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Abstract: Geometric invariants are important for shape recognition and matching. Existing
invariants in projective geometry are typically defined on the limited number (e.g., five for
the classical cross-ratio) of collinear planar points and also lack the ability to characterize
the curve or surface underlying the given points. In this paper, we present a projective
invariant named after the characteristic number of planar algebraic curves. The characteristic
number in this work reveals an intrinsic property of an algebraic hypersurface or curve,
which relies no more on the existence of the surface or curve as its planar version. The new
definition also generalizes the cross-ratio by relaxing the collinearity and number of points
for the cross-ratio. We employ the characteristic number to construct more informative shape
descriptors that improve the performance of shape recognition, especially when severe affine
and perspective deformations occur. In addition to the application to shape recognition, we
incorporate the geometric constraints on facial feature points derived from the characteristic
number into facial feature matching. The experiments show the improvements on accuracy
and robustness to pose and view changes over the method with the collinearity and
cross-ratio constraints.
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1. Introduction

Projective geometry is of fundamental importance in computer vision and object recognition. It is
a key mathematical tool for 3D reconstruction from multiple views [1]. Furthermore, there has been a
long history for object recognition to use geometric invariants that reflect the geometries of an object
under different transformation groups [2,3]. The cross-ratio on five coplanar points is a fundamental
invariant under projective geometry. One may derive projective invariants from the cross-ratio for more
points [4,5] and others for coplanar conics [6]. These invariants can be used to construct descriptors for
shape recognition invariant to projective deformations [7,8]. Researchers also build robust constraints
upon these invariants in order to match geometric primitives between images, such as points [5,9],
lines [10,11] and closed contours [12,13]. In a recent work, Bryner et al. derive novel metrics on
geometric invariants to affine and projective groups in a general Riemannian framework and develop
shape analysis algorithms for both point sets and parametric curves [14]. In the context of facial analysis,
Riccio and Dugelay devise features for recognition based on 2D/3D geometric invariants [15]. However,
these invariants are typically defined on a limited number (e.g., five for the classical cross-ratio) of
collinear planar points and also lack the ability to characterize the curve or surface underlying the
given points.

On the other hand, curves and surfaces are well studied in the field of algebraic geometry associated
with the theory of multivariate splines [16]. As a well-known result, Pascal’s theorem states a remarkable
property of a hexagon inscribed in a conic. In the past few years, researchers have generalized Pascal’s
theorem to various forms, including Chasles’s theorem and Cayley–Bacharach’s theorem concerning
cubic curves. Shi and Wang obtain a generalization of Pascal’s theorem in high dimensional spaces [12],
which involves the intersections of a quadratic hypersurface and a simplex [17]. Luo et al. generalize
Pascal’s theorem from the perspective of a projective invariant, i.e., the characteristic number on planar
algebraic curves [18,19]. Their generalization uses the characteristic number, as well as the derived
characteristic mapping to establish the connection from an algebraic curve of higher degree to another
one of lower degree, as Pascal’s theorem does to a conic and hexagon. The characteristic number reflects
the intrinsic properties of the points on an algebraic curve/surface. These results are theoretically sound,
but the dependency on the existence of the curve or surface curbs the wide application of the invariant to
shape recognition and matching in computer vision.

In this work, we present a projective invariant named after the characteristic number of planar
algebraic curves, but it relies no more on the existence of an algebraic curve. Similar to the invariant
in [19], the characteristic number in this work also reveals an intrinsic property of an algebraic
hypersurface or curve, which involves the intersections of this hypersurface or curve with the lines
constituting a closed loop. The new definition also relates the fundamental invariant in projective
geometry, i.e., cross-ratio, to the characteristic number. The cross-ratio of four collinear points becomes
a special case of the characteristic number that relaxes the collinearity and number of the points for
the cross-ratio. We employ the characteristic number to construct more informative shape descriptors
that improve the performance of shape recognition, especially when severe affine and perspective
deformations occur. In addition to the application to shape recognition, we incorporate the geometric
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constraints on facial feature points derived from the characteristic number into facial shape matching.
This incorporation also renders accuracy and robustness to pose and view changes.

The rest of this paper is organized as follows. In Section 2, we define the characteristic number
and give its properties. The descriptors invariant to perspective transformations, derived from the
characteristic number, are given in Section 3. Section 4 shows the application of the characteristic
number to facial feature matching. Finally, Section 5 concludes the paper.

2. Characteristic Number

Let K be a field and Pm (K) be m-dimensional projective space over K. Assuming that H is a square
matrix of order m+ 1, we call the mapping, Φ, from Pm (K) to itself:

Φ : (x1, x2, . . . , xm+1)
T 7→ λH(x1, x2, . . . , xm+1)

T , ∀λ ∈ K, λ 6= 0

a projective transformation, and all these transformations form a group. Projective geometry studies
projective invariants whose geometric properties preserve under projective transformations. The
cross-ratio is a fundamental projective invariant. When λ = 1, a projective transformation degenerates to
an affine transformation. In the context of computer vision [1], the geometric imaging process projecting
3D objects into an imaging view is typically modeled as a projective transformation, shown in Figure 1.
An affine transformation is also acceptable if objects are distant from the camera compared with the
focal length of the camera. Therefore, invariants to projective and affine transformations are quite
important to computer vision problems, especially for shape analysis, including shape representation
and matching [2,14].

