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Abstract: Recently, representations and methods aimed at analysing decision problems
where probabilities and values (utilities) are associated with distributions over them
(second-order representations) have been suggested. In this paper we present an approach
to how imprecise information can be modelled by means of second-order distributions and
how a risk evaluation process can be elaborated by integrating procedures for numerically
imprecise probabilities and utilities. We discuss some shortcomings of the use of the
principle of maximising the expected utility and of utility theory in general, and offer
remedies by the introduction of supplementary decision rules based on a concept of risk
constraints taking advantage of second-order distributions.
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1. Introduction

Methods and tools for analyzing and evaluating decision problems under risk have been of great
interest for a long time. During recent decades, such methods have been more or less systematically
integrated with risk management processes in general [1–3] and, in more concrete settings such as project
management frameworks, with risk identification, monitoring, and evaluation needs [4]. The prevailing
decision rule serving as an instrument for ensuring substantial rationality in decision making under risk
is commonly referred to as the principle of maximizing the expected utility (PMEU). The principle is
inspired by early efforts in normative decision theory, e.g., [5–7]. It is derived from a number of different,
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although similar, axiom systems aiming to reflect the properties of a rational entity’s behavior when
discriminating between decision alternatives given that the consequences of an alternative are uncertain
but the set of possible consequences for each alternative can be assigned performance numbers (utilities)
and probabilities of their occurrence. The initial formal verification of this rule is commonly credited
to [5] and was initially intended as a model of the supposedly rational market actor’s behavior in the game
theory school of economic thought. The axioms (ordering axioms, independence axioms, continuity
axioms, etc.) thus imply numerical representations of preferences and probabilities. Further, implied by
the axioms are existence theorems stating that a utility function exists and a uniqueness theorem stating
that two utility functions, relative to a given preference ranking, are always affine transformations of
each other. It is often argued that these results provide justification of the PMEU.

However, the conclusion that the PMEU is logically sufficient given the axioms, and whether or not
the axioms themselves reflect the properties of a rational decision-maker, has not passed without criticism
and debate. For instance, in [8] it is shown in a formal investigation that the relation between the utility
principle and the axioms is not as strong as claimed, but rather that “an agent who endorses these axioms
is not contradicting himself if he also accepts the utility principle” and that the PMEU is the simplest
principle that is consistent with the axioms. Further, the use of a utility function for capturing all possible
risk attitudes is not considered possible [9].

As a result, some researchers have tried to modify the application of PMEU by bringing regret or
disappointment into the evaluation to cover cases where numerically equivalent results are appreciated
differently depending on what was once in someone’s possession, e.g., [10]. Others have tried to resolve
the problems mentioned above by having functions modifying both the probabilities and the utilities, but
their performances are at best equal to that of the expected value, and at worst inferior, e.g., inconsistent
with first-order stochastic dominance [11].

An important issue in PMEU-based decision analysis is the elicitation of a decision-maker’s attitude
towards risk. However, the elicitation of risk attitudes from human decision-makers is error prone and
the result is highly dependent on the formats and methods used, see, e.g., [12,13] for overviews of the
state-of-the-art in elicitation. This problem is even more evident when the decision situation involves
catastrophic outcomes [14]. If we are not able to elicit a properly reflecting risk attitude, we may have
the situation that even if the evaluation of an alternative results in an acceptable expected utility, some
consequences might be of a catastrophic kind so that the alternative should be avoided in any case. Due
to catastrophe aversion, this may be the case even if the probabilities of these consequences are very low.
In such cases, the PMEU needs to be extended with other rules, since not all risk behaviors can naturally
be modeled endogenously by a utility function in the traditional way using the classical notion of risk
averseness and proneness.

Within the decision analysis field, having a more pragmatic approach than a purely normative theory
of rational choice, the PMEU is most often deemed as sufficient in order to serve as a valuable tool for
comparing decision alternatives, see, e.g., [15]. Also, in [11] the performance of a number of various
decision rules is investigated, including that of [10], and it is concluded that from a decision analysis
perspective there is really no other rule better suited to serve as the underlying basic decision rule.

