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Abstract: A standard result in quantum mechanics is this: if two observables are  

commuting then they have a classical joint distribution in every state. A converse is 

demonstrated here: If a classical joint distribution for the pair agrees with standard 

quantum facts, then the observables must commute. This has consequences for some 

historical and recent quantum nonlocal models: they are analytically disallowed  

without the need for experiment, as they imply that all local observables must commute 

among themselves. 

Keywords: quantum nonlocal models; testing nonlocal models; quantum conditional 

probability; commutativity; joint distributions 

 

1. Introduction  

Consider two commuting quantum observables. It is standard that they have a classical joint 

probability distribution, and this is the well-known result of von Neumann relating to the construction 

of spectral measures for quantum observables; see [1,2]. Here a converse to the von Neumann result is 

derived. This result has consequences for versions of quantum nonlocal models that assert or imply the 

existence of joint distributions for pairs of local observables: Under these models it is shown that all 

local observables must commute among themselves. Hence these models can be disallowed 

analytically and without the need for refined experiments or concerns for loophole avoidance.  

One example of a nonlocal model that starts from probability assumptions is the familiar  

Bell-CHSH setup; see [1,2] for example. This family has been studied experimentally and analytically 

for several decades and with varying, increasingly stronger claims for loophole avoidance. More recent 
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examples of quantum nonlocal models have also been driven by joint probability and distribution 

assumptions, and these include those proposed in Leggett [3], Eisaman et al. [4], Gröblacher et al. [5], 

and Branciard et al. [6,7]. 

In outline, all these nonlocal models introduce, under a no-signaling condition, classical probability 

distributions for separated observables. Precise statements of these models are given in Section 6. 

Using just arguments from classical probability, it is then seen that the models necessarily assert 

classical joint distributions for pairs of local observables, those pairs within each lab. Next, the main 

technical result, given in Section 7, shows that the existence of a classical joint distribution function 

over any pair of quantum observables—if it agrees with the usual and testable quantum facts—implies 

that the pair must commute. Hence under the probability distributions assumed by these nonlocal 

models, since they imply the existence of these joint distributions for local observables, must in turn 

imply that all local observables must commute among themselves.  

Effectively, any carefully designed experimental disallow of these models only implies that some 

local observables do not commute. In still other words, the initial assumptions of these models are too 

strongly grounded in classical probability assumptions and only a classical, non-quantum outcome  

is possible.  

The discussion opens by recalling some standard facts about probability, joint distributions,  

joint measurements, and quantum outcomes. In particular, an essential distinction is noted between 

quantum joint measurements and classical joint distributions. Next, the technical details of the main 

argument are presented over several sections, and then finally application is made to recent models for 

quantum nonlocality.  

2. Background on Probability and Joint Distributions  

Suppose given two projector observables, A and B, each taking on the values a, b = 0 or 1, and 

recall that such observables are defined by the property that A2  A, B2  B. Next, a  table of 

nonnegative values over the four pairs of zero/one outcomes will define a joint distribution function if 

all the values are in the interval [0, 1] and if the assignments to the four cells add up to 1. That’s all that 
is required for the construction of an arbitrary classical joint distribution, Pr(a,b)  Pr(A  a, B  b),  

and there are generally an infinite number of ways of assigning probabilities to the cells. 
Next consider how the marginal probabilities,  and  might fit together 

consistently with the joint distribution. There always is at least one joint distribution function that 

agrees with these marginals, namely the product distribution function:  

 (1)

for  0 or 1. But suppose it is asked that this joint distribution survive a minimal test of quantum 

experimental consistency by requiring that the marginal probabilities for A and B agree with standard 

quantum facts. Then, following the usual form of the Born trace-probability rule—for which  

see [1]—and for any quantum state D, it must be the case that for projector observables A, B: 

 and Pr( 1) [ ]B tr DB   (2)

2  2

Pr(A  a) Pr(B  b),

Pr(A  b, B  b)  Pr(A  a) Pr(B  b)

a,b 

Pr(A  1)  tr[DA]
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Note that a model having a joint distribution for outcomes of the product form, as in Equation (1), 

may or may not agree with other theoretical or experimental properties of the observables, even if the 

marginal probabilities in Equation (2) are correct.  

Next, recall from classical probability—for which again see [1]—that any joint distribution 
function, Pr(A  a, B  b),  is specified uniquely and exactly by its marginal values, Pr(A  a), and

Pr(B  b),  together with its two conditional distributions, Pr(A  a | B  b)  and Pr(B  b | A  a). 