Figure 1. Geometric imaging process. Three points, P,U,Q, of a line in the 3D space are
projected as p, u, q and p

′ , u′ , q′ into two imaging planes with the focal centers, O1 and
O2, respectively.

This section introduces a projective invariant, named the characteristic number (CN), that derives
from an affine invariant, characteristic ratio. We prove the invariances of these two invariants and show
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how the characteristic number characterizes intrinsic properties of algebraic curves and/or hypersurfaces.
We denote the intersection point of lines l and m as < l,m > and the line passing through points p and
q as (p, q) in a projective plane, P 2, otherwise stated below.

2.1. Characteristic Ratio: An Affine Invariant

Definition 1. Let p, q ∈ P 2 be two different points (or lines) and p1, p2, · · · , pk be distinct points
(or lines) on the line (p, q), then there must exist ai and bi, such that pi = aip + biq, (i = 1, 2, · · · , k).
The ratio:

R(p1, p2, · · · , pk) :=
b1b2 · · · bk
a1a2 · · · ak

(1)

is called the characteristic ratio (CR) of p1, p2, · · · , pk to the basic points (or basic lines), p, q.

The computation of CR is independent of the choice of the basic points. It is natural and
straightforward to take x and y coordinates in the image plane as a and b, respectively. The mathematical
aspects and significance of this ratio to algebraic curves can be found in our previous publication [19].
Herein, we provide the proof of its invariance to affine transformations, upon which we build our
descriptors for 2D planar shapes.

Theorem 2. The characteristic ratio given by Definition 1 is an affine invariant.

Proof. The characteristic ratio can be calculated on any positive number of collinear points (k ≥ 1).
We first prove the case when k = 1. Assuming three points, x, y and v on a line, L, in the 3D world
coordinate system, the points, p, q, u and p′

, q
′
, u

′ are their images (as shown in Figure 1) obtained by two
cameras with the optical centers, O1 and O2, respectively. It is well established that p, q, u are collinear
and so are p′

, q
′
, u

′ . Any point in a line can be represented by the linear combination of other two points
lying on the line, i.e.,

u = ap+ bq, u
′
= a

′
p
′
+ b

′
q
′

(2)

for the lines of the two views in Figure 1, and thus, we need to prove b
a

= b
′

a′
.

We assume that there exists an affine transformation between the images as the lines determined by
the 2D points in both image planes are the images (projections) of the 3D line, L. The corresponding
points in two views satisfy:

u
′
= Hu, p

′
= Hp, q

′
= Hq (3)

Substituting Equation (3) into Equation (2), we have Hu = a
′
Hp+ b

′
Hq. Since H is invertible, then

we have:
u = a

′
p+ b

′
q (4)

Combining Equation (2) and Equation (4), we have b
a

= b
′

a′a
, i.e., CR is an affine invariant when

k = 1.
Since every bk

ak
is affine invariant, CR with k multipliers of bk

ak
is an affine invariant when k > 1. This

establishes the theorem.

Similar to the cross-ratio, the characteristic ratio reflects the geometric relationships of collinear
points. Their difference lies in that the characteristic ratio has no limit on the number of the collinear
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points, while the cross-ratio defines on four collinear points. Hence, we are able to construct shape
descriptors with more geometric information using the characteristic ratio on more points.

2.2. Characteristic Number: A Projective Invariant

The characteristic number can be regarded as a generalization of the cross-ratio, and we give the
definition of the cross-ratio first. We adopt the convention that the upper symbol representing a point is
also a column vector of the homogeneous coordinate for this point, and the lower ones are scalars. Let
P1, P2, P3 and P4 be four collinear points and P1 6= P4. We have the linear representations of P2 and P3

as a1P1 + b1P4 and a2P4 + b2P1, respectively. The cross-ratio of these four points is:

(P1P2, P3P4) :=
a1
b1
· a2
b2

(5)

We define the characteristic number as follows.

Definition 3. Let P1, P2, . . . , Pr−1, Pr be r distinct points in Pm (K). On lines PiPi+1 forming a loop
(Pr+1 := P1 and i = 1, 2, . . . , r), there are n points Q(1)

i , Q
(2)
i , . . . , Q

(n)
i distinct from Pi and Pi+1. Each

Q
(j)
i can be linearly represented by Pi and Pi+1 as:

Q
(j)
i = a

(j)
i Pi + b

(j)
i Pi+1

Let P = {Pi}ri=1 and Q =
{
Q

(j)
i

}j=1,2,...,n

i=1,2,...,r
, and define:

κn(P ,Q) :=
r∏
i=1

n∏
j=1

(
a
(j)
i

b
(j)
i

)
(6)

as the characteristic number (of dimension m and degree n) of the point set,Q, with respect to the frame
point set, P .

