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Abstract: Quantum mechanics has had an important influence on building computers;
nowadays, quantum mechanics principles are used for the processing and transmission of
information. The Yang-Baxter equation is related to the universal gates from quantum
computing and it realizes a unification of certain non-associative structures. Unifying
structures could be seen as structures which comprise the information contained in other
(algebraic) structures. Recently, we gave the axioms of a structure which unifies associative
algebras, Lie algebras and Jordan algebras. Our paper is a review and a continuation of that
approach. It also contains several geometric considerations.
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1. Introduction

The importance of computers these days is so big that we could call our times the “computers era”.
Quantum mechanics has had an important influence on building computers; for example, it led to
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the production of transistors. At present, quantum mechanics laws are used for the processing and
transmission of information. The first quantum computer (which uses principles of quantum mechanics)
was sold to the aerospace and security of a defense company, Lockheed Martin. The manufacturing
company, D-Wave, founded in 1999 and called “a company of quantum computing”, promised to
perform professional services for the computer maintenance as well. The quantum computer can address
issues related to number theory and optimization, which require large computational power. An example
is the Shor’s algorithm, a quantum algorithm that determines quickly and effectively the prime factors of
a big number. With enough qubii, such a computer could use the Shor’s algorithm to break algorithms
encryption used today.

Non-associative algebras are currently a research direction in fashion ([1], and the references therein).
There are two important classes of non-associative structures: Lie structures and Jordan structures [2].
Various Jordan structures play an important role in quantum group theory and in fundamental physical
theories [3]. Associative algebras and Lie algebras can be unified at the level of Yang-Baxter structures.
A new unification for associative algebras, Jordan algebras and Lie algebras, was obtained recently [4],
and we present further results in this paper.

Several papers published in the open access journal Axioms deal with the Yang-Baxter equation ( [5]
and the references therein). The Yang-Baxter equation can be interpreted in terms of combinatorial
logical circuits, and, in logic, it represents some kind of compatibility condition, when working with
many logical sentences in the same time. This equation is also related to the theory of universal quantum
gates and to quantum computers (for example, [6]). It has many applications in quantum groups and
knot theory.

The organization of the current paper is as follows. In the next section we give the preliminaries and
some interpretations of the Yang-Baxter equation in geometry. Section 3 deals with computer programs
and interpretations of this equation in computer science. In Section 4, we discuss the applications
of the Yang-Baxter equation in quantum groups and knot theory (with some remarks about universal
gates). Section 5 is about unification theories for non-associative algebras, and their connections with
the previous sections. A short conclusion section ends our paper.

2. Geometrical Interpretations of the Yang-Baxter Equation

All tensor products will be defined over the field k, and for V a k-space, we denote by
τ : V ⊗ V → V ⊗ V the twist map defined by τ(v ⊗ w) = w ⊗ v, and by I : V → V the identity map
of the space V .

For R : V ⊗V → V ⊗V a k-linear map, letR12 = R⊗I, R23 = I⊗R, R13 = (I⊗τ)(R⊗I)(I⊗τ).

Definition 2.1. A Yang-Baxter operator is k-linear map R : V ⊗ V → V ⊗ V , which is invertible, and
it satisfies the braid condition (the Yang-Baxter equation):

R12 ◦R23 ◦R12 = R23 ◦R12 ◦R23 (1)

An important observation is that if R satisfies (1) then both R ◦ τ and τ ◦ R satisfy the quantum
Yang-Baxter equation (QYBE):

R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12 (2)
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Thus, the Equations (1) and (2) are equivalent.
There is a similar terminology for the set-theoretical Yang-Baxter equation, for which V is replaced

by a set and the tensor product by the Cartesian product.

Let us now consider the interpretations of the Yang-Baxter equation in geometry.

Figure 1. A three dimensional Cartesian coordinate system.

The symmetries of the point P (a, b, c) (from Figure 1) about the axes OX, OY, OZ are defined as
follows: SOX(a, b, c) = (a, −b, −c), SOY (a, b, c) = ( −a, b, −c), SOZ(a, b, c) = ( −a, −b, c).

