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Abstract: Organizations that leverage their increasing volume of geospatial data have the 

potential to enhance their strategic and organizational decisions. However, literature 

describing the best techniques to make decisions using geospatial data and the best 

approaches to take advantage of geospatial data’s unique visualization capabilities is 

limited. This paper reviews the use of geospatial visualization and its effects on decision 

performance, which is one of the many components of decision-making when using 

geospatial data. Additionally, this paper proposes a comprehensive model allowing 

researchers to better understand decision-making using geospatial data and provides a 

robust foundation for future research. Finally, this paper makes an argument for further 

research of information-presentation, task-characteristics, user-characteristics and their 

effects on decision-performance when utilizing geospatial data. 
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1. Introduction 

While geospatial data permeates business computing there is only a limited understanding of how 

geographic information is utilized to make strategic and organizational business decisions, as well as 

how to effectively visualize geographic data for such decision-making.  

As it has been estimated that over 75 percent of all business data contains geographic information 

and 80 percent of all business decisions involve geographic data [1,2], the ability to interpret 

geographic data and make decisions based on geographic information is essential for business decision 

makers. Common examples of business decision-making using geospatial data include risk assessment 

for insurers, site selection for retailers and granular customer analysis for customer relationship 

management. While geospatial data can be presented utilizing traditional methods such as charts and 

tables, unique relationships contained within geospatial data are often only apparent through a 

geospatial visualization process, commonly referred to as geovisualization [3]. 

The utilization techniques and benefits of databases and spreadsheets have been taught in most 

business school curricula, so most business professionals with a formal education have had a clear 

understanding of such technologies. However, as geospatial data has become prevalent within 

information systems (IS), researchers and business professionals have tried to better understand all 

aspects of decision-making using geospatial data. One of these aspects is the ability to understand 

decision-making processes as they relate to the unique abilities of geovisualization, or the ability to 

represent, understand and utilize geospatial data in map-like projections for decision-making. 

This paper provides an analysis of current research concerning business decision-making using 

geovisualization. Specifically, this paper responds to calls for deeper exploration of the utilization of 

geospatial data, through the theoretical lens of the Cognitive Fit Theory [4]. 

As organizations continuously collect vast amounts of geospatial or geo-referenced data, two 

technologies have been developed to interpret such data in support of decision-making. These systems 

are Spatial Decision Support Systems (SDSS) and Geographic Information Systems (GIS) [5]. 

While traditional Decision Support Systems (DSS) have been implemented successfully for 

production planning, forecasting, business process reengineering and virtual shopping [6], such 

systems poorly utilize geospatial data. Thus, SDSS that operate much like DSS, but are tailored to 

handle the unique complexities of geospatial data, were developed to aid decision-making when 

utilizing complex geospatial data. SDSS provide capabilities to input and output geospatial data, 

provide analytic capabilities unique to geospatial data, and allow complex geospatial representations to 

be presented [5]. More specifically, a capability of continuous iterative analysis is provided directly to 

the decision-maker allowing a problem to be further defined and numerous alternate solutions to be 

evaluated. Although IS researchers are familiar with DSS concepts, many IS researchers are not yet 

familiar with key SDSS concepts such as ―georeferencing, geocoding and spatial analysis [7]‖.  

While SDSS provide methods for geospatial decision-making, GIS allow geospatial experts to 

analyze and report geographic data. GIS can be used to populate information to SDSS as well as to 

perform complex geospatial analyses. While there are numerous aspects of GIS relevant to IS 

researchers, this paper examines the decision-making aspects of GIS [8]. Such an understanding is 

critical for IS researchers because the global GIS adoption rates continue to increase and research has 

shown that a strong understanding of geospatial data can lead to enhanced decision-making [7]. 
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SDSS and GIS that leverage geovisualization are provided to professionals and consumers through 

a variety of sources. Prominent tools for the search of information using geovisualization include 

