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Abstract: From Kemp [1], we have a family of confluent ¢g-Chu- Vandermonde distributions,
consisted by three members I, II and III, interpreted as a family of ¢-steady-state
distributions from Markov chains. In this article, we provide the moments of the
distributions of this family and we establish a continuous limiting behavior for the
members I and II, in the sense of pointwise convergence, by applying a g-analogue of the
usual Stirling asymptotic formula for the factorial number of order n. Specifically, we
initially give the g-factorial moments and the usual moments for the family of confluent
¢-Chu- Vandermonde distributions and then we designate as a main theorem the conditions
under which the confluent g¢-Chu-Vandermonde distributions I and II converge to a
continuous Stieltjes-Wigert distribution. For the member III we give a continuous analogue.
Moreover, as applications of this study we present a modified g-Bessel distribution, a
generalized g-negative Binomial distribution and a generalized over/underdispersed (O/U)
distribution. Note that in this article we prove the convergence of a family of discrete
distributions to a continuous distribution which is not of a Gaussian type.

Keywords: stirling asymptotic formula; g¢-factorial number of order n; confluent
g-Chu-Vandermonde distributions; g-factorial moments; modified g¢-Bessel distribution;
generalized ¢-negative Binomial distribution; Over/Underdispersed (O/U) distribution;
pointwise convergence; continuous Stieltjes-Wigert distribution
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1. Introduction and Preliminaries

From Kemp [1], we have that the confluent ¢-Chu-Vandermonde hypergeometric sum,

161(bicig,e/b) = ZM(_%)%(;):%

(¢;0)n(q; @)n M

n=0
where 0 < ¢ < 1 and (¢;9). = [[[_;(1 —a¢’~"),z = 0,1,2,..., gives rise to a family of
q-Chu-Vandermonde distributions for suitable values of ¢ and b, interpreted as a family g-steady-state

distributions from Markov chains, with probability generating function (p.g.f.)

G(z) = 101(b; ¢; q,¢/bz)

= R 2
or(beiq cfb) © @)

and with probability function (p.f.)
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Note that Equation (1) is a generalization of the ¢g-binomial theorem and gives rise to two g-confluent
distributions with infinite support and one with finite support.
The members of the above family of g-Chu-Vandermonde hypergeometric series discrete distributions
are listed in Table 1.

Table 1. Confluent ¢-Chu-Vandermonde Distributions.

Confluent Symbol of Symbol of Parameters Support
g-Chu-Vandermonde G(z) p(x) band c
Distributions
g-CCV-1 Gqecovi(z) Peccvi(z) b=—-h, h>0,0<c<1 z=0,1,2,...
g-CCV-1I Gecovii(z)  pgcovii(x) 0<b<l,c=-1nn1>0 z=0,1,2,...
q-CCV-III GqCCVIII(Z) quCVHI(x) b=q¢ ", n=0,1,...,0<c<1 zz=0,1,...,n

The distributions of the above table have finite mean and variance when n — oo and we cannot
conclude the asymptotic normality in the sense of the DeMoivre-Laplace classical limit theorem, as in
the case of ordinary hypergeometric series discrete distributions. Also, we cannot apply asymptotic
methods —central or/and local limit theorems— as in Bender [2], Canfield [3], Flajolet and Soria [4],
Odlyzko [5] et al.

Thus an important question is arisen about the asymptotic behaviour for n — oo of this family of
¢-Chu-Vandermonde hypergeometric series discrete distributions.

Recently, the authors investigated the asymptotic behaviour of another member of ¢g-hypergeometric
series discrete distributions, having also finite mean and variance, that of a g-Binomial one [6].
Specifically it has been established a pointwise convergence to a continuous Stieltjes-Wigert distribution.

In this article, we provide a continuous limiting behaviour of the above family of confluent

q- Chu- Vandermonde discrete distributions, for 0 < g < 1, in the sense of pointwise convergence.
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Specifically, we initially give the g-factorial moments and the usual moments of this family and then we
designate as a main theorem the conditions under which the confluent g-Chu-Vandermonde distributions
I and II converge to a continuous Stieltjes-Wigert distribution. For the member III we give a continuous
analogue. Moreover, as applications of this study we present a modified ¢-Bessel distribution, a
generalized g-negative Binomial distribution and a generalized over / underdispersed (O/U) distribution.
Note that, the main contribution of this article is that a family of discrete distributions converges to a
continuous distribution which is not of a Gaussian type.