The following theorem shows that the invariance of CN to projective transformations.

Theorem 4. The characteristic number is a projective invariant.

Proof: Assume that a projective transform, Φ, projects P = {Pi}ri=1 to P ′
= {P ′

i }ri=1, and we have

Pi
′ = Φ(Pi) = kiHPi(Pr+1 = P1, ki+1 = k1). The points Q =

{
Q

(j)
i

}j=1,2,...,n

i=1,2,...,r
are projected to

Q′
=
{
Q

(j)′

i

}j=1,2,...,n

i=1,2,...,r
:

Q
(j)′

i = Φ(Q
(j)
i ) = l

(j)
i HQ

(j)
i = l

(j)
i H · (a(j)i Pi + b

(j)
i Pi+1)

=
l
(j)
i a

(j)
i

ki
· kiHPi +

l
(j)
i b

(j)
i

ki+1

· ki+1HPi+1

=
l
(j)
i a

(j)
i

ki
P

′

i +
l
(j)
i b

(j)
i

ki+1

P
′

i+1
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Thus, the characteristic number of transformed points is given by:

κn(P ′
,Q′

) =
r∏
i=1

n∏
j=1

(
ki+1l

(j)
i a

(j)
i

kil
(j)
i b

(j)
i

)

=
r∏
i=1

ki+1

ki

(
n∏
j=1

a
(j)
i

b
(j)
i

)

=
r∏
i=1

(
n∏
j=1

a
(j)
i

b
(j)
i

)
= κn(P ,Q)

which indicates that the characteristic number is invariant under projective transformations. �
The characteristic number generalizes both the characteristic ratio and cross-ratio. The definition

of CN in Equation (6) multiplies characteristic ratios, Equation (1), along a closed loop. Furthermore,
the characteristic number of degree one of Q(1)

1 and Q(1)
2 with respect to the frame points, P1 and P2,

degenerates to the cross-ratio, Equation (5), of (P1, P2, Q
(1)
2 , Q

(1)
1 ) when r = 2 and n = 1, as shown in

Figure 2a. In other words, the cross-ratio is the simplified case (n = 1) of the characteristic number in
the two-dimensional space (r = 2). This paper focuses on the applications of the characteristic number
to 2D shape analysis, where the characteristic number can incorporate the geometric information on
more points (i.e., n ≥ 1) compared with the cross-ratio.

Figure 2. Points to calculate the characteristics number when (a) r = 2 and (b) r = 3.

P1 P2Q
(1)
1 Q

(n)
1

. . .

(a)

P1

P2

P3

Q
(1)
1

Q
(n)
1

Q
(1)
2

Q
(n)
2

Q
(1)
3

Q
(n)
3
. . .

. . .

. . .

(b)

It is also worth noting that the numbers of points on any line segments between frame points are
identical in the definition of CN. We give the two simplest cases for 2D shape analysis to calculate CN
when r = 2 and r = 3. We consider two frame points, P1 and P2, when r = 2. Let Q(1)

i , Q
(2)
i , . . . , Q

(n)
i

be n distinct points on the line segment, P1P2. For the case of even n, the odd-numbered points on the
directed line, P1P2, and those even-numbered on P2P1 are used to compute CN:

κn(P2,Q2) =

n
2∏
i=1

(
a
(2i−1)
1 b

(2i)
1

b
(2i−1)
1 a

(2i)
1

)
(7)

where P2 = {P1, P2} and Q2 = {Q(1)
i , Q

(2)
i , . . . , Q

(n)
i }. For odd n, we calculate CN in the same way by

using all the points on the line segment, expect for the last one.
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When r = 3, let P3 = {P1, P2, P3} and Q(1)
i , Q

(2)
i , . . . , Q

(ni)
i be ni distinct points on the edge PiPi+1

(i = 1, 2, 3) of triangle,4P1P2P3, as illustrated in Figure 2b. We choose the closest n = min(n1, n2, n3)

points to Pi on PiPi+1 as the set Q3 to calculate CN:

κn(P3,Q3) =
3∏
i=1

n∏
j=1

(
a
(j)
i

b
(j)
i

)
(8)

2.3. Intrinsic Properties of a Hypersurface and Curve

In this section, we reveal an intrinsic geometric property of the points on an algebraic hypersurface
or curve by using the characteristic number. This property is an extension of the well known Menelaus’s
theorem and Carnot’s theorem in classical planar geometry and also a higher dimensional generalization
of Serge [20] and Luo’s [18] results in a projective plane. Theorem 5 shows the intrinsic property of
a hypersurface, and refer to [21] for the proof or the theorem that we omit here, due to the limitation
of space.