In the context of catastrophic events, the partitioned multi-objective risk method (PMRM) and
the use of conditional expected utilities for the modeling of decision problems in low-likelihood
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severe-consequence domains have been suggested [16,17]. This approach puts emphasis on the tails
of probability distributions over different kinds of values at risk in the case of a catastrophic scenario;
still not discarding the unconditional probability of an extreme event actually occurring, but treating both
the conditional and unconditional expected values as decision objectives. The approach outlined in this
paper is nevertheless related to conditional expected utility approaches toward decision analysis in the
face of extreme events, since we are concerned with consequences that have a very low probability of
actually occurring. However, although there is no rule deemed to be better than the PMEU, there is a need
to allow the use of complementary rules in applications of decision analysis; rules also acknowledging
that decision data often is subject to imprecision. It is argued that a useful decision theory should permit
a wider spectrum of the modeling of risk attitudes than merely by means of a single utility function. A
more pragmatic approach should give the decision-maker the means to express risk attitudes in a variety
of ways, as well as provide procedures for handling both qualitative (e.g., comparisons) and quantitative
(e.g., intervals) aspects.

We will now take a closer look at such an approach, where some of the inherent deficiencies
are remedied in a decision analytical context. The approach relies on a traditional decision tree
model, however allowing for interval statements of probabilities and utilities together with associated
second-order distributions. The next section introduces a decision tree formalism and corresponding risk
constraints, followed by a brief description of a theory for representing imprecision using second-order
distributions. The last section before the conclusion presents how risk constraints can be realized
in a second-order framework for evaluating decisions under risk together with a small example
using two approaches to cope with imprecise information when evaluating decision alternatives with
risk constraints.

2. Modeling the Decision Problem

We will let an information frame represent a decision problem. The purpose of such a frame is to
collect all information necessary for the model into one structure. The representations in the information
frame are of two kinds; a decision structure, modeled by means of a conventional decision analysis
decision tree, i.e., a graph structure 〈V,E〉 where V is a set of nodes and E is a set of node pairs (edges).
Each node is at a specific level, numbered from the top node which is at level 0. We also have input
statements, modeled by linear constraints.

Definition 1. A tree is a connected graph without cycles. A decision tree is a tree containing a finite set
of nodes which has a dedicated node at level 0. A node at level i + 1 that is adjacent to a node at level i
is a child of the latter. A path leading to a node at level 1 is an alternative. A node at level i is a leaf or
consequence if it has no adjacent nodes at level i+ 1. A node that is at level 2 or more and has children
is an event (an intermediary node). The depth of a rooted tree is max(n|there exists a node at level n).
See Figure 1 for an example of a decision tree.

Thus, a decision tree is a way of modeling a decision situation. In risk analysis practice, such trees
with sequences of events are often referred to as event trees used to describe accident sequences [18].
For convenience we use the notation that the n children of a node xi are denoted xi1, xi2, . . . , xin and the
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m children of the node xij are denoted xij1, xij2, . . . , xijm and so forth. For presentational purposes, we
will denote a consequence node of an alternative Ai simply with Cij .

Figure 1. Small decision tree.

In numerically imprecise decision situations, one widespread modeling approach is to define sets
of candidates of possible probability distributions over the event nodes and utility functions over the
consequence nodes and then express them as points in polytopes that are solution sets to probability and
utility bases [19]. For instance, the probability (or utility) of Cij being between the numbers ak and bk
is expressed as pij ∈ [ak, bk] (or uij ∈ [ak, bk]). Such an approach also includes relations: a measure (or
function) of Cij is greater than a measure (or function) of Ckl is expressed as pij ≥ pkl and analogously
uij ≥ ukl. Each statement can thus be represented by one or more constraints.

Definition 2. Given a decision tree T , a utility base is a set of linear constraints of the types
uij ∈ [ak, bk], uij ≥ ukl and, for all consequences {Cij} in T , uij ∈ [0, 1]. A probability base has the
same structure, but for an intermediate node N (except the root node) in T , it also includes

∑mN

j=1 pij = 1

for the children {xij}j=1,...,mN
of N .