To establish the proof of our main theorem we apply a g-analogue of the well known Stirling
asymptotic formula for the n factorial (n!) established by Kyriakoussis and Vamvakari [6]. The authors
have derived an asymptotic expansion for n — oo of the ¢-factorial number of order n ,

)= 10,02,y = ] o

r (¢: 9)n

— = - 4)
=g (1—q)
where 0 < ¢ < 1 and [t], = 11%‘1;, the g-number ¢. Analytically we have
[ P n+1/2
o=z ¢Sl
(2m( q)) 1/q (1 4 O(n_l)) (5)

[nlg! = 2 -
! (qlogg=1)Y2 TI7Z,(1 +q(g" = 1)g'~1)
For answering the main question of this study we apply our above asymptotic formula for the g-factorial

number of order n to provide pointwise convergence of the family of confluent ¢g-Chu-Vandermonde
distributions to a continuous Stieltjes-Wigert distribution with probability density function

1/8 (log )2
SW(e) = g Phoia, >0 (6)

V2rlogqg™x

with mean value ;¥ = ¢! and standard deviation 05" = ¢=3/2(1 — ¢)1/2

(%

Remark 1. We note that the corresponding to the probability measure Equation (3) orthogonal
polynomials are the g-Meixner ones (see [7]). Also, we have that the g-Meixner orthogonal polynomials
converge to the Stieltjes-Wigert ones, both members of the ¢g-Askey scheme (see [7,8]). But, from the
convergence of the orthogonal polynomials one cannot conclude the convergence of the corresponding
probability measures (see [9,10]). So, in this paper the method of pointwise convergence is followed.

2. On Factorial Moments of the Confluent ¢-Chu-Vandermonde Distributions

In this section, we first transfer from the random variable X of the family of confluent
¢-Chu-Vandermonde distributions Equation (3) to the equal-distributed deformed random variable
Y = [X]i/4, and we then compute the mean value and variance of the random variable Y, say 1, and
02 respectively. We also derive all the descending factorial k-th order moments of the random variable
X through the computation of all the r-th orders factorials of the random variable Y, named ¢-factorial

moments of the r.v. X.

Proposition 1. The g-mean and q-variance of the family of confluent q-Chu-Vandermonde
distributions are given respectively by
cl—=b

'uq:_gl—q

c>2 1-5b c1l—-0b
gq1—q) b1l—gq

2
and o, = <_l_7
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Proof. The ¢g-mean of the family of confluent g-Chu-Vandermonde distributions is given by

= B07) = B(XD) = S lehnfx(@) = s Sl t e () o)

2 (¢/b; q ¢ q)a(q;
and since [ ] 1
_ —x+1 z+1 (;) — (2221) r q =
[y =q"" [zl ¢ g L e YRR € R T o W
and

(b;q)s = (1 =0)(bq; @)a—1, (c:9)2 = (1 = c)(cq; @)a—1

it is written as

__E 1-b quo - bqq (Tgl) _E z—1
Fa= 50— — o) ( C/bq)wZ (Z 0. q> - ( b) (8)

=1
Using the confluent ¢-Chu-Vandermonde hypergeometric sum Equation (1) we obtain the formula of the
g-mean in Equation (7).

For the evaluation of the g-variance we need to find the second order moment of the r.v. Y = [X]; ,

which is given by
BIY?) = EIIX[ ) = S_lolt () = 7o Z[xﬁ/q%q@ (-3 ©
Since
2]y = [r — g+ g7, g72+2g(3) = g71¢(%)
and

(0;q). = (1= 0)(1 = bq)(bq*; Q)e—2, (¢;Q)a = (1 = )(1 = cq)(cq®; @)a—s
Equation (9) becomes

W (e (=B b = s (o
2 = (-3) oot = c/bqooZ e ) (=)

(o Uob o x:(_E) (1= b)(1 - by
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So,

B () It )

2 C
—V(Y) = V([X]1) = (--)
T4 (Y) ([(XT1/q) b q(1—q)? b1 — q
from which we obtain the formula of the g-variance given in Equation (7).

Proposition 2. The r-th order q-factorial moments of the family of confluent q-Chu-Vandermonde

distributions are given by

E([X]n1/q) = (b: ) (=5, r=1,2.... (11)
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Proof. The r-th order g-factorial moments of the family of confluent g¢-Chu-Vandermonde
distributions is

o0

E(Xlrig) = Y [#leajafx(x)

=T

(i;’quso_oo Z[x]l/q[x —1]yyq - fr—r+ 1]1/q%q(§)(_c/b)x (12)

Since
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the sum Equation (12) becomes

o

_ (0o biq)r (04" Der (+37) (e
E([X]r’l/q)_(C/b;Q)oo(l—Q)T< /) Z(qu;Q)z—r(q;CDm—rq (=¢/b) (13)

By the confluent ¢-Vandermonde sum the r-th order g-factorial moments of the family of confluent

r=r

¢-Chu-Vandermonde distributions, reduces to Equation (11).