Given these specifications it is then required that, in a simplified but obvious notation: 

 (3)

Again, this joint distribution function by itself does not name or require a feasible experimental 

procedure for joint outcomes and joint measurement; more on this below. 

Continuing, given projector observables, if the joint distribution is required to be consistent  

with standard quantum facts then necessarily the conditional distributions for these projectors must be 

such that: 

 
(4)

As background for Equations (2) and (4) see [1,2].  

Finally, if the marginal and the conditional probabilities are both required to agree with standard 

quantum facts then from Equations (2) and (4): 

 
(5)

By inspection this implies 

 (6)

As shown below, this simple equation, if valid for certain states, eventually leads to this:   

Observe that no additional mathematical assumptions or model variants have been introduced in 

order to arrive at Equation (6). It is only necessary that some joint distribution function should exist 

that is consistent with the usual experimentally testable quantum facts as given in Equations (2) and 

(4). No experimental scheme or joint measurement process is assumed or required for the pair of 

observables, and both necessary and sufficient here is the agreement of the marginal and conditional 

probabilities, as in Equations (2) and (4), with standard quantum outcomes.  

3. Joint Measurements or Joint Distributions?  

The main result presented below is that requiring the marginals and the conditionals of a joint 

distribution function to agree with experiment and the usual quantum facts usually leads to a 

contradiction unless the observables were commutative in the first place. Re-expressed, there are 

necessary and unavoidable consequences for assigning any joint probability distribution for pairs of 

observables, if these mathematical objects are to agree with experiment and standard quantum facts.  

However, there is an alternative and apparently common outlook on joint probability distributions 

that appears in the quantum physics literature. It is important to distinguish this view from the classical 

Pr(A, B)  Pr(A | B) Pr(B)  Pr(B | A) Pr(A)

Pr(A | B)  tr[DBAB] / tr[DB]

Pr(B | A)  tr[DABA] / tr[DA]

Pr(A, B)  (tr[DBAB] / tr[DB]) (tr[DB])

Pr(A, B)  (tr[DABA] / tr[DA]) (tr[DA])

tr[DBAB] tr[DABA]

AB  BA.
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probability framework considered here. The standard outlook begins this way: If a pair of observables 

has a shared basis of eigenvectors then they have a joint distribution. This is certainly valid and well 

known in any discussion of quantum observables considered as Hilbert space operators. See for 

example ([8]; Theorem 2.2). In words, given a shared eigenbasis the pair can be measured jointly in 

this sense: applying one operator to the system leaves the state of the system unchanged, and the 

second operator can then be applied to obtain a “joint measurement.” Thus, a pair of outcomes is 

always unambiguously obtained, given any initial state, and it makes sense and is routine and 

reasonable to call the paired outcome the joint measurement. And this joint measurement then leads to 

a classical joint probability distribution function over the pair, exactly as in Section 2, that is quantum 

consistent for both the marginal and conditional probabilities.  

But note that the eigenbasis property of the observables is a Hilbert space property of the pair and is 

not itself a property derived by consideration of a classical joint distribution that might be defined or 

constructed in terms of marginal and conditional probabilities. If a shared eigenbasis exists then so 

does the classical joint probability and the quantum joint measurement. But this is also true: specifying 

marginal and conditional probabilities is classical probabilistic task not dependent on locating a  

shared eigenbasis.  

The result below offers a precise characterization of joint probability distributions over quantum 

observables, when presented as a classical statistical problem. There is a substantial history of the 

problem of joint distributions for quantum outcomes; see for example ([1]; Section 3.3). It is assumed 

in all that follows that quantum outcomes are observable, and result from measurement and 

experiment. It is also assume throughout that quantum observables have a finite spectrum; see [1] for 

details. The result presented here is conclusive, once agreement with simple, testable experimental 

outcomes is assumed necessary.  

4. Quantum Outcomes and Joint Distributions 

Consider any model for quantum outcomes that asserts agreement with conventional quantum facts. 

As discussed above, if the model asserts the existence of joint distributions over a pair of projector 

observables, it should plausibly return single and conditional distributions, as given by standard 

quantum facts. Hence two properties seem reasonable for a model that is consistent with quantum 

outcomes for arbitrary quantum projectors A, B: 

(i) both marginal probabilities for A and B, those on the left in Equation (2), agree with the Born 

trace-probability rule values given on the right in Equation (2);  

(ii) both conditional probabilities, A given B, and B given A, those on the left on Equation (4), 

agree with the conditional probability rule values given on the right at Equation (4).  