They form a group isomorphic with Klein’s group: {I, SOX , SOY , SOZ}.
The symmetries of the point P (a, b, c) about the planes XOY, XOZ, Y OZ are defined as follows:
SXOY (a, b, c) = (a, b, −c), SXOZ(a, b, c) = (a, −b, c), SY OZ(a, b, c) = ( −a, b, c).
One could check the following instances of the Yang-Baxter equation:

SXOY ◦ SXOZ ◦ SY OZ = SY OZ ◦ SXOZ ◦ SXOY (3)

SOX ◦ SOY ◦ SOZ = SOZ ◦ SOY ◦ SOX (4)

Remark 2.2. Let us observe that SOX ◦ SOY ◦ SOZ = Idk3 , and we can generalize the symmetries
about the axes as follows: S ′

OX(a, b, c) = (a, pb, qc), S ′
OY (a, b, c) = ( pa, b, qc),

S ′
OZ(a, b, c) = ( pa, qb, c), for p, q ∈ k, such that S ′

OX ◦ S ′
OY ◦ S ′

OZ = S ′
OZ ◦ S ′

OY ◦ S ′
OX . This

is a generalization for the Equation (4) as well.
It can be proved that the only rotation operators R which satisfy Equation (2) are the identity and the

operator related to SOX , SOY and SOZ .

3. The Yang-Baxter Equation in Computer Science

The Yang-Baxter equation can be interpreted in terms of combinatorial logical circuits [7]. It is also
related to the theory of universal quantum gates and to the quantum computers [6,8].

In logic, it represents some kind of compatibility condition, when working with many logical
sentences at the same time. Let us consider three logical sentences p, q, r. Let us suppose that if
all of them are true, then the conclusion A could be drawn, and if p, q, r are all false then the conclusion
C can be drawn; in other cases, we say that the conclusion B is true. Modeling this situation by the
map R, defined by (p, q) 7→ (p′ = p ∨ q, q′ = p ∧ q), helps to comprise our analysis: we can apply
R to the pair (p, q), then to (q′, r), and, finally to (p′, q′′). The Yang-Baxter equation explains that
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the order in which we start this analysis is not important; more explicitly, in this case, it states that
( (p′)′, q′′′, r′) = ( p′, q′′′, (r′)′) .

Another interpretation of the Yang-Baxter equation is related to the algorithms and computer
programs which order sequences of numbers. For example, the core of the Program 1 is related to
the left hand side of Equation (2).

Program 1. Sorting by direct selection.

] include 〈iostream〉
int L,n,j,aux,i, sir[20],a,b;
int main()
{
std::cout� "You may choose how many numbers will be compared";
std::cin�L;
int sir[L];
int sir2[L];
for (n=1;n≤L;n++)
{
std::cout�"Please, give the numbers A["�n�"]=";
std::cin�sir[n];
std::cout�" "�endl;
}
std::cout�"We are now ordering the given numbers!";
std::cout�“ ”�std::endl;
for (i=1;i≤L-1;i++)

for (j=i+1;j≤L;j++)
if (sir[i]≥sir[j])
{
aux=sir[i];
sir[i]=sir[j];
sir[j]=aux;
}
for (n=1;n≤L;n++)
std::cout� “ ”�sir[n];

std::cout� “ ”�std::endl;
system(“PAUSE”);
return EXIT–SUCCESS;

}

The Program 2 is related to the right hand side of (1).
Ordering three numbers is related to the following common solution of the Equations (1) and (2):

R(a, b) = (min(a, b),max(a, b)).
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Program 2. The core of the “Bubble sort” program.

int m, aux;
m=L;
while (m)
{
for (int i=1; i≤L-1; i++)
if (a[L-i] ≥ a[L+1-i])
{
aux = a[L+1-i];
a[L+1-i] = a[L-i];
a[L-i] = aux;
}
m - -;
}

Since R can be extended to a braiding in a certain monoidal category, we obtain an interpretation for
the case when we order more numbers.

The “divide et impera” algorithm for finding the maximum of sequence of numbers could be related
to Yang-Baxter systems and to the gluing procedure from [9].