Theorem 5. Let P1, P2, . . . , Pr−1, Pr be r distinct points in Pm (K). On lines PiPi+1 (Pr+1 := P1, and
i = 1, 2, . . . , r), there are n points Q(1)

i , Q
(2)
i , . . . , Q

(n)
i distinct from Pi and Pi+1. Some of these points

may be the same. A hypersurface of degree n not through any Pi intersects each line PiPi+1 precisely
in {Q(j)

i }nj=1 (multiple intersections are counted with multiplicities). Then, the characteristic number
of {Q(j)

i }
j=1,...,n
i=1,...,r with respect to the frame points P1, P2, . . . , Pr is (−1)rn. Conversely, if P1, . . . , Pm+1

are linearly independent and the characteristic number of {Q(j)
i }

j=1,...,n
i=1,...,r with respect to the frame points

P1, P2, . . . , Pr is (−1)(m+1)n, then all the Q(j)
i lie on a hypersurface of degree n not through any Pi.

Figure 3 shows an example of Theorem 5 in the three-dimensional Euclid space. Each Q(j)
i is distinct

from the frame points, Pi, and then all {Q(j)
i }

j=1,2
i=1,2,3,4 lie on a conic surface if and only if:

κ2({Pi}4i=1; {Q
(j)
i }

j=1,2
i=1,2,3,4) =

4∏
i=1


∣∣∣Pi+1Q

(1)
i

∣∣∣∣∣∣PiQ(1)
i

∣∣∣ ·
∣∣∣Pi+1Q

(2)
i

∣∣∣∣∣∣PiQ(2)
i

∣∣∣
 = 1

where |·| denotes the directed length.
Theorem 5 degenerates to the results of the characteristic number for algebraic curves partially

presented in [18,19] if m = 2 and r = 3. These results reveal the intrinsic geometry of points on
an algebraic curve that the characteristic number does not change with the selection of the base lines. As
the simplest case in the two-dimensional space, the following corollary of Theorem 5, by setting r = 2

and n = 1, reflects the fundamental collinearity in the multi-view computer vision. Corollary 6 shows
that the characteristic number κ1(P,Q,R) = −1 in Figure 3b, regardless of the choice of base lines, a, b
and c, or points, U, V and W . The value of CN for these three points also remains unchanged no matter
from what viewpoint we capture the images, as shown in Figure 1. We can apply this property given by
the characteristic number to matching collinear points on human faces with pose changes.

Corollary 6. The characteristic number of three collinear points is −1.
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Theorem 5 also shows that this property given by the characteristic number no longer depends on
the existence of of an algebraic curve. Thereafter, we are able to calculate the characteristic number
for points not necessarily lying on an algebraic curve as that in [18]. This calculation yields projective
invariants on more points than five in the 2D space. In [4], Goodall and Mardia construct projective
invariants on six points by combining cross-ratios and applying the invariant to object recognition
problems involving collinear sets of points. Herein, we derive the characteristic number for any six
coplanar points, as given in Corollary 7. We can also employ this invariant in order to match points on
human faces along with the characteristic number for three points in Corollary 6.

Figure 3. Theorem 5 reveals the intrinsic properties of a hypersurface or curve. (a) An
example for a surface in the three-dimensional Euclid space; (b) the characteristic number
of three collinear points is −1; (c) the characteristic number on any six points derived from
Theorem 5.

P1

P2

P3

P4

Q
(1)
1

Q
(2)
1

Q
(1)
2

Q
(2)
2

Q
(1)
3

Q
(2)
3

Q
(1)
4

Q
(2)
4

(a) (b) (c)

Corollary 7. Suppose that A,B,C,H, I and J are six points, any three of which are not collinear on a
projective plane, as shown in Figure 3c. The characteristic number, defined as the product of ratios of
directed triangle areas below, is a projective invariant.

κ(A, I, C,H,B, J) =
S4ABH
S4ACH

.
S4BAI
S4BCI

.
S4CAJ
S4CBJ

(9)

We can obtain the corollary by substituting A,B,C as the frame points Pi and D,E, F as the Qi
sets into Definition 3 and then applying Theorem 4. The areas in Equation (9) can be calculated by the
determinants of the points’ homogenous coordinates:

κ =
|ABH|
|ACH|

.
|BAI|
|BCI|

.
|CAJ |
|CBJ |

where:

|ABH| =

∣∣∣∣∣∣∣
1 1 1

xa xb xh

ya yb yh

∣∣∣∣∣∣∣
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The determinant operator is widely available in any programming packages for scientific computing.

2.4. Generalization of Pascal’s Theorem

Classical Pascal’s theorem states the remarkable property of a hexagon inscribed in a conic. Various
forms of generalizations emerge, but few of them appear in its original form. Luo et al. gave a
generalization of Pascal’s theorem in the projective plane with a recursive structure in degrees, revealing
the relation of curves of distinct degrees [18,19]. In this section, we present one generalization of Pascal’s
theorem in a high-dimensional space.

