
n=−N

dnφn(t), (42)

where φn(t) = einπt/R, then (5) for y = 0 is the result of the Parseval formula (h,G) =
∑∞

n=−∞ cndn.
We now note that the Parseval formula is achieved by using only one of the Fourier series either of

h(t) or G(t) and integrating term by term, as

(h,G) =

∫ R

−R
[ lim
N→∞

N∑
n=−N

cnφn(t)]G(t)dt = lim
N→∞

N∑
n=−N

cndn, (43)
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or as

(h,G) =
1

2R

∫ R

−R
h(t)[ lim

N→∞

N∑
n=−N

dnφn(t)]dt = lim
N→∞

N∑
n=−N

cndn, (44)

with the aid of the Lebesgue theorem [9] (p. 37). In fact, Boas [7] and Pollard and Shisha [8] proposed
to use this calculation using the Fourier series of G(t) = F (t) which is assumed to be integrable in
(−R,R), without assuming that the square of F (t) is integrable in (−R,R), in deriving the Shannon
sampling theorem, as stated above.

In the present paper, α(t) may be expressed as a sum of an absolutely continuous function and a step
function, F (t) = dα(t)

dt
is a distribution involving Dirac’s delta function and hence we have to use the

Fourier series of h(t).

5.3. Concluding Remark 3

At the end of Section 1, it was mentioned that |f(x)| 5 T , for the function f(x) expressed as (2),
where T is the total variation of α(t). If we use the first equation in (14) for f ′(x), we can confirm that
|f ′(x)| 5 TR. In Remark 7, A(x) defined by (29) is expressed as (15) by using (39). By confirming that
|ha∗(t)| 5 R by (39), we see that |A(x)| 5 TR.

Hence Theorems 2 and 9 are proved in this way, if M = T .

5.4. Concluding Remark 4

In recent papers [14,15], a generalized Shannon sampling theorem is applied to non-limited-band
signal, on the basis of an inequality given in a Boas’s paper [7]. The inequality is given as in the
following lemma.

Lemma 10. Let g(x) ∈ L1(R) and G(t) = 1
2π

∫∞
−∞ g(x)e

−itxdx. Then

∣∣∣g(x)− lim
N→∞

N∑
n=−N

g(n)
sin π(x− n)
π(x− n)

∣∣∣ ≤ 1

π

∫
|t|>π
|G(t)|dt. (45)

We put g(x) = f(xπ
R
) in (45), and then we obtain

Lemma 11. Let f(x) ∈ L1(R) and F (t) = 1
2π

∫∞
−∞ f(x)e

−itxdx. Then

∣∣∣f(x)− lim
N→∞

N∑
n=−N

f(
nπ

R
)
sin(xR− nπ)
xR− nπ

∣∣∣ ≤ ε(R) :=
1

π

∫
|t|>R
|F (t)|dt. (46)

In confirming this, we note that G(t) = R
π
R · F (R

π
t).

We find that this lemma is a part of Theorem 3.12 in the book [11].
When f(x) = e−x

2/(2σ2), F (t) = σ√
2π
e−σ

2t2/2 and hence

ε(R) =

√
2σ

π3/2

∫ ∞
R

e−σ
2t2/2dt <

√
2

π3/2σR
e−σ

2R2/2. (47)
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In [15], the case of f(t) = e−πt
2 is studied. We now recommend to use the inequality (46) in

the study.
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