4. The Yang-Baxter Equation in Quantum Groups and Knot Theory

For A be a (unitary) associative k-algebra, and α, β, γ ∈ k, the authors of [10] defined the
k-linear map:

RA
α,β,γ : A⊗ A→ A⊗ A, RA

α,β,γ(a⊗ b) = αab⊗ 1 + β1⊗ ab− γa⊗ b (5)

which is a Yang-Baxter operator if and only if one of the following cases holds:
(i) α = γ 6= 0, β 6= 0; (ii) β = γ 6= 0, α 6= 0; (iii) α = β = 0, γ 6= 0.
The link invariant associated to the operator (5) is the Alexander polynomial of knots [11,12].
For (L, [, ]) a Lie super-algebra over k, z ∈ Z(L) = {z ∈ L : [z, x] = 0 ∀ x ∈ L}, |z| = 0 and

α ∈ k, the authors of the papers [13] and [14] defined the following Yang-Baxter operator:

φLα : L⊗ L −→ L⊗ L, x⊗ y 7→ α[x, y]⊗ z + (−1)|x||y|y ⊗ x (6)

Remark 4.1. In dimension two, RA
α,β,α ◦ τ , can be expressed as:

1 0 0 0

0 1 0 0

0 1− q q 0

η 0 0 −q

 (7)
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where η ∈ {0, 1}, and q ∈ k − {0}. For η = 0 and q = 1, RA
α,β,α becomes:

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

 (8)

which is a universal gate (according to [8]), and it is related to the CNOT gate:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (9)

Remark 4.2. The matrix (8) can be interpreted as a sum of Yang-Baxter operators, using the techniques
of [9].

Remark 4.3. Using Theorem 3.1 (i) and Remark 3.3 from [15], we can construct a bialgebra structure
associated to the operator RA

α,β,γ(a ⊗ b) = αab ⊗ 1 + β1 ⊗ ab − γa ⊗ b, if one of the following cases
holds: (i) α = γ 6= 0, β 6= 0; (ii) β = γ 6= 0, α 6= 0; (iii) α = β = 0, γ 6= 0.

For γ = −1 and α = β = 0, this is the tensor algebra T (A) associated to the underlying vector
space of the algebra A.

For a, b ∈ T 1(A) = A, we have: µ(a⊗ b) = αab⊗ 1 + β1⊗ ab− γa⊗ b ∈ T 2(A) .

For a⊗ a′ ∈ T 2(A) = A⊗ A and b ∈ T 1(A) = A, we have:
µ((a⊗ a′)⊗ b) = R12 ◦R23(a⊗ a′ ⊗ b) ∈ T 3(A) .

For a ∈ T 1(A) = A and b⊗ b′ ∈ T 2(A), we have:
µ(a⊗ (b⊗ b′) = R23 ◦R12(a⊗ b⊗ b′) ∈ T 3(A) .

In the same manner, we can compute other products.

5. Unification of Non-Associative Structures

The Equations (5) and (6) lead to the unification of associative algebras and Lie (super)algebras in the
framework of Yang-Baxter structures [2,16]. On the other hand, for the invertible elements in a Jordan
algebra, one can associate a symmetric space ([17], page 58), and, therefore, a Yang-Baxter operator.
Thus, the Yang-Baxter equation can be thought as a unifying equation.

The first isomorfism theorem for groups (algebras) and the first isomorfism theorem for Lie algebras,
can be unified as an isomorphism theorem for Yang-Baxter structures [18].

We present another way to unify non-associative structures below.

Definition 5.1. For the vector space V, let η : V ⊗V → V, η(a⊗b) = ab, be a linear map which satisfies:

(ab)c+ (bc)a+ (ca)b = a(bc) + b(ca) + c(ab) ∀ a, b, c ∈ V (10)

(a2b)a = a2(ba), ∀ a, b, c ∈ V (11)

Then, (V, η) is called a “UJLA structure”.
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Remark 5.2. The UJLA structures unify Jordan algebras, Lie algebras and (non-unital) associative
algebras [4]. Results for UJLA structures could be “decoded” in properties of Jordan algebras, Lie
algebras or (non-unital) associative algebras.

Remark 5.3. An anti-commutative UJLA structure is a Lie algebra.
Obviously, a commutative UJLA structure is a Jordan algebra.