The solution sets to probability and utility bases are polytopes in hypercubes. Since a point in
the polytope can be considered to represent a distribution, a probability base Pi can be interpreted as
constraints defining the set of all possible probability measures over the consequences. Similarly, a utility
base U consists of constraints defining the set of all possible utility functions over the consequences.
The union of the bases Pi and U together with the decision tree constitute the information frame
I = 〈T,P ,U〉, where P =

⋃
Pi. As discussed above, the most common evaluation rules of a decision

tree model are based on the PMEU [20].

Definition 3. Given an information frame I = 〈T,P ,U〉 and an alternative Ai ∈ A the expression

E(Ai) =

ni0∑
i1=1

pii1

ni1∑
i2=1

pii1i2 · · ·
nim−2∑
im−1=1

pii1i2...im−2im−1

nim−1∑
im=1

pii1i2...im−2im−1imuii1i2...im−2im−1im

is the expected utility of alternative Ai in I, where m is the depth of the tree corresponding to Ai,
nik is the number of possible outcomes following the event with probability P (xik) = pik , p...ij ..., j ∈
[1, . . . ,m], denoting probability variables and u...ij ... denoting utility variables as above.
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The alternatives in the tree are evaluated according to PMEU, and the resulting expected utilities yield
a preference ordering of the alternatives such thatAi is not preferred toAj if and only ifE(Ai) ≤ E(Aj).
Note that interval statements can yield a partial order due to overlapping expected utility intervals.
However, as discussed in the introduction, the use of utility functions to formalize the decision process
seems to be an oversimplified idea, disregarding factors typically present in real-life applications of
decision analysis. Therefore, there is a need to permit the use of additional ways to discriminate between
alternatives. The next section discusses risk constraints as such an additional decision rule.

3. Risk Constraints

The intuition behind risk constraints is that they state when an alternative is undesirable due to too
risky consequences. It is intended as a pragmatic approach to model aversion to catastrophes in decision
analysis applications, and builds upon the idea of providing thresholds beyond which an alternative is
deemed undesirable by a decision-maker. Such assessments are common in risk management processes,
where risk is typically linked to the probability of some event or consequence which is found to be
undesirable [21]. Thus, expressing risk constraints is analogous to expressing minimum requirements
that should be fulfilled. A risk constraint can be viewed as a function yielding a set of thresholds that
may not be violated in order for an alternative to be acceptable with respect to risk [22].

Thus, a decision-maker might regard an alternative as undesirable if it has consequences with too
low a utility and with some probability of occurring, even though those particular consequences’
contributions to the expected utility are low. This mechanism is fairly straightforward. Assuming a
1-level tree, an alternative Ai in an information frame I, and given a utility threshold r and a probability
threshold s, the inequality ∑

uij≤r

pij ≤ s

must be satisfied in order for Ai to be deemed an acceptable alternative. In this sense, a risk constraint
can be considered a utility-probability pair (r, s). A consequence Cij is said to be violating r if uij > r

does not always hold. Principles of this kind seem to be good prima facie candidates for evaluative
principles in the literature, i.e., they conform well to established practices and enable a decision-maker
to use qualitative assessments in a reasonable way. For a comprehensive treatment and discussion,
see [23,24].

Note that henceforth we will, without loss of generality, consider 1-level trees. An n-level
tree can always be collapsed into a 1-level counterpart. In the case when there are second-order
distributions over the intervals, the process of collapsing trees become more complicated and is treated in
Section 4.2 below.

When the information is numerically imprecise (i.e., probabilities and utilities are expressed as bounds
or intervals), it is not obvious how to interpret thresholds since a risk constraint may cease to be violated
in sub-sets of the solution set. We have earlier suggested that the interval boundaries together with
stability analyses could be considered in these cases [25].