Theorem 8. Suppose m,n ∈ Z+ and n ≥ m. P1, P2, . . . , Pm+1 are m + 1 linear independent
points in Pm (K). A hypersurface of degree n not through any Pi intersects the lines PiPi+1

(i = 1, 2, . . . ,m + 1 and Pm+2 := P1) in the points Q(1)
i , Q

(2)
i , . . . , Q

(n)
i , where multiple intersections

have distinct superscripts. For each j (j = 1, 2, . . . ,m + 1), the hyperplane, Hj , through {Q(j)
i }i 6=j

intersects the line PjPj+1 in Rj , and Sj = χ(Pj ,Pj+1)(Rj). Then, the (m + 1)(n − m + 1) points
{Sj}m+1

j=1 ∪ {Q
(j)
i }

j=i,m+2,m+3,...,n
i=1,2,...,m+1 lie on a hypersurface of degree n−m+ 1 not through any Pi. (when

n = m, we set Q(m+1)
i := Q

(i)
i and {Q(j)

i }
j=i,m+2,m+3,...,n
i=1,2,...,m+1 := ∅.)

This result establishes the connection from an algebraic hypersurface of higher degree to another one
of lower degree as Pascal’s theorem and Luo’s results do to curves. Theorem 8 is equivalent to the results
in [18,19] for planar curves when m = 2. Furthermore, this theorem degenerates to Pascal’s theorem if
the hypersurface (algebraic curve) is a conic. The proof of the theorem is given in [21], rather, due to the
limit of the space, and we will provide its applications in future work.

3. Application I: A Perspective Invariant Shape Descriptor

We have used the characteristic ratio in Definition 1 to construct a shape descriptor invariant to
affine transformations, named the characteristic ratio spectrum (CHARS) [22]. Compared with the
descriptor using the cross-ratio (CRS) [7], our descriptor is able to incorporate more shape information,
especially on geometric structures inside the symbol, as the cross-ratio in CRS can only use four collinear
points for the calculation, but the characteristic ratio can combine as many as available. As shown in
Figure 4d,e, most circles are left by the calculation of the cross-ratio. The loss of the information inside
the symbol results in that CRS in Figure 4b cannot discriminate the symbols with subtle inner differences,
as shown in Figure 4a. In contrast to the cross-ratio, the new characteristic ratio is able to make use of
all available edge points given by the circles in Figure 4d,e and, thus, yields the spectra in Figure 4c
showing the differences for the symbols. Refer to [22] for more details on descriptor construction and
experimental comparisons on symbol recognition.

Similarly, we are able to construct a shape descriptor invariant to perspective deformations [8] using
the characteristic number defined as Definition 3, which is expected to incorporate more information on
the inner structures.
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Figure 4. Comparison between characteristic ratio spectrum (CHARS) and cross-ratio
spectrum (CRS). (a) Two symbols with subtle inner differences; (b) The cross-ratio spectra
of the symbols; (c) The characteristic ratio spectra of the symbols; (d) and (e) illustrate the
inner points used to calculate CHARS (circles) and CRS (red dots) of the symbols.
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3.1. Descriptor Construction

Similar to CRS and CHARS, we concatenate the values of invariants, the characteristic number here,
to form the descriptor. As shown in Definition 3, we have to construct the closed loops to calculate CN.
Let P = {Ps}( s = 1, 2, . . . , N) denote the equidistant sample points numbered counter-clockwise
on the convex hull of a given shape, S. We pick out three points in turn from Ps as Pi, Pj, Pk
(i = 1, 2, . . . , N − 2, j = i + 1, i + 2, . . . , N − 1, k = j + 1, j + 2, . . . , N). The characteristic number
κ(Pi, Pj, Pk) = −1, if they are collinear. Otherwise, these three points form a triangle, and there are C3

N

triangles in total that cover the whole shape. As shown in Figure 5, each side of the triangle intersects
the inner shape at several points regarded as Qi for the calculation of CN. We can obtain κ(Pi, Pj, Pk) of
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the triangle 4PiPjPk by Equation (8). We concatenate the CN values of the triangles as the descriptor
for the shape, S:

D1(S) = (κ(Pi, Pj, Pk)) (10)

where i = 1, 2, . . . , N − 2, j = i + 1, i + 2, . . . , N − 1, k = j + 1, j + 2, . . . , N . D1(S) is a vector of
length C3

N .

Figure 5. Points to calculate the characteristic number when (a) r = 2 and (b) r = 3.
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In practical applications, one side of a triangle may have coincidence with the convex hull. False
intersections are detected and used N − 2 times in this case. These intersections cannot reflect the
inner structure of the shape correctly and, hence, introduce errors in shape matching. We discard the
intersections whose distances to the convex hull are smaller than a given threshold.

Another practical issue arises when any sides of 4PiPjPk do not intersect the shape, S. The shape
geometries are not available in the descriptor if we simply set κ(Pi, Pj, Pk) to zero in this case, no matter
how many intersections exist on the other sides. To address this issue, we define κ(Pi, Pj, Pk) as follows
assuming that the segment, PkPi, dose not intersect the shape without loss of generality.