Google Maps and Bing Maps, which allow a user to visually locate geo-referenced information, such 

as addresses, businesses and even people [9,10]. Other domain-specific examples include the 

capability to determine wireless signal strength at street level, automated banking kiosk location 

information and interactive real estate search tools [11–13]. However, the use of geospatial data is not 

limited to only consumers and business organizations. Government agencies leverage geospatial data 

for decision-making when solving large societal problems. For instance, while governments have 

collected vast amounts of geospatial knowledge throughout history, the introduction of early 

computerized cartography in the 1950s [14] through today’s contemporary geographic information 

systems has reduced redundant data collection and agencies are better able to retrieve, analyze and 

share geospatial data [15]. Examples of how federal, state and regional governments leverage such 

systems include analyses of natural resources, transportation and logistics, disaster response and 

property assessment. More recently, immense geospatial-specific infrastructure systems have been 

implemented, such as the National Spatial Data Infrastructure (NSDI) in the United States and the 

Infrastructure for Spatial Information in the European Community (INSPIRE) in the European  

Union [16,17]. Goals of such systems are to enable nearly every agency of a government to share large 

volumes of geographic data locally, nationally and globally [16]. Early demonstration projects of the 

NSDI included a geospatial crime tracking system for a metropolitan police department as well as a 

regional system to help communities perform effective master planning activities [18]. 

As mobile devices, such as smart phones and tablet computing, become increasingly networked and 

gain capabilities to detect their position, more and more collected data will consist of geographic or 

geo-referenced data. With this increase in the amount of geospatial data that is available to  

decision-makers, it is crucial that IS professionals and researchers expand their knowledge of 

geospatial systems and better understand their unique characteristics, benefits and potential drawbacks. 

For instance, the ability to aggregate and geo-reference consumer characteristics and behavior 

information has led to a strategic concept in social science and marketing research known as 

geodemographics [19–21]. Additionally, four research streams contributing to the effectiveness of 

geovisualization have been identified, including information representation, task difficulty, geographic 

relationship and cognitive skill [22]. This review will expand on these findings, attempt to clarify the 

unique aspects that geovisualization brings to business decision makers, and will suggest specific 

future research goals. 

While many of the aforementioned consumer, business and governmental applications utilize 

geospatial data, computer scientists have addressed computationally intense problems through the use 

of spatial computing [23]. For instance, with the ever-increasing granularity (i.e., number of sensors) 

and resolution (i.e., detail of data) of collected data, increased efficiencies to process such large 

quantities of data are essential. While traditionally the physical location of computing resources has 

been abstracted by system architects, the field of spatial computing has demonstrated that 

computational efficiencies can be achieved by distributing computing resources methodologically [24]. 

This paper begins with a literature review emphasizing theoretical backgrounds of existing research, 

then analyzes existing research within key areas of decision-making utilizing geovisualization 

including task-characteristics (i.e., task complexity, task type, collaboration requirements),  
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user-characteristics (i.e., mental workload, goal setting, self-efficacy, spatial reasoning ability), as well 

as decision-making performance and presentation techniques. The goal of this review is to explore the 

most relevant research from the IS, decision sciences, geography and psychological realms in order to 

develop a comprehensive model toward forming a better understanding of decision-making using 

geospatial data. Limitations of the reviewed literature and future research suggestions are also 

discussed. Finally, a conclusion is presented. 

2. Literature Review 

Research reveals the importance of information-presentation, task-characteristics and  

user-characteristics on decision-performance. An emphasis is placed on exploring theories that have 

been suggested to explain these themes. Specifically, literature related to information visualization and 

its effects on decision-making often cites Cognitive Fit Theory, Complexity Theory, Task Fit Theory, 

Image Theory as well as research on task-technology fit, self-efficacy, motivation, goal-setting and 

spatial abilities (see Table 1). Of the four research streams Smelcer and Carmel [22] identified, each 

potentially relates to an existing theory, including Task Fit (relating to information representation and 

geographic relationship), Complexity Theory (relating to task difficulty), and Cognitive Fit Theory 

(relating to cognitive skill). This review expands on these findings. 