Example 1. Assume that a decision-maker has asserted that an alternative Ai is considered undesirable
if the consequence Cij belonging to Ai has a possibility that the utility of Cij is less than 0.45, and if the
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probability of Cij is greater than 0.65. Furthermore, assume that alternative A1 has a consequence with
a utility in the interval [0.40, 0.60]. Further assume that the probability of this consequence lies in the
interval [0.20, 0.70] and that the minimum of all utilities of consequences of A2 are above 0.45. Since
0.45 is greater than the least possible utility of the consequence and 0.65 is less than the greatest possible
probability, then A1 violates the thresholds and is undesirable, while A2 is not, see Figure 2.

Figure 2. Contraction analysis of risk constraints given in Example 1. Beyond a contraction
level of 14%, the constraints are no longer violated for alternative A1. The constraints for
alternative A2 are never violated. A decision making agent might nevertheless be inclined to
accept the alternative since the constraints are violated in a small enough proportion of the
possible values.

For a stability analysis, it can be seen that the alternative in Example 1 ceases to be undesirable
when the left end-point of the utility interval is increased by 0.05. A concept in line with such stability
analyses is the concept of interval contraction, investigating to what extent the widths of the input
intervals need be reduced in order for an alternative not to violate the risk constraints. The contractions
of intervals are made toward a contraction point for each interval. Contraction points can either be given
explicitly by the decision-maker or be suggested from, e.g., centre of mass calculations. The level of
contraction is indicated as a percentage, where at 100% contraction all intervals have been replaced
with their contraction points. See Figure 2 for a contraction analysis of the rudimentary problem in
Example 1.

Thus, one refinement is to provide a possibility for a decision-maker to stipulate thresholds for
proportions or second-order probabilities of the probability and utility bases, i.e., an alternative is
considered unacceptable if it violates the risk constraints at a given contraction level [22,26]. Optionally,
an alternative is unacceptable if the probability of violating a risk constraint is above a certain threshold.
That is, alternatives are judged by the risk of violating risk constraints where the decision rule is risk of
the second order. Since some contractions (lowering of some upper probability bounds and increasing
lower utility bounds) decrease the probability of risk constraint violation (see Section 5), the two views
of a second-order risk based decision rule are closely related.

4. Second-Order Information

In interval-valued decision trees, the expected utility of an alternative will also become
interval-valued. In real-life cases it is then often hard to discriminate between the alternatives since
the intervals overlap. For instance, an interval-based decision procedure keeps all alternatives with
overlapping expected utility intervals, even if the overlap is small. Therefore, it is worthwhile to extend
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the representation of the decision situation using more information, such as second-order distributions
over classes of probability and utility measures.

Distributions can be used for expressing various beliefs over multi-dimensional spaces where each
dimension corresponds to possible probabilities or utilities of consequences. The distributions can be
used to express strengths of belief in different points in the polytopes. Approaches for extending the
interval representation using distributions over classes of probability and value measures have been
developed into various models, for instance second-order probability theory. In the following, we will
pursue the idea of adding more information and discuss its implications on risk constraints.

4.1. Distributions over Information Frames

Interval estimates and relations can be considered as special cases of representations based on
distributions over polytopes. For instance, a distribution can be defined to have a positive support only
for xi ≤ xj . More formally, the solution set to a probability or utility base is a subset of a unit cube
since both variable sets have [0, 1] as their ranges. This subset can be represented by the support of a
distribution over the cube.

Definition 4. Let a unit cube [0, 1]n be represented by B = (b1, . . . , bn). The bi can be explicitly written
out to make the labeling of the dimensions clearer.

More rigorously, the unit cube is represented by all the tuples (x1, . . . , xn) in [0, 1]n.

Definition 5. A second-order distribution over a unit cube B is a positive distribution F defined on B
such that ∫

B

F (x) dVB(x) = 1

where VB is the n-dimensional Lebesgue measure on B.