• κ(Pi, Pj, Pk) = κ(Pi, Pj) · κ(Pj, Pk) if there are at least two intersections on both sides, PiPj
and PjPk.
• κ(Pi, Pj, Pk) = κ(Pj, Pk)(or κ(Pi, Pj)) if there are at least two intersections on the side, PjPk

(or PiPj), and no more than one intersection on the side, PiPj (or PjPk).
• κ(Pi, Pj, Pk) = 0 if there is at most one intersection on either PiPj or PjPk.

Theoretically, the descriptor for one shape remains unchanged under projective transformations.
Unfortunately, we may detect false intersections, due to significant deformations that do not preserve
parallelism. In the following, we justify the applicability of the descriptor to complex shapes under
perspective transformations by its properties.

• The characteristic number on a triangle is permutable, i.e., κ(Pi, Pj, Pk) = κ(Pj, Pk, Pi) =

κ(Pk, Pi, Pj). This can be be readily verified by Equation (8).
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• The choice of initial point (triangle) does not change individual values inD(S), but determines the
order in which CN values appear in D(S). It is also straightforward to derive this property from
the above and Equation (10).
• Slight fluctuations of the vertices on the convex hull of S bring gradual changes on D(S). It is

assumed that three pairs of points, (Pi, P ′i ), (Pj , P ′j) and (Pk, P ′k), are neighbors on the smooth part
of convex hull. We have κ(Pi, Pj, Pk) ≈ κ(P ′i , P

′
j , P

′
k), since each side of the triangles to calculate

CN values is also close to each other.
• The descriptor presents fluctuations in the case of affine transformations due to jags on the inner

intersections. Severe perspective deformations would make it worse. A dynamic programming
algorithm, i.e., dynamic time warping (DTW), is employed to align the shape descriptors of
query and template shapes, as done in CRS and CHARS. This process can alleviate the deviations
brought by the choice of the starting point.

3.2. Performance Evaluation

We evaluate the performance of the descriptor (CNF) derived from CN by comparing with recent
CRS [7] and SIFT [23], the most successful feature descriptor so far. All experiments are conducted
on a PC with a 2.3 GHz CPU and 4 GB memory. We follow exactly the same similarity metrics for
descriptors and the DTW alignment process as CRS and CHARS in all our experiments.

We validate the proposed descriptor on 32 logos of television networks among which, similar shapes
exist, as shown in Figure 6. Furthermore, many logos appear as relatively complex shape structures,
especially within their convex hulls. The query sets are generated by changing the azimuth (az) and
elevation (el) angles, as well as two factors (α, β) to indicate the degree of perspective deformations. The
larger (α, β) are, the more severe is the perspective deformation. We have three degrees of deformations,
i.e., (α, β) are (0.5, 0), (1.0, 0.5) and (1.5, 0.5), and generate 16 types of (az, el) combinations for
each degree. We generate binary contours by simply applying the Canny edge detector available in
the MATLAB Image Processing toolbox. No extra smoothing or parameterization [24] is included.

Figure 6. Experimental set: (a) 32 logos of television networks; and (b) an example subject
to perspective transformations with the perspective factors (α, β) = (0.5, 0) and various (az,
el) (azimuth (az) and elevation (el)) parameters.

(a) (b)
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Tables 1–3 show the recognition rates given by the descriptors (CNF) from the characteristic number
compared with CRS and SIFT under perspective deformations. It can be seen that CNF has a better
performance than the other two methods in most projective transformations. CNF yields very high
recognition rates when el = 60 and 105 no matter what (α, β) is. When (α, β) = (0.5, 0), CNF shows
superior performance on 13 out of 16 query subsets. The performance of CNF degrades as as (α, β)

increases, but there are still 11 and 10 out of 16 query subsets showing higher rates when (α, β) =

(1.0, 0.5) and (α, β) = (1.5, 0.5), respectively. CNF is also a bit worse than CRS when the perspective
deformations become significantly severe. In these cases, the triangle sides that generate our descriptor
have significant coincidence with the convex hull, so that inaccurate intersections are detected, as shown
in Figure 7. A simple threshold cannot eliminate all these inaccurate intersections that bring more side
effects to our descriptor, as ours include more points than CRS does.

Table 1. Recognition rates on the query set when α = 0.5 and β = 0. CNF, descriptor
derived from the characteristic number; CRS, cross-ratio spectrum.

CNF CRS SIFT
az −75◦ −30◦ 15◦ 60◦ −75◦ −30◦ 15◦ 60◦ −75◦ −30◦ 15◦ 60◦

el = 15◦ 43.75 50 50 59.38 50 62.5 46.88 46.88 6.25 9.38 6.25 15.63
el = 60◦ 93.75 100 96.88 96.88 87.5 84.38 87.5 87.5 28.13 65.63 53.13 25
el = 105◦ 100 100 100 100 93.75 90.63 90.63 87.5 12.5 71.88 71.88 21.88
el = 150◦ 71.88 75 87.5 75 68.75 84.38 84.38 68.75 6.25 18.75 25 3.13

Table 2. Recognition rates on the query set when α = 1.0 and β = 0.5.