Some comments are in order. First, by an application of the Lagrange interpolation formula, every 

projector appearing in a spectral decomposition of an observable can be written as a real polynomial in 

that observable. It follows that an arbitrary pair of observables has a classical joint distribution if and 

only if the collection of their spectral decomposition projectors do as well. Hence the assertion of a 

joint distribution consistent with quantum facts can be evaluated in terms of the corresponding 
projectors. For example, if a pair of spin observables,  taking on values  have a classical A, B, {1,1},
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joint distribution then so must all four of their associated projectors:  

 
Second, quantum conditional probability is most naturally defined in terms of projectors, rather than 

arbitrary observables; see for example ([1]; Chapter 26).  

Third, the conditional probability requirement for projectors as in (ii) is just that for the marginal 

requirement (i) when the state is changed in the usual way, since: 

 (7)

for state  Hence, if Condition (i) is valid then Condition (ii) is experimentally 

testable using just marginal outcomes.  

Assume the system is in state D and refer to the Conditions (i) and (ii) above. Then the remarks 

above motivate these definitions: 

Definition. If two projectors have a classical joint distribution satisfying (i) and (ii) they are said to 

have a quantum consistent joint distribution. An arbitrary pair of observables has a quantum consistent 

joint distribution if every pair of their spectral projectors does so. A model for quantum outcomes is 

quantum consistent if every pair of observables has a quantum consistent joint distribution. 

The precise connection between joint distributions and commutativity for quantum observables is 

now taken up. 

5. Joint Distributions and Commutativity 

Given projectors  a useful relation between the commutator  and the 

compound commutator  is:  Define the observable  

 (8)

Then  Therefore there exists a joint spectral resolution of  

and  such that 

 (9)

for orthogonal projectors  and eigenvalues  Let S(CC*) be the set of all those projectors  

appearing nontrivially in the decomposition for  so for such i:  In particular, if 

 then there exists at least one projector  such that   For a 

system in state  it follows from [9; Proof of Theorem 1, Case (a) and Case (b)] that

 Hence  and  Thus under the 

assumption that  have a joint distribution for the system in state  the univariate marginals 

for both A and B are nonvanishing. Therefore, for   

 and  (10)

so that 

 (11)

{A , B}, {A , B}, {A , B},

{A , B}.

Pr(A | B)  tr[DBAB] / tr[DB] tr[(DB )A]  PrDB
(A  1)

DB  BDB / tr[DB].

A, B, C  [A, B]  AB  BA,

[AB, BA], CC  [A, B][A, B]  (A  B)[AB, BA].

G  G( A, B)  [AB, BA]  ABA BAB

( A B)G  G( A B)  CC. G, A  B,
CC*,

G  iPi , A  B   iPi , CC*  i iPi

Pi , i,i. Pi

CC*, i i  0.

CC* G(A  B)  0 Pi tr[PiCC*]  i i  0.

D  Pi APi  0,

BPi  0. tr[APi ] tr[(APi )
(APi )] 0, tr[BPi ] tr[(BPi )

(BPi )] 0.

  A, B D  Pi ,

D  Pi :

tr[DA] 0, tr[DB]  0 tr[DABA]  tr[DBAB]

tr[DG]  0
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For convenience, and it is hoped without confusion, call a pair of projectors quantum consistent if 

they have a quantum consistent joint distribution. Similarly for a pair of observables, they are quantum 

consistent if every pair of their spectral projectors has a quantum consistent joint distribution. An 

important consequence of quantum consistency is this:  

Lemma 1. Consider two projectors, A, B, with the associated decomposition as in  
Equation (9). If A and B are quantum consistent for every state of the form with all 

and  in S(CC*), then A and B commute.  

Proof. For G as in Equation (8), if then and so assume 

 It follows that  Hence 

 (12)

Given quantum consistency for A, B, in every decomposition state and using (11), it follows that 

 for all i. But this contradicts Equation (12), so only is possible, and the result 

follows.  

The main result on joint distributions and quantum outcomes is this immediate consequence of 

Lemma 1: 

Theorem 1. If two observables are quantum consistent for every state then they must commute.  

Proof. By definition two observables have a quantum consistent joint distribution for all states if all 

their spectral projector pairs do so. From Lemma 1, it follows that all the pairs commute, and so the 

observables do as well.  