We consider second-order probabilities to be an important sub-class of these distributions.
Second-order probabilities will be used below as a measure of belief, i.e., a second-order joint probability
distribution. Such distributions can then be defined over the information frame polytopes. However,
regardless of the actual shapes of the distributions involved, constraints such as

∑n
i=1 xi = 1 must be

satisfied since it is not reasonable to believe in an incoherent probability distribution over three mutually
exclusive outcomes such as (0.45, 0.25, 0.4). For this purpose, any multivariate probability distribution
with support on vectors of non-negative variables that sum to one can serve as second-order distribution.
However, a particularly suitable way of modeling random probabilities is the Dirichlet distribution.

Definition 6. Let the notation be as above. Then the probability density function of the Dirichlet
distribution is defined as

fDir(p, α) =
Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

pα1−1
1 pα2−1

2 · · · pαn−1
n

on a set {p = (p1, . . . , pn) | p1, p2, . . . , pn ≥ 0,
∑
pi = 1}, where (α1, α2, . . . , αn) is a parameter vector

in which each αi is a positive parameter and Γ(αi) is the Gamma function.
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This distribution is particularly popular among Bayesian statisticians because it is conjugate with
respect to the multinomial distribution, i.e., if we choose the prior to be the Dirichlet distribution then
the posterior will also become Dirichlet distributed. It is also convenient in the sense that it is not hard
to choose parameters to reflect our prior knowledge about the weights p1, p2, . . . , pn. If we choose large
values for α1, α2, . . . , αn we obtain small variances, which reflect a large measure of certainty about the
probabilities involved.

If the support of a probability density function is restricted to a subset A of a unit cube B, for instance
when A is a polytope withinB having the same number of dimensions asB, beliefs in different points or
subsets can be represented by a function defined on the specific subset. However, if we want to represent
the belief on a subset which is of lower dimension than the unit cube itself we cannot use distributions
that are upper bounded since a mass under such a distribution will be 0 while integrating with respect
to the Lebesgue measure defined on the unit cube. This issue can be solved by the characteristic
distribution for A.

Definition 7. Let A be a subset of a unit cube B, and let f be a belief distribution over A. The natural
extension f̃A(x) of f with respect to A is defined by

f̃A(x) =

{
f(x) if x ∈ A
0 otherwise

Definition 8. Let A be a subset of B. A distribution gA over B is called a characteristic distribution for
A in B if

f(p) =

∫
B

δp(x)f̃A(x)gA(x) dVB(x)

for every probability density function f over A, and for every point p in A, where δp(x) is the Dirac delta
distribution with pole at p.

For a more comprehensive treatment of these properties, see [27]. With respect to second-order
probabilities, let A = {(p1, . . . , pn) |

∑n
i=1 pi = 1} and let gA be a Dirichlet distribution. From

distribution theory it follows that for every measurable subset A in a unit cube B, there exists a
characteristic distribution for A in B. It also follows that f̃A(x) · gA(x) is a probability distribution
over B and equals 0 outside A.

4.2. Aggregations and Expected Utility

The characteristic of a decision tree is that the marginal (or conditional) probabilities of the event
nodes are multiplied in order to obtain the joint probability of a combined event, i.e., of a path from
the root to a leaf. In the evaluation of a decision tree by means of PMEU the operations involved are
multiplications and additions. There are therefore two effects present at the same time when calculating
expected utilities in decision trees. Those are additive effects (for joint probabilities aggregated together
with the utilities at the leaf nodes) and multiplicative effects (for intermediate probabilities). The next
section discusses how second-order information may be exploited for risk constraints.



Axioms 2014, 3 39

5. Second-Order Risk Constraints

Given first-order risk constraints we can consider the probability that input statements support a
violation of a risk constraint (r, s) for a given alternativeAi. The value of this probability delivers further
information to a decision-maker when more than one alternative violates stipulated risk constraints. This
is especially important for cases when only some consistent probability-utility assignments (i.e., subsets
of the polytopes) violate the risk constraints.

If an alternative does not violate the first-order risk constraint for any consistent (first-order)
probabilities or utilities in the information frame, then the probability of a violation is zero. On the other
hand, if all consistent probabilities and utilities violate the risk constraint, the probability of violation
equals one. We will now extend the discussion to second-order risk constraints (SORC).