Remark 5.4. Let W be a vector space spanned by a and b, which are linearly independent. Let θ :

W ⊗W → W, θ(x⊗ y) = xy, be a linear map with the property: a2 = b , b2 = a .

If θ also satisfies the Relations (10) and (11), then (W, θ) is a (non-unital) associative algebra.

Remark 5.5. For (A, θ), where θ : A ⊗ A → A, θ(a ⊗ b) = ab, a (non-unital) associative algebra,
and α, β ∈ k, we define a new product θ′(a⊗ b) = αab + βba.

If α = 1
2

and β = 1
2
, then (A, θ′) is a Jordan algebra.

If α = 1 and β = −1, then (A, θ′) is a Lie algebra.
If α = 0 and β = 1, then (A, θ′) is the opposite algebra of (A, θ).
Obviously, if α = 1 and β = 0, then (A, θ′) is the algebra (A, θ).
If we put no restrictions on α and β, then (V, θ) is a UJLA structure.

The importance of the results of this section are explained in Figure 2.

Figure 2. UJLA structures in terms of associators and their interpretation.

[a, b, c] + [b, c, a] + [c, a, b] = 0 [a2, b, a] = 0 ∀ a, b, c ∈ V.

6. Conclusions

The current paper is written in a transdiscipinary [19] fashion, because the Yang-Baxter equation is a
transdisciplinary equation.

An explanation of the fact that the study of Jordan structures and their applications is at present a
wide-ranging field of mathematical research could be the following: at the beginning, mathematics was
associative and commutative, then (after the invention of matrices) it became associative and
non-commutative, and now (after the invention of non-associative structures) it becomes non-associative
and non-commutative [20].
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Concepts as co-composition, coalgebra, coassociativity and Yang-Baxter structures play an important
role in relationship with the non-associative structures. In fact, the Yang-Baxter equation can be thought
as an unifying equation for dual structures [21].
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10. Dăscălescu, S.; Nichita, F.F. Yang-Baxter operators arising from (co)algebra structures. Commun.

Algebr. 1999, 27, 5833–5845.

http://arxiv.org/abs/1106.4415
http://arxiv.org/abs/1407.1361.


Axioms 2014, 3 368

11. Turaev, V. The Yang-Baxter equation and invariants of links. Invent. Math. 1988, 92, 527–553.
12. Massuyeau, G.; Nichita, F.F. Yang-Baxter operators arising from algebra structures and the

Alexander polynomial of knots. Commun. Algebr. 2005, 33, 2375–2385.
13. Majid, S. Solutions of the Yang-Baxter equation from braided-Lie algebras and braided groups.

J. Knot Theory Ramif. 1995, 4, 673–697.
14. Nichita, F.F.; Popovici, B.P. Yang-Baxter operators from (G, θ)-Lie algebras. Rom. Rep. Phys.

2011, 63, 641–650.
15. Nichita, F.F. Yang-Baxter systems, algebra factorizations and braided categories. Axioms 2013, 2,

437–442.
16. Nichita, F.F. Lie algebras and Yang-Baxter equations. Mathematics 2011, arXiv:1107.0920.
17. Iordanescu, R. Jordan Structures in Geometry and Physics with an Appendix on Jordan Structures

in Analysis; Romanian Academy Press: Bucharest, Romania, 2003.
18. Nichita, F.F. Non-linear Equations, Quantum Groups and Duality Theorems; VDM Verlag:

Saarbrücken, Germany, 2009.
19. Nicolescu, B. Manifesto of Transdisciplinarity; State University of New York (SUNY) Press:

New York, NY, USA, 2002.
20. Iordanescu, R. Romanian contributions to the study of Jordan structures and their applications.

Mitt. Humboldt Clubs Rum. 2004–2005, 8–9, 29–35.
21. Nichita, F.F. Introduction to the Yang-Baxter Equation with Open Problems. Axioms 2012, 1,

33–37.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

http://arxiv.org/abs/1107.0920

	Introduction
	Geometrical Interpretations of the Yang-Baxter Equation
	The Yang-Baxter Equation in Computer Science
	The Yang-Baxter Equation in Quantum Groups and Knot Theory
	Unification of Non-Associative Structures
	Conclusions