Table 1. Common theories related to geospatial decision making. 

Theory Study 

Cognitive Fit Theory [4,22,25–28] 

Complexity Theory [22,29] 

Task Fit/ Task-Technology Fit [22,30] 

Self-Efficacy [30] 

Motivation Theory [30] 

Goal-Setting Theory [30] 

Image Theory [31] 

The following sections explore reoccurring themes found in literature related to the visualization of 

geospatial data. These themes include information presentation, task characteristics, user 

characteristics and decision performance.  

2.1. Information Presentation  

Numerous researchers have explored the importance of visual information presentation on decision 

performance (e.g., [4,22,25–28]). For example, in her work, Vessey [4] introduces the Cognitive Fit 

Theory, which examines two types of information presentation (tables and charts) as well as two types 

of problem-solving tasks (spatial and symbolic). Cognitive Fit Theory suggests that decision-performance, 

as measured through decision-time and decision-accuracy, is improved when the problem 

representation matches the problem-solving task. The objective measures of decision-time and 

decision-accuracy, as well as interpretation accuracy, are suggested as antecedents of performance; 

however, it is noted that confidence in the solution also could play a role [4]. Additionally, Vessey [4] 

mentions that while often-analyzed tasks from prior research utilized simple graphs and tables, actual 
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business problems are far more complex and not as well defined. Furthermore, prior research may have 

included, for example, numbers along with graphical representations actually presenting a mix of 

spatial and symbolic data. 

Vessey’s [4] Cognitive Fit Theory has been referenced as a theoretical background, extended into 

other domains and validated in numerous empirical studies (e.g., [22,26,28]). Speier [28] presented a 

review of eight empirical research papers that tested for cognitive fit and discovered that all but one 

paper either fully or partially supported the Cognitive Fit Theory. 

Extensions of Cognitive Fit Theory include work performed by Dennis and Carte [26] who 

demonstrated that when map-based presentations are coupled with appropriate tasks, decision 

processes and decision performance are influenced. Additionally, Mennecke et al. [27] expand on the 

Cognitive Fit Theory by determining the effects of subject characteristics and problem complexity on 

decision efficiency and accuracy. Also, Cognitive Fit Theory has been extended from information 

presentation to query interface design in order to explain how one’s ability to understand data 

visualizations will influence decision outcomes [25]. 

In addition to Cognitive Fit Theory, Task-Technology Fit has been utilized to demonstrate the 

importance of appropriate information presentation methods. For example, Ives [32] articulates the 

importance of visual information presentation and states that while researchers have responded to calls 

for additional research into data and information visualization techniques, there is still potential for 

additional research into geovisualization. Specifically, a more in-depth understanding of how  

multi-dimensional graphics could display complex information through simplified information or 

charts that overlay information, both of which are technologies inherent to even basic geovisualization 

systems, is suggested [32]. 

Densham [5] suggested that a SDSS must provide information in both graphical, or map space, and 

tabular formats, or objective space, while providing the capability to move between these 

representations or view these representations simultaneously to determine the most appropriate to 

facilitate problem solving. However, even with multiple display options, it is not yet understood if the 

decision-maker will know which of the output options provides the best visualization method for their 

particular decision-making process. To support a problem-solver who is unsure of how to select the 

most appropriate visualization method, several authors have suggested the inclusion of an expert 

system to provide guidance (e.g., [5,16]). 