Proposition 3. The descending factorial k-th order moments of the rv. X of the family of
q-Chu-Vandermonde distributions are given by

e s (r _ 1\r—k cq”
B = gy O 0 B antb ez 15 (19

Proof. The relation of the factorial descending moments with the g¢-factorial descending moments
through the ¢-Stirling numbers of the first kind is given by the sum

B((x)) = 0y SR =)™

—k [r]q!

E([X]rq) (15)

where s,(r, k) the ¢g-Stirling numbers of the first kind (see Charalambides [11]).
Since
T rar—r T
(), =rC)
"/ q " 1/q

)rfk
E(¢" " [X]r1/q)

the sum Equation (15) is written as

[ee]

E(X)) = MY

_ S S R = ) (g @)oo (b @)r (=0/) g~ (00 e () e
’“'Z G O TR S TRy T e e

T=r

(16)

By Equation (11) of the previous proposition 2 and the definition of the g-hypergeometric function
Equation (1), Equation (16) reduces to Equation (14).
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3. Pointwise Convergence of A Family of Confluent ¢-Chu-Vandermonde Distributions to the
Stieltjes-Wigert Distribution

In this section, we transfer from the random variable X of the family of confluent
g¢-Chu-Vandermonde distributions Equation (3) to the equal-distributed deformed random variable
Y = [X]1 /4, and using the g-analogue Stirling asymptotic formula (5), we establish the convergence to a
deformed standardized continuous Stieltjes-Wigert distribution of the members I and II of the family of

¢-Chu-Vandermonde distributions.

Theorem 1. Let the p.f. of the family of confluent q-Chu-Vandermonde distributions be of the form

e q ) (—c/b)"

_ (69)2(49) o
fx(z) = T , x=0,1,... (17)
(69)oo
where b = b,, ¢ = ¢,, n = 0,1,2,..., such that b, = o(1) and —c, /b, — o0, as n — oo. Then,

forn — oo, the p.f fx(z), x = 0,1,2,... is approximated by a deformed standardized continuous
Stieltjes-Wigert distribution as follows

1/8 —1\1/2 _ 1/2
~ ¢(logq™) - [@ifg —1g -
fx(z) = 2n)i? (q 3/2(1 . q)1/2 qu 14 g4

1 —
2logq

Oq

Proof. Since the product (b; ), = [[;_,(1 —b¢’~') = (1 = b)(1 —bq) -~ (1 — bg""") for b = b, with
b, — 0 as n — oo is approximated by (b,;q), = 1 the p.f. of the family of confluent
¢-Chu-Vandermonde distributions is discretely approximated as

&) Censbn)
fr(w) = L 0e 00,1, (19)
(cn3;q@)oo

By using the ¢-Stirling asymptotic formula (5) we get the following approximation for the p.f. fx(z)

with b = b, ¢ = ¢, such that b, = o(1) and —c¢,, /b,, — 00, as n — o0,

(qlog g™V (—en/by)” T2 (1 +q(g™ = D7) (ens @)oo

fx(z) = (20)
@2r(l—g)? (1-q)" q—x/Q[x]ff;/Q(cn; Q)2 (Cn/bn; @)oo
From the standardized r.v. Z = [th/r—z_“q with p, and o, given in Equation (7), we get
- 1/2
2] N Cn 2 1—gq ¢, 1 —0b, / ¢, 1 —0b,
x = 0,2 =1|{—-— - — - —
o = Sl bo) a(l=q) bu1l-g ba 1= ¢
cnl—bn- 1—gq b, 1 —gq 1/2
_ _r 1 21
b, 1 —q (q(l—bn) cnl—bn> i 1)
Using the assumptions b, = o(1) and —c¢,,/b,, — 00 as n — 0o, we have
CTL — —
[alig = == (21— @)%+ g7 (22)

YT T 1— g
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Also, by the previous two equations we get