Some remarks are in order concerning quantum consistency for arbitrary models for quantum 

outcomes. Suppose a model for quantum outcomes induces or implies the existence of a joint 

distribution for every pair of projectors, A, B. And suppose a specific pair is commuting. Then for the 

model to be valid for quantum outcomes it should minimally satisfy Equation (2). Next, suppose the 

pair is not necessarily commuting, and consider that the model is under experimental control and 

study. Then the conditional probability rule at Equation (4) can be validated—or not—by experiment 

on that pair. If the rule is confirmed than the pair is quantum consistent in terms of the stated joint 

distribution function. In which case Theorem 1 applies, and the pair must be commuting after all. But 

then the conclusion is that the model itself is not quantum consistent. On the other hand, examining a 

given quantum model by a search over all quantum pairs is prohibitive and also unnecessary, as it is 

always possible to challenge a model using a single pair of observables. This is taken up next, 

specifically for the recently devised quantum nonlocal models. 

6. The Leggett-Branciard Nonlocal Model 

Leggett [3] proposed a nonlocal model of considerable interest. A less constrained version of the 

Leggett model was given in Branciard et al. [7], and this is considered here. 
Consider binary outcomes for observables corresponding to spin observables 

measured in the a, b, directions in two separated labs. Using the notation in [7] the model assumes that 
the probability of the event is given by 

{Pi}
P   iPi , i  0,

Pi

G(A B)  0 CC* 0 AB  BA,
CC*  G(A  B)  0. tr[PCC*]  i i i  0.

tr[PCC*]  tr[ iPi (A  B)G]  i itr[PiG] 0

Pi ,
tr[PiG] 0, G(A  B)  0

 ,  1, A, B,

( ,)
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(13)

where: (a) the model is parameterized by an unobserved nonlocal variable  (b) the state of the 

system is initially left unspecified in Equation (13) but for showing how the model might be 

disallowed it is usually assumed to be an entangled state; (c) the two terms  refer 

to marginal expectations for the observables A, B, at each unobserved but fixed value of , and where 

the marginal, within-lab, expectations might be dependent on settings in the other lab; and (d) the term 
in Equation (13) is the “correlation” of the pair A, B, at each fixed value of   

Some elementary but clarifying comments are useful. First, Equation (13) is simply a parameterized 

version of a result from classical probability, here re-written to allow for a possible dependence on  

and a possible dependence on settings in the separated labs, that is, a nonlocal interaction.  

Second, the expectation functions M are not level probabilities, and these expectations can be 

zero without the underlying probability functions being identically zero.  
Third, the function C is, at each fixed the expectation of the product of the observables, so C is 

not a correlation function unless the M functions, that is the individual expectations, are themselves 

identically zero.  

And Fourth, suppose the hidden variable  is assumed to operate as a classical, though unobserved 

random variable. Then integrating (summing) over Equation (13) with respect to the appropriate density 

function for  necessarily returns a classical joint probability function for the pair A, B. Quantum 

consistency of this joint distribution is then an appropriate question for theory and experiment.  

Now it is standard in experimental study of a nonlocal model that the system is assumed to be in a 
singlet state. And then for binary  spin observables the expected values for the observables are 

the weighted average of these outcomes, namely zero. As the model assumes that the M functions 

should agree with the required marginal expectations, the function C in Equation (13) does correctly 

return the observed correlation function for the observables in this state. 

However, any analytic derivation showing that the M functions are zero does not invalidate the 

model, and indeed only confirms that the model returns the correct singlet state expectations. If the M 

functions were probability functions rather than expectations, then such a demonstration would indeed 

invalidate the model.  
Still more simply, for an observable A that takes on values  the relation is 

 where is the expectation of A, and  is the probability that the outcome 

is +1. For projectors the equivalent relation is  So would imply an analytic 

disallowal of the model over projectors, but not for the spin observables as in [7]. There it implies 
 exactly as it should be for measurements in the standard entangled state.  

At this point it is helpful to consider the derivation in [7] showing that the M functions must vanish. 

Under the no-signaling condition it is assumed that  and

 In ([7]; Methods section) it is shown that a simple and important inequality 

connects expectations over a triple  of spin measurements, where measurements in the  

directions are made in one lab and is made in a separated lab. That is: 

   
P ( , | a,b)  1

4
(1M

A(a,b) M
B(a,b)C (a,b))

;

M
A(a,b),

   
M

B(a,b)



C (a,b) .