Additional studies exploring the visualization of geospatial data and information include Crossland 

et al. [31], Smelcer and Carmel [22], Speier and Morris [25] and Dennis and Carte [26]. Crossland  

et al. [31] performed a study in which some participants were provided with a paper map and tabular 

information, while others had access to a SDSS. They were able to confirm that the addition of a  

GIS-based SDSS contributed significantly toward decision-time and decision-accuracy, two measures 

of decision-making performance. Speier and Morris [25] tested the use of a text-based and graphical-

based interface to determine the effects on decision-making. Smelcer and Carmel [22] tested whether 

spatial information is best represented through geovisualization and found that maps representing 

geographic relationships allowed for faster problem solving. The authors conclude that while low 

difficulty tasks can be solved quickly ―regardless of representation‖, more difficult tasks ―should be 

represented using maps to keep problem-solving times and errors from rising rapidly‖. Dennis and 

Carte [26] determined that geographically adjacent, spatial information was best presented using 
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geovisualization, while non-adjacent, symbolic information was best presented using tables. 

Furthermore, visualization research has attempted to identify how specific data types (nominal, 

ordinal, interval) are best represented using cartographic representations and interactivity [33–36]. 

Crossland et al. [31] extended Image Theory into the realm of decision-making by proposing that 

the efficiencies gained through the use of electronic maps, versus paper maps, would improve decision 

performance. Indeed, their study revealed that both decision-accuracy and decision-time improved 

with the use of electronic maps versus paper maps at two complexity levels. 

Finally, some researchers suggest that reducing the amount of information presented to only include 

essential information could improve decision-making performance (e.g., [37,38]). For example, while 

early maps presented geospatial information with little precision, they were still able to convey 

sufficient and relevant information. The benefit of such simplified maps was demonstrated by 

Agrawala and Stolte [37], who collected feedback from over 2000 users of a technology that emulated 

hand-drawn driving directions, which often emphasize essential information while eliminating 

nonessential details. Additionally, Klippel et al. [38] suggests that modern cartographers can 

successfully develop schematic maps that are simplified, yet present ―cognitively adequate 

representations of environmental knowledge‖. Comprehensive, yet easy-to-read transit maps used in 

large metropolitan cities demonstrate a good example of the benefit of schematization. For example, 

the London Underground map designed in the early 1930s by Harry Beck has been used as an 

exemplar of successful schematization [39,40]. 

2.2. Task-Characteristics 

In addition to information presentation, research has shown that the specific characteristics of the 

task being performed can play a vital role in decision-making performance. For example, Complexity 

Theory posits that as task complexity increases so does the need for information presentation to match 

problem-solving tasks. Complexity Theory demonstrates that key aspects of geovisualization, 

including data aggregation, data dispersion and task complexity, influence decision-making 

performance [29]. Additionally, Complexity Theory was validated by Smelcer and Carmel’s [22] 

research, which confirmed that increased task difficulty led to decreased decision-making 

performance. Moreover, Crossland and Wynne [41] discovered that decision-making performance 

decreased less significantly with the use of electronic maps, versus paper maps. 

Jarupathirun and Zahedi [42] state that, based on research by Vessey [4], Payne [43], Campbell [44] 

and Zigurs and Buckland [45], tasks can be classified into simple and complex groups based on task 

characteristics. Example characteristics of complex tasks include multiple information attributes, 

multiple alternatives to be evaluated, multiple desired outcomes, solution scheme multiplicity, 

conflicting interdependence and uncertainty. 

Several empirical studies have explored task complexity (e.g., [22,25,27,29,31]). Speier and  

Morris [25] discovered that decision-making performance increased when subjects utilized a visual 

query interface when working with complex decisions. Additionally, Swink and Speier [29] defined 

task characteristics to include the problem size, data aggregation and data dispersion. They discovered 

that decision performance, as measured by decision-quality and decision-time, were superior for 

smaller problems. In the context of data aggregation, there was no effect on decision-quality; however 
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there was a significant effect on decision-time indicating that more time was required for 

disaggregated problems. Additionally, it was found that decision-quality for problems with high data 

dispersion had a higher decision-quality, but there was no significant effect on decision-time. Smelcer 

and Carmel [22] confirmed that more difficult tasks increased decision-time. In their work, Mennecke 