_ cnl—>0y, 1—gq b, 1—¢q 1/2
e_ _COn _r 1 1 23
T T [(q(l—bm cnl—bn) T @
and
Y _
¢ =t (¢ -9z ) (24)
Moreover, by the Equation (23) we find
1 c, 1 —b, 1—q b, 1—¢q\"?
- - 1| +1 2
" logg ( b, [(q(l—bm cnl—bn) T 2
and
p ! log (=2 (¢7¥2(1 = q)z+ ¢ ) (26)
log ¢! bn

Finally, by the Equation (21) we get
e\ (1—0b,\" 1—gq by 1—q\"?
g = |7 - — 1
[x]l/q ( bn> <1_Q> [(Q(l_bn) Cnl_bn) o
&\’ (1=b,\" l—q by 1—gq\"*
= | —— 1 - — 1
( bn) <1_q) P (x o8 [(Q(l_bn) Cnl_bn> i

) 27)
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with z = /et

Substituting all the previous approximations Equations (22),(24),(26),(28) to the p.f. fx(z) we get
the approximation

(q(1 - q)log g~y /2 1= (1 S VA O RAE RN qj‘1> (n; @)oo

fx(z) =
N TP (ens el
1 Cn , _ _ _ B
o (1o (—2 (7970 = 5. ) o1~ -+ 7))
1/2 -1 .
Cn —3/2 2 ~1 [%]1/g — Hq

(—gm(q P(1-9q)"?2+q )> 2= (29)

As a last step, we need to estimate the products [] (1— e (321 — )22+ ¢7) qj”),
j=1 "

(Cn/bn; Q>x = H;il(l - Cn/bnqj_l) and (Cn; Q)oo/(cn;q x = (qux; Q)oo - H(J)il(l - quij_l) by
integrals. Since the first product is written as

11 (1 - Z—" (a1 —9)2+q7") qj‘l) = exp (Z log (1 - g—" (1 -9z +q7") qH))

(30)
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and the function

(1 007

n
has all orders continuous derivatives in [1, 00), we can apply the Euler-Maclaurin summation formula
(see [5], p. 1090) in the sum of the Equation (30).
So,

Zlog (1 B Z_n (q_3/2(1 o q)1/2z—|—q_1) qj—1> _ /log (1 B Z_n (q—3/2(1 o q)1/22+q_1) qu—l) du
=1 "

n

1 Cn , _ m . -
—|—§log <1_b_(q 3/2(1 — q) /22 4 ¢! >+Z 2% h(2k 1) ( _b_(q 32(1 — )2 4 ¢ 1)) Ry
" k=1

n

€1y

where
!ﬁzk\ /| (2k) < Cn (q_3/2(1 — )24 q7) q“—l) |du (32)

with 3, the Bernoulli numbers.

Now, expressing the integral appearing in Equation (31) through the dilogarithm function we get

Lis (— (—Z—n) (q_3/2(1 — )%z + q_l))(33)

log ¢

n

Cn [ N
/log (1 - (21— )2 +q7) ¢ 1) du =
1
where Liz(y) = >, z’;/_’; the dilogarithm function. The dilogarithm satisfies the Landen’s identity

. . 1
Lis(—y) = Liy (yyj) 5 log?(1+y) (34)

Applying the Landen’s identity to Equation (33) we obtain

G 37204 \1/2 —1\ ju—1 _ 1 2 _Sn( —3/2/1  N\1/2 ~1
/log (1 . (q (1—q)"z2+¢q ) q ) du TToa T Tog -1 log ( . (q (1—q)"*24¢q )
1

n n

_cn (g73/2(1 — )1/2 -1
. Li2< o (q32(1— q)' 22 + g )) 5)

=2 (¢ (1 =) 22+ g7 + 11

Next, we estimate the sum and the quantity R, appearing in Equation (31)

= Cn ) _
Z ﬁzk p2k=1) <1_b_ (q 3/2(1—q)1/22—|—q 1)> + R,
k=1

n

-2

_ falogg (782) (-0 447 Lot (36)
2 1-2 (g1 —q) Pt qh)

n
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So, by applying Equations (35) and (36) to Equation (31) we obtain

> log (1 - Z—" (1= q)" 2 +q7") q”‘l) = —log’ (—Z—" (P01 —q) 2+ q‘1)>
j=1 "

- 2logq! n

_cn (,-3/2 q)\/? 1
(a1 - )2 +q c
Li bn _1 _En (8201 )12 ~1
Lz ( & (¢372(1 —q)1/22+q_1 T 1) Og p, (Lm0 T
—en) (g73/2(1 — )V 1
Baloga ( bn) (1 —a)2 a7 L0 <_b_n> (37)
2 1= -9 Pz+q)
Working similarly for the sum appearing in the product
C c .
1—2g7h) = 1 i1 38
1 (1=507) oo (Se (5207 a