Begin by defining BR = BPi
× BUi

, consisting of all tuples (p, u), i.e., (pi1, ui1, . . . , pin, uin). Let Fi
be a second-order probability distribution on BPi

and let Gi be a probability distribution on BUi
.

Given an information frame I, if probabilities and utilities are independent, the joint event that
probabilities have values p and utilities have values u has the second-order probability Fi(p) ·Gi(u).

In Section 3 a risk constraint (r, s) is said to be violated if
∑

j|uij<r pij > s. In a second-order
setting the precise values of probabilities p and utilities u are not known but random variables. Thus,
to extend the notion of risk constraint violation to account for second-order beliefs we should weigh
the probabilities and utilities by their respective probability distributions in the manner of a cumulative
probability distribution. Let

τ(I,i,r,s) =

∫
BR

Hi(p, u) dVBR
(p, u)

where

Hi(p, u) =

{
Fi(p) ·Gi(u) if

∑
j|uij<r pij > s

0 otherwise

is the second-order probability that first-order probabilities and utilities are such that risk constraint
(r, s) is violated. This is called a constraint violation.

We will now show that the concept of SORC fulfils some fundamental requirements.

Theorem 1. Given an information frame I = 〈T,P ,U〉, alternative Ai, utility threshold r and
probability threshold s, τ(I,i,r,s) fulfills requirements 1–6.

1. Complementary cumulative distribution function. τ(I,i,r,s) is the probability that
∑

j|uij<r pij

exceeds s. In other words, τ(I,i,r,s) is the complementary cumulative distribution function of the
random variable

∑
j|uij<r pij .

2. Utility Sharpening. Given risk constraints (r′1, s), (r
′
2, s), and an information frame I with an

alternative Ai. Then r′1 > r′2 ⇒ τ(I,i,r′1,s) ≥ τ(I,i,r′2,s).

3. Probability Sharpening. Given risk constraints (r, s′1), (r, s′2), and an information frame I with an
alternative Ai. Then s′1 < s′2 ⇒ τ(I,i,r,s′1) ≥ τ(I,i,r,s′2).
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4. Utility Contraction. If utility uij is contracted so that uij ≥ l′ij > lij , i.e., uij had lower bound
lij originally but l′ij after contraction, and the corresponding information frames are the original I
and the contracted I ′ then τ(I,i,r,s) ≥ τ(I′,i,r,s).

5. Probability Contraction. If probability pij is contracted so that pij ≤ m′ij < mij , i.e., pij had upper
bound mij originally but m′ij after contraction, and the corresponding information frames are the
original I and the contracted I ′ then τ(I,i,r,s) ≥ τ(I′,i,r,s).

6. Addition of Risky Consequence. Given risk constraint (r, s), an information frame I1 with an
alternative Ai and a consequence Cik = (pik, uik) such that (pi1, ui1, . . . , pin, uin) does not
violate r. Let I2 be another information frame identical to I1 except for that Cik is such that
(pi1, ui1, . . . , pin, uin) does violate r. Then τ(I2,i,r,s) ≥ τ(I1,i,r,s).

Proof. 1. As before, let p and u be independent random variables with probability densities Fi(p)
and Gi(u) respectively. Let fΣ be an integral such that

fΣ(t) =

∫
C(t)

Fi(p) ·Gi(u) dVBR
(p, u)

where

C(t) =

(p, u) ∈ BR

∣∣∣∣ ∑
j|uij<r

pij = t


Then fΣ is a probability density function over the random variable

∑
j|uij<r pij . First, since Fi(p)

and Gi(u) are probability density functions, the integrand Fi(p) ·Gi(u) ≥ 0, hence∫
C(t)

Fi(p) ·Gi(u) dVBR
(p, u) ≥ 0

Secondly, since p and u are independent, the joint density of (p, u) is Fi(p) ·Gi(u), hence∫
BR