CNF CRS SIFT
az −75◦ −30◦ 15◦ 60◦ −75◦ −30◦ 15◦ 60◦ −75◦ −30◦ 15◦ 60◦

el = 15◦ 37.5 62.5 43.75 50 53.13 53.13 34.38 34.38 6.25 6.25 0 6.25
el = 60◦ 90.63 100 100 78.13 84.38 84.38 81.25 75 12.5 31.25 25 9.38
el = 105◦ 96.88 100 93.75 87.5 87.5 90.63 87.5 71.88 18.75 46.88 40.63 9.38
el = 150◦ 56.25 75 62.5 53.13 75 78.13 65.63 65.63 12.5 12.5 12.5 15.63

Table 3. Recognition rates on the query set when α = 1.5 and β = 0.5.

CNF CRS SIFT
az −75◦ −30◦ 15◦ 60◦ −75◦ −30◦ 15◦ 60◦ −75◦ −30◦ 15◦ 60◦

el = 15◦ 31.25 31.25 37.5 31.25 40.63 50 34.38 21.88 6.25 9.38 6.25 15.63
el = 60◦ 87.5 84.38 84.38 62.5 87.5 78.13 78.13 59.38 28.13 65.63 53.13 25
el = 105◦ 87.5 93.75 90.63 75 78.13 87.5 81.25 71.88 12.5 68.75 68.75 21.88
el = 150◦ 43.75 62.5 53.13 46.88 65.13 68.75 62.5 56.25 6.25 18.75 25 3.13
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Figure 7. Significantly severe deformations bring inaccurate points into the new descriptor.
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4. Application III: Shape Matching with Characteristic Number

The characteristic number reflects the intrinsic properties of the algebraic curve given by several
points, and these properties do not rely on the existence of the curve, as shown in Section 2.3. We
are able to discover these properties through the characteristic number that is invariant to projective
transformations and apply them as geometric constraints to the extraction of facial feature points under
viewpoint or pose changes. The extraction problem is typically formulated as matching an appearance
model with facial shape constraints. In this section, we use the local appearance model based on the
principal component analysis (PCA) in [25,26] and substitute their PCA-based shape constraints with
our facial priors discovered by the characteristic number. Our priors derived from CN are invariant to
projective/perspective transformations and, hence, render the robustness to viewpoint or pose changes to
the extraction algorithm.

4.1. Shape Priors Using Characteristic Number

Human faces are highly structured and present common geometries across the age, gender and
ethnicity of individuals. For example, the four eye corners are collinear, and this collinearity preserves
under pose/viewpoint changes. Researchers employ this invariant property of collinearity for pose
recovery [27]. We intend to incorporate more geometric constraints than the collinearity.

The CN invariant is able to characterize more geometric information on faces in addition to the
collinearity. We take an exhausted strategy on the CN values for the subsets of fiducial points in order to
discover their common geometries. We enumerate all possible combinations of choosing three, five and
six points from eight manually labeled fiducial points and calculate the CN value on every combination
for all 515 images. Taking the discovery process of the collinearity using CN as an example, we have
C3

8 = 56 three-point combinations. Each combination generates 515 CN values for 515 frontal faces.
Corollary 6 tells us that the CN value of three collinear points is a constant −1, so that we can pick out
four combinations with three collinear points satisfying:

|(−1)− CNsub|2 < ε (11)

where CNsub is the CN of the three-point subsets and ε is a small positive constant. The blue bar
in Figure 8a shows the histogram of the CN values for one three-point combination that satisfies
Equation (11) on 515 frontal faces. Almost all the CN values of the points, whose locations are annotated
as blue dots on the top frontal face in Figure 8b, are quite close to −1. We verify the invariance of
the prior by using the same three-point combination from the other set of 515 uncontrolled faces with
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different poses and identities, one of which is given in the top image of Figure 8d. The CN values
calculated from all these points are almost equal to −1, as we expect. These histograms verify that CN
can find the collinear fiducial points on human faces, and the collinearity remains.

We perform the similar screening process on the combinations of five and six points, whose CN values
are approximately identical for all 515 frontal faces:{

|C − CNsub|2 < ε

Sd(CNsub) < σ
(12)

where Sd(·) denotes the standard deviation and σ is a small positive constant. The constant, C, is
called the intrinsic value that characterizes the geometric property of the curve underlying six points.
We find six combinations for five-point and six for six-point subsets that follow Equation (12). The
histograms and point locations on frontal faces are given in Figure 8a,b, respectively. The CN values of
one combination for all 515 frontal faces concentrate on one definite value. Again, Figure 8c,d verifies
the projective invariances of CN on five (cross-ratio) and six points given by Corollary 7. These invariant
priors, reported for the first time to the best of our knowledge, reflect common facial geometries similar
to the collinearity, but on a larger scale, involving more points for more facial components. We can
calculate these priors, as well as the collinearity with one formula, as Equation (6).