1 c —
1 _ ] 1 _ 1 2( _ > Li bn
Z Og( ) 2logq ( bn) e (“i 1)

we obtain

1 log g \ " n
+ Zlog(1- < +ﬁzogq< b)+0 Do (39)
2 b, 2 —i c

We need now to estimate the sum appearing in the last product

(1—cag¢d ™)

18

(Cn§Q)OO/(Cn§Q)x = (quxQC])OO:

= exp (Z log (1 by (6721 = )2 g7 q”)) (40)
j=1

and working analogously as previous we get

<.
Il

1
2log ¢!

ZlOg (1 + b 3/2( )1/22 + qfl)—l qul) — 10g2 (bn (q*3/2(1 . q>1/22 4 q71>—1>

b, (q—3/2(1 _ q)l/QZ 4 q_l)—l
b (q732(1 = q)' P2+ ¢ 1) +1

Bologq bu(¢*?(1— @)z +4q7")
20 1+ba(qP(1—q) Pz +q7h)"

+Liy

1 B
+ 5 log (1 +b, (1= @) P2+ 7 1)

-1

+ O (bn) (41)

Applying the estimations Equations (37),(39),(41) to the approximation Equation (29), carrying out
all the necessary manipulations and by the assumptions b, = o(1) and —c¢, /b, — o0, as n — o0,
we derive



Axioms 2014, 3 149

q"/®(log g 1)/

~ —3/2(1 _ N\1/2 —1\1/2 1 2 (. —3/2(1 _ \1/2 -1
fx(z) = 2n)12 (1 —q) P24 q7") eXp<—210gqlog (¢PA -9 %2+q7")

x>0 (42)

that is Equation (18).
Moreover, by standardizing the continuous Stieltjes-Wigert distribution Equation (6) and then

[X]l/qu’q
oz

deforming this by the random variable , we obtain Equation (18) and our proof is completed.

Remark 1. Under the assumptions of the theorem 1 the probability functions I and II of the Table 1
have the asymptotic approximation (18). Note that we do not have the same conclusion for the p.f. III of
the table 1 since the assumption b,, = o(1) does not hold.

Remark 2. From the proof of the theorem 1 we have that the p.f. of the family of confluent

¢- Chu -Vandermonde discrete distributions is discretely approximated by

&) Cen s
fr(w) = AReie 00,1,
(cniq)oo

From the ¢-CCVT of the table 1, for b, = —h,, = o(1), h, > 0and ¢,, = ¢ constant with 0 < ¢ < 1,
n=0,1,2,..., we get

&) (/naye
Pecovi(T) %, r=0,1,.... (43)

(69) o0

1%

Consequently, p,cov () is discretely approximated by a modified g-Bessel distribution.
Applications

1. A modified q-Bessel distribution: From the remarks 1 and 2 we get an asymptotic expression as in
Equation (18) for the modified g-Bessel distribution with p.f.

q((g))@(/hn))z

_ (69(a:9) .

pMB(x) - (—¢c/hniq)oo xr = Oa ]-7 ceey (44)

(Cﬂ])oo
and with ,
c 1 2 c 2 C 1
g = h,” and o, = h, = — "
T 1—g T q(1—q) 1—gq

where 0 < c¢ <1, h, >0, n=0,1,2,... with h,, = o(1).

2. A Generalized q-Negative Binomial Distribution: The g-CCVIlforb =¢", n=1,2,... andn = ¢q

becomes a generalized g-negative binomial distribution with p.f.

n+x—1
( © )qq(g)q—nx-k;r

(—=4:9)= . (n [n],!
p(r) =P(X =12) = e ,x:O,l,...wuh() = — (45)
L0 )y egdln — !
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From the proposition 3 the mean value and the variance of the r.v. X of this g-negative binomial
distribution are given respectively by

E(X)=> a{"(mei(g"s—¢ g, —¢ ) (46)
r=1
e (=0 0)e [, DI(a": )
1y _ (50 @)oo |51 D)I(6"9)rg" 47
a; (7”) (—ql_”; Q)oo (1 _ Q)an[T]l/q! ( )
and
V(X)=E(X(X -1)+E(X) - E(X)? (48)
with .
E(X(X =1) =Y a3 (rhoi(q¢" =g g, —¢ ") (49)
r=2
where - . )
aé]( ) - (_q aQ)oo 2‘8(1(7’, 2)’((] 7Q)rq (50)