Fi(p) ·Gi(u) dVBR
(p, u) = 1

However,
∫∞
−∞ fΣ(t) dt =

∫ 1

0
fΣ(t) dt since 0 ≤

∑
j|uij<r pij ≤ 1, and the set BR of (p, u)-pairs is

partitioned by the relation that
∑

j|uij<r pij is equal, hence∫ 1

0

fΣ(t) dt =

∫ 1

0

∫
C(t)

Fi(p) ·Gi(u) dVBR
(p, u) dt =

∫
BR

Fi(p) ·Gi(u) dVBR
(p, u) = 1

Let A =

{
(p, u) ∈ BR

∣∣∣∣∑j|uij<r pij > s

}
. Now we can see that τ(I,i,r,s) is the complementary

cumulative distribution function of
∑

j|uij<r pij , i.e., τ(I,i,r,s) =
∫ 1

s
fΣ(t) dt since

τ(I,i,r,s) =

∫
BR

Hi(p, u) dVBR
(p, u) =

∫
A

Fi(p) ·Gi(u) dVBR
(p, u) =∫ ∞

s

∫
C(t)

Fi(p) ·Gi(u) dVBR
(p, u) dt =

∫ 1

s

fΣ(t) dt
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2. We have risk constraints (r′1, s) and (r′2, s). As the proportion of points (p, u) ∈ BR violating (r, s)

must be bounded above by uij ≤ r, r′1 > r′2 cannot result in a lower proportion for r′1 than for r′2.

3. Is shown in the same way.

4. The same proof idea as for 2 applies also here; with a new lower bound l′ij the proportion of points
(p, u) ∈ BR violating (r, s) can be no higher than it is with the lower bound lij < l′ij .

5. The proportion of points (p, u) ∈ BR violating (r, s) when pij ≤ m′ij can be no higher than with
the upper bound mij > m′ij .

6. We have two initial cases. For the first case when
∑

j|uij<r pij ≤ s always hold given I2, then it
must always hold given I1 and Hi(p, u) is zero everywhere for both information frames and in the
first case τ(I1,i,r,s) = τ(I2,i,r,s) = 0. For the second case, when

∑
j|uij<r pij ≤ s does not always

hold given I2, then Hi(p, u) has positive support and τ(I2,i,r,s) > 0. Since Cik did not violate r
given I1, the proportion of points (p, u) ∈ BR where Hi(p, u) > 0 is smaller for I1 compared to
for I2. Thus in the second case τ(I2,i,r,s) > τ(I1,i,r,s) ≥ 0.

These properties make SORC a useful tool for handling risks in (second-order) decision analysis.

6. Examples

To illustrate how second-order risk constraints contrast with first-order models and how SORC can
show distinctions that are not possible to reveal with first-order models such as contraction we show
two examples.

Example 2. Consider the decision tree in Figure 1 with risk constraints (r, s) = (0.45, 0.65), i.e., equal
to Example 1. Then A1 violates these risk constraints. From the contraction analysis in Example 1 we
know that the risk constraints are not violated for every point in the solution set. In fact, from simulation
it can be seen that the violation belief is approximately 0.25%. A decision-maker could therefore more
confidently accept the alternative since the constraints are violated in small proportion, see Figure 3.

Figure 3. Second-order analysis of risk constraints given in Example 2. Although we needed
a contraction level of 14% in order to not violate the risk constraints, the violation belief is
merely about 0.25%.

Example 3. Consider the decision tree in Figure 4 with two alternatives each having eight uncertain
consequences. Both A1 (upper branch) and A2 (lower branch) clearly violate these risk constraints
(0.1, 0.1). From a contraction analysis, it can be seen that the risk constraints cease to be violated at a
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contraction level of 19% for both alternatives. However, the violation belief is larger for A2 compared to
A1. Thus, contraction analysis and similar means for sensitivity analysis in interval decision analysis is
less responsive to the fundamental requirement of 3, the probability sharpening condition.

Figure 4. Decision tree in Example 3.

Figure 5. Risk constraint evaluation with contraction analysis (upper) and violation belief
analysis (lower) using (r, s) = (0.1, 0.1).