 

,





{1,1}

1

{1,1}
E(A)  2Pr(A)1, E(A) Pr(A)

E(A)  Pr(A). E(A)  0

Pr(A)  1/ 2

M
A(a,b)  M

A(a,b) 
   
M

A(a),

   
M

B (a,b)  M
B(b),

(a,b,b') b,b'

a
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From this, as accurately analytically demonstrated in [7], it follows that any no-signaling model for 

a system in an entangled state must have vanishing marginals:  

It is noteworthy that this conclusion is derived in [7] by integrating over   with respect to a 

suitable density function for  , exactly as suggested in the Fourth comment above following  

Equation (13). The point here is that integrating out the hidden variable should return probabilities and 

facts that are consistent with standard quantum outcomes. This is exactly the claim made in [7], that 

the vanishing marginals are a foreshadowing of the experimental conflict with Equation (13) and 

standard quantum facts. However, as noted above just before Equation (14), the M functions are 

marginal expectations as taken in the singlet state, and they are not marginal probabilities.  

To summarize: Given the nonlocal model, as at Equation (13), there are consequences for the 

existence of joint distributions over triples of measurements, as in Equation (14). Reasoning as above 

the inequality at Equation (14) correctly shows that expectations in the model must be zero, but not 

that marginal probabilities are necessarily zero. If the latter were true then Equation (14) would indeed 

disallow the model. Yet, by using the main result above, the probability model at Equation (13) applied 

to certain triples of measurements, does indeed lead to a basic model conflict with standard quantum 

facts. This is now presented.  

7. The Leggett-Branciard Model and Joint Distributions  

Consider two pairs of observables, and  where, as above, observables  and are in 

one lab and A is in a separated lab. Under the no-signaling condition the univariate marginal 

expectation for A in each pair remains the same, independently of settings in the opposite lab. Hence, 

under the no-signaling condition, the marginal probabilities within each lab are uniquely specified by 

the M expectation functions.  

Next, consider another result from classical probability: Given a joint probability distribution for 
the pair  and another for the pair such that the marginal probability for A is the same in 

each, there exists a joint probability distribution function for the triple  If the marginal 
probability for A is  while the two joint distributions are  and 

 
then a valid 

joint distribution for the triple is given by  

 (15)

For complete details on the connections between marginal and joint probabilities see ([2], Theorems 1 

and 2). 
Three remarks are in order. First, invoking a connection between the observables in the same 

lab is an essential feature of the derivation of Equation (14), as in [7];  

Second, while the joint distribution over the triple is possibly dependent on the choice of observable 

A, this plays no part in what follows, where attention is focused on the joint distribution for the pair of 
local observables (B, B'); 

And Third, the same argument leading to Equation (15) is valid if any of the random variables are 
themselves vector-valued, for example if A is bivariate and A  (A1, A2 ). In this case a joint distribution 

M
A(a)  M

B(b)  0.

( A, B) (A, B '), B B '

(A, B) (A, B '),
( A, B, B ').

fA(a), fA, B(a,b), fA, B ' (a,b '),

fA, B, B ' (a,b,b ')  fA, B(a,b) fA, B ' (a,b ') / fA(a)

(B, B ')
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over (A1, A2, B, B ') is given by an appropriately notated, right hand side of Equation (15). And then 

integrating A1with respect to a suitable density returns a joint distribution for (A2, B, B ').  

Now, using the nonlocal joint probability model at Equation (13) and the classical probability result 
at Equation (15), the joint distribution for the triple is immediately given by: 

 (16)

Summing over  and integrating over   with respect to a suitable density always returns 
a joint probability distribution for the pair This step is a version of that given in the Third 

remark just above and is only classical probability, requiring no quantum mechanical side conditions 

or assumptions.  
Three remarks are in order. First, invoking a connection between the observables in the same 

lab is an essential feature of the derivation of Equation (14), as in [7]; Second, similar to the discussion 
above, the existence of a joint distribution over the triple  implies a joint distribution over all 

the projectors in the spectral decomposition of the triple. And if all the local projectors should happen 

to commute then so must the original spin observables within each lab; Third, while the joint 

distribution over the triple is possibly dependent on the choice of observable A, this plays no part in 

what follows, where attention is focused on the joint distribution for the pair of local observables
The existence of a joint probability distribution for the pair in the same lab, given any 

state of the system, has consequences for the model if it is assumed to return valid and testable 

outcomes. 