(e (1= q)2qm ]!
By remark 1 the above g-negative binomial distribution has the Stieltjes-Wigert asymptotic behavior for

n — oo as in Equation (18) with j, and ag given by proposition 1

fnJrl]'_qn
l—gq

T Y Y |
q(1—q) 1—gq

3. The Generalized Over / Underdispersed (O/U) Distribution: The q-CCVII for b = ¢" and n = \¢"
becomes a generalized O/U distribution with p.f.

g = q andagzq

_ (M (@@)egBN
P = PX= 0 = 0N ) (g, © = Wl GeeKeme i GD

From the proposition 3 the mean value and the variance of the r.v. X of the generalized O/U

distribution are given respectively by

E(X)=> a{"(rioi(q"" =A™ ¢, —Aq") (52)
r=1
e (“Ad"" g)oe [ (r. V(a5 ), A
1 —AG" @)oo [8q(1, 1)1(¢"5 @)r A"
= 53
S (R G 5
and
V(X)=E(X(X -1))+E(X)— E(X)? (54)
with N
E(X(X —1)) = a3 (n)i61(q" " =2 ¢, —Aq") (55)
r=2
Where )\ r+n. n. )\7"
a51<7a) _ <_ q 7Q>OO Q‘SQ(Ta 2)|(q 7Q)r (56)

(=N @)oo (1= )[4



Axioms 2014, 3 151

By remark 1 the generalized O/U distribution for A = )\, — o0, has the Stieltjes-Wigert asymptotic
q(ﬁq) + 1%"(1 given by

behavior for . — oo as in Equation (18) with 11, = A\,/(1 — ¢) and 0} =

proposition 1.

Remark 3. As it was noted in remark 1, theorem 1 is not sufficed for the confluent
¢-Chu-Vandermonde hypergeometric series discrete distribution III with p.f.

@ @s(3)(_pqn)e ny 2(3) @
c .4 ( cq ) 74 )0 2) ¢4 2e
pecevi(z) = PX = q] = o=wa:T _ (&4) (), Ce—0L...n (57
! (eai)oo (cq"; @)oo (€ 0)a (a5 @)

(69) o0

where ¢ constant. However, the discrete approximation of the above g-CCV-III distribution for n — oo,
is given by

pecovin(z) = (¢ Q)Ooma x=0,1,.... (58)

Berg and Valent [12], have proved that for ¢ < a < 1/gq, the above discrete probability measure
Equation (58) has a continuous analogue counterpart family of absolutely continuous probability
measures on (0, co) defined by

SC _p a (z/a;q)’\2 | (75 9)% 2 =1,
v de) = ﬂ{(a—l(Q/a;q)oo) o ((q;q)oo(qa;q)oo) yod 9

where the parameter p > 0 is given by p = v/(t* + 7?) with 42 = —t(1/¢(a) + t), where ¢ belongs
to the interval with endpoints 0 and —1/¢(a) and is given by ¥(a) = (¢;¢)00 Y with
¥(g") = oo

Remark 4. Gould and Srivastava [13] have presented a unification of some combinatorial identities

[e'e) qj
J=0 (a—q¢7)(4;9);

associated with ordinary Gauss’s summation theorem and their basic (or g—) extension associated with
the ¢g— analogue Gauss’ s theorem. They have also shown a generalization of their unification for the
ordinary case involving a bilateral series and have posed as an open problem the g-extension of their
bilateral result. In our work it is considered a family of confluent ¢g-Chu-Vnadermonde distributions
which can be associated with the g-analogue of Gauss’s theorem and it would be an interesting closlely-
related open problem to study a bilateral family of the considered distributions.

4. Concluding Remarks

In this article, we have provided a continuous limiting behavior of a family of confluent
q¢ -Chu- Vandermonde distributions, for 0 < ¢ < 1, in the sense of pointwise convergence, by
applying a g-analogue of the usual Stirling asymptotic formula for the factorial number of order
n. Specifically, we have designated as a main theorem the conditions under which the confluent
¢-Chu-Vandermonde discrete distributions g-CCVI and II converge to a continuous Stieltjes-Wigert
distribution. Moreover, as applications for this study we present a modified g-Bessel distribution, a
generalized ¢- negative Binomial distribution and a generalized over/underdispersed O/U distribution,
converging to a continuous Stieltjes-Wigert distribution. Note that the main contribution of this article is

that a discrete distribution congerges to a continuous one, which is not of a Gaussian type distribution.
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