Figure 8. CN values for subsets with three (blue), five (red) and six (green) points: (a)
histograms of CN values on the subsets of fiducial points whose locations are annotated in
the frontal face images in (b), and (c) histograms of CN values on the same combinations
of points as (a). The point coordinates for (c) are extracted from images in (d), significantly
different from (b). Horizontal axes of the histograms are CN values, and the vertical axes are
the number of faces.

(a) (b) (c) (d)

4.2. Performance Evaluation

We use the Viola–Jones face detector [28] available at OpenCV to pick out the faces with both the
eyes, nose and mouth presented. The detector can also output the regions of eyes and mouth for each
detected face. We use these regions to roughly initialize the positions of eight fiducial points. The shape
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priors derived from CN are used as the constraints to match PCA-based appearance models on local
patches around the fiducial points and, finally, localize these points.

We test our algorithm on facial images with a wide range of variations on poses, expressions and
ages from a commercial set and several public face sets, including IMM-FACE-DB [29], LFW [30],
AFLW [31] and Pointing’04 [32]. IMM-FACE-DB and Pointing’04 are the sets of medium scale under
controlled environment, which categorizes facial images into identities and types of variations. LFW
and AFLW have more than 10, 000 facial images in the wild, and the commercial set complement the
testing images with faces of young children. We randomly select 500 images from these sets of different
environments for quantitative comparisons with the approach without and with partial shape constraints
in order to demonstrate the generalization of the CN-based shape priors.

Figure 9. Fiducial point localization with pose changes, as well as variations on age,
expression and resolution.

We employ the normalized mean error (NME) as the objective metric for qualitative comparisons.
This metric is widely accepted in comparative studies for facial point localization and alignment and is
defined as:

me =
1

ndlr

n∑
i=1

di (13)

where n denotes the number of landmarks and di values are the Euclidean point-to-point distances
between the estimated locations and manually labeled ground-truth. The distance, di, is normalized
by ndlr, the distance between two pupils for each face.

Figure 9 shows the selected results of our algorithm on the testing images. Our algorithm works
well on faces with pose and expression changes. The used shape constraints of the algorithm can help
recover the accurate positions when glasses or partial occlusions appear in the facial images in Figure 9.
The algorithm is also insensitive to low resolutions (LR), as long as the face detector can find a face
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from the LR image. The local facial appearance may change, but the global facial geometry preserves
when a person is growing. Our CN-based shape priors, especially those on five and six points, can
reflect the geometry at a larger scale and, thus, is applicable to images of babies and toddlers, though we
discover the priors from adult faces. Figure 9 also demonstrates the accurate and robust localization of
our algorithm on children images.

We show the impacts of the CN-based shape priors by comparing the localization accuracies
when using collinearity (CN on three points), all CN constraints and no shape constraints. We calculate
NMEs on 110 testing images selected from the data sets referred to above and plot the cumulative error
distributions [33,34] of the three configurations in Figure 10. We can hardly reduce the errors lower than
0.15 for nearly 15% images if no geometric constraint is imposed on our optimization framework. The
introduction of collinearity improves the accuracy of eye corner localization, so that the errors are down
to about 0.12 for almost all images. More significantly, the errors are less than 0.1 for all the images
when we combine more shape constraints derived from CN on five and six points. These improvements
validate the use of our CN-based shape priors.

Figure 10. Cumulative error distributions of localizations with collinearity (three-point CN,
red dots), all CN constraints (green solid and no shape constraints (blue dash dots). The
x-axis is the normalized mean error (NME), and the y-axis indicates the percentage of images
on which localization NMEs are lower than the x-value.
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5. Conclusions

In this paper, we present a projective invariant, named the characteristic number, defined on looped
line segments. This invariant does not rely on the existence of the underlying algebraic surface or curves
as its planar version in [18,19]. Compared with the classical cross-ratio, the invariant is able to include
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more non-collinear points, which paves the way for the possibilities of more informative descriptors
and constraints. The computation of the characteristic number only involves simple multiplications
and divisions of the point coordinates, as shown in Equation (6), and its complexity is linear to the
number of points in the set, Q. We demonstrate the potentials of the invariant on the applications of
shape recognition and matching under affine and perspective transformations. The new definition of the
characteristic number also applies in a higher dimensional space.

The characteristic number defined in Equation (6) requires that the point numbers of the sets, Q,
between any two frame points should be identical. Currently, we have to trim some inner points on one
or several segments between frame points in order to meet the requirement as discussed in Section 3.
This treatment is simple, but may sacrifice the descriptive ability. We are developing new invariants that
relax this constraint. Furthermore, our invariant is applicable in a higher dimensional space, and hence,
we will investigate how the invariant works for 3D shape analysis in the future.
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