Figure 6. Risk constraints evaluation with contraction analysis (upper) and violation belief
analysis (lower) using (r, s) = (0.1, 0.05).
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Now assume that we sharpen the risk constraint so that we have (r, s) = (0.1, 0.05), i.e., we stipulate
a lower probability. The amount of contraction required not to violate the risk constraints is unchanged,
while it is changed for the violation belief analysis as a consequence of probability sharpening, See
Figures 5 and 6.

7. Summary and Conclusions

The various axiomatic systems proposed supporting the principle of maximizing the expected utility
are insufficient and have been subject to severe criticism. One criticism is that the classical notion of
a utility function cannot cover some quite natural risk behavior, such as not accepting an alternative
independently of its expected utility because one or more consequences are too severe regardless of
there existing consequences with high utilities and high probabilities to occur, resulting in a beneficial
expected utility. Due to these criticisms and from pragmatic issues in employing this principle as a
rule for rational choice, it is worthwhile to supplement frameworks based on the utility principle with
other decision rules taking a wider spectrum of risk attitudes into account. One such supplement is the
inclusion of thresholds in the form of risk constraints.

This paper discusses how numerically imprecise information can be modeled and evaluated with
decision trees, and how the risk evaluation process can be elaborated by integrating mechanisms for
handling vague and numerically imprecise probabilities and utilities. The shortcomings of the principle
of maximizing the expected utility can in part be compensated for by the introduction of the concept of
risk constraint violation. It should be emphasized that this is not the only method of comparing the risk
involved in different alternatives in imprecise domains. However, it is based on a well-founded model of
imprecision and meets reasonable requirements on its properties.

Using the concept of SORC violation, a general model can be constructed for representing various
risk attitudes. The definitions are computationally meaningful, and are therefore also well suited to
automated decision making. Rules have been suggested for sorting out undesirable decision alternatives,
rules which could also serve as a tool for guaranteeing that certain norms are not violated.

Acknowledgments

This research was funded by the Swedish Research Council FORMAS, project number
2011-3313-20412-31, as well as by Strategic funds from the Swedish government within ICT — The
Next Generation.

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Aven, T. Risk Analysis: Assessing Uncertainties Beyond Expected Values and Probabilities;
Wiley: Chichester, United Kingdom, 2008.



Axioms 2014, 3 44

2. Gregory, R.S. Valuing Risk Management Choices. In Risk Analysis and Society: An
Interdisciplinary Characterization of the Field; McDaniels, T., Small, M., Eds.; Cambridge,
United Kingdom, 2004; pp. 213–250.

3. Shahzad, B.; Safvi, S.A. Effective risk mitigation: A user prospective. Int. J. Math. Comput.
Simul. 2008, 1, 70–80.

4. Nagashima, T.; Nakamura, K.; Shirakawa, K.; Komiya, S. A proposal of risk identification based
on the improved kepner-tregoe program ant its evaluation. Int. J. Syst. Appl. Eng. Dev. 2008, 4,
245–257.

5. Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton
University Press: Princeton NJ, USA, 1947.

6. Ramsey, F.P. Truth and Probability. In The Foundations of Mathematics and other Logical Essays;
Cambridge University Press: Cambridge, UK ; 1931, reprinted in Gardenfors and Sahlin (eds.),
Decision, Probability, and Utility, Cambridge University Press: Cambridge, United Kingdom,
1988; pp. 19–47.

7. Savage, L.J. The theory of statistical decision. J. Am. Stat. Assoc. 1951, 46, 55–67.
8. Malmnäs, P-E. Axiomatic justifications of the utility principle: A formal investigation. Synthese

1994, 99, 233–249.
9. Schoemaker, P.J.H. The expected utility model: Its variants, purposes, evidence and limitations.

J. Econ. Lit. 1982, 20, 529–563.
10. Loomes, G.; Sugden, R. Regret theory: An alternative theory of rational choice under uncertainty.

Econ. J. 1982, 92, 805–824.
11. Malmnäs, P-E. Evaluations, Preferences, Choice Rules; Research Report; Department of

Philosophy, Stockholm University: Stockholm, Sweden, 1996.
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