From these remarks, and using Theorem 1, the following is immediate:  

Theorem 2. If the model in Equation (16) is quantum consistent, then every pair of local 

observables within each of the separated labs must commute.  

In other words, if the Leggett-Branciard quantum nonlocal model agrees with standard testable 

properties for quantum outcomes for local observables, then it implies that all local observables 

commute among themselves. More precisely, the Leggett-Branciard model, with Equation (13) and no-

signaling, always returns a joint distribution for local pairs of observables by integrating over A and the 

hidden variable. And as in the discussion following Equation (14) this integration has local 

consequences. In particular, the model then implies the existence of a joint distribution for each pair 

with univariate marginal and conditional probabilities, but this joint distribution is not quantum 

consistent unless the pair commutes.  

Two worked examples are useful: 

Example (1) Under no-signaling and the assumption that Equation (13) is valid for any state of the 
system, consider a pure state of the compound system. Given arbitrary projectors, in the same 

lab, select any two orthonormal eigenvectors in a decomposition for with 

eigenvalues 
 
If both are zero then  so must commute. So suppose  and let 

the system state be  Write  and  It is 

straightforward to show that if  have a joint distribution then so must  But then 

and this contradicts  for state  using Equation (5.4). Hence

and also  Therefore A and B commute. Since the argument applies to any pair of 

(A, B, B ')

P ( ,, ' | a,b,b')  {P ( , | a,b)P ( , ' | a,b')} / {P ( | a)}

A   1,
(B, B ').

(B, B ')

(A, B, B ')

(B, B'). (B, B ')

B, B ',

1,2, G  G(B, B ')

1,2. G  0 B and B ' 1  0

 12. A  A I , B  B I , 
G  G( B, B ')  G I .

(B, B ') (
B, B ').

G  1  0, tr[D G] 0 D    ,

 G  0, G  0.
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observables under the model at Equation (13) with no-signaling, it follows that all local observables 

commute.  
Example (2) Select any two orthonormal vectors  and consider the entangled states 

 (17)

and define projector observables and a subsequent compound function: 

 
(18)

Then 

 
 

 
(19)

 

Under Equation (13) and no-signaling, the projectors A, B have a joint distribution, and so also must 
 For the system in state  it follows that 

 and this contradicts Equation (11) above. Hence cannot have a quantum 

consistent joint distribution as would follow from Equation (13).  

Note that Example (1) disallows the Leggett-Branciard model using an arbitrary choice of 

projectors acting on a compound system in a pure state, while Example (2) disallows the  

Leggett-Branciard model using a superposition over two arbitrary entangled states, and two projectors 

defined by that state. For either Example it might be argued that the proposed nonlocal model is 

assumed to be valid only under some states and not necessarily others, or, only for some observables 

and not others. That is, it might be asserted to be valid under only a single entangled state, and not any 

pure state, and not in any superposition of entangled states. However these types of constraints are not 

broadly evident in any discussions of nonlocality, or on display in the model specifications given in [7]. 

8. Conclusions 

Some nonlocal models proceed by introducing joint probability distributions for quantum 

observables. One such model is given by the classic Bell-CHSH construction, as discussed in [2]. A 

more recent model was introduced by Leggett in [3] and a less restricted version of the model was then 

considered by Branciard et al. [6,7], and others [4,5]. These models necessarily imply joint 

distributions for within-lab, local observables. Independently, a converse to a standard result on pairs 

of commuting observables has been derived here, so that any experimentally verifiable model leading 

to the existence of a joint distribution for a pair of quantum observables must also require the pair to 

commute. Hence these models can be disallowed analytically, and for a given pair of local observables 

no experimental verification of noncommutativity seems necessary.  

In summary, the assertion of joint distributions for noncommuting quantum observables causes 

nontrivial problems for any quantum probability model, nonlocal or otherwise. More generally, it is 

not clear whether it is ever necessary to undertake precise and complex experiments to disallow any 

1,2,

  (1 / 2)(1 2 2 1),   (1 / 2)(1 2 2 1)



A  P1, B  P1  2,

G  G(A, B)  G(A B, B A)

1 / 4   (A B)   (A B)

  (B A)   (B A)


G  (1 / 8) , G  (1 / 8)

A B, B A.   (1 / 2 )(  )  1 2,


G  1/ 8  0, A, B
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model, nonlocal or otherwise, that analytically requires or necessarily implies joint distributions over 

noncommuting observables. 
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