et al. [27] discovered that as task complexity increases, accuracy is lowered, yet found only partial 

support for task efficiency being lowered. Research conducted on the effects of SDSS on  

decision-making performance also included measures of task-complexity [31]. It was discovered that 

the use of a SDSS versus data tables and paper maps significantly improved decision-making time, 

while there was no significant effect on decision-accuracy. The authors pointed out that there might 

have been too much similarity between the task complexity levels to ensure that decision accuracy 

would not be improved through the use of an SDSS. The authors also suggested that there might be 

levels of problem complexity that can only be solved through the use of an SDSS [31].  

In their work, Albert and Golledge [46] developed three paper and pencil tests to assess task 

complexity across experience levels and gender. One of the findings was that subjects were better at 

performing map overlay tasks involving ―or‖ (inclusive disjuntion) and ―xor‖ (exclusive disjunction) 

operators versus those utilizing ―and‖ and ―not‖ operators. The researchers also discovered that  

the boundary complexity of a visualized entity did not affect performance, as did the quantity of 

visualized entities. 

Additional research suggests that the perception of complexity may be essential to better understand 

the effect of task-characteristics on decision-making performance. For example, Huang [47] performed 

an experiment of 10 popular Web-based shopping sites and determined that increased complexity 

decreased the desire to explore the site, but slightly increased the desire to purchase. Perhaps, when 

applied to SDSS decision-making, an increased complexity decreases the desire to explore additional 

solutions while encouraging a decision to be made quickly. This could explain some of the variances 

discovered in past research within the task-complexity and decision-making performance realm. 

Huang’s [47] research utilized the General Measure of Information Rate (GMIR) developed by 

Mehrabian and Russell [48] as a measure of the perceived complexity. 

Speier [28] proposed a framework of complexity with four distinct levels, which are, in order of 

complexity: (a) trivial decision-making; (b) optimal decision-making; (c) satisficing decision-making; 

and (d) aided decision-making. Speier’s [28] empirical study furthered Cognitive Fit Theory by 

comparing the outcomes of spatial and symbolic information presentation with spatial and symbolic 

tasks on decision performance as measured by decision-quality and decision-accuracy while moderated 

by task-complexity. Findings were inconsistent with theory, as the decision time of symbolic tasks 

with low complexity, were found to be less when using spatial presentations. However, there are 

several extensions to the Cognitive Fit Theory demonstrating that tables and graphs are equally 

effective for tasks with a low complexity and that graphs can provide higher decision-performance at 

high complexity. Like Speier [28], Gill and Hicks [49] also suggested that there are multiple classes  

of complexity. 

While Complexity Theory focuses on the relationship between the complexity of the task and the 

information presentation, Task-Technology Fit Theory posits that a technology will improve task 

performance if the capability of the technology matches the task to be performed [50,51]. Additionally, 
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Jarupathirun and Zahedi [30] synthesized research on task-technology fit with the psychology-based 

constructs of goal-setting and self-efficacy to further explain and determine success factors of SDSS usage.  

Another measure of task complexity may lie within the represented geographic relationships 

required by the task. For example, in both tables and maps, geographic relationships common to 

business decision-making are utilized. These geographic relationships include proximity, adjacency 

and containment. Examples of proximity in the context of geographic relationships include route 

optimization, examples of adjacency include territory assignment, and examples of containment 

include site selection [22]. In their study of geographic containment and adjacency tasks, Dennis and 

Carte [26] discovered that when users are presented with geographic data that represents geographic 

containments, tabular data presentations might lead to better decision making, while adjacency tasks 

benefit from map-based visualization. 

While most research into Complexity Theory (as pertaining to decision-making) and Task-Technology 

Fit Theory has focused on decision performance of individuals, recent technological innovations have 

led to collaborative uses of geospatial data and information that may require these theories to be 

revisited through a collaborative perspective. Geospatial data and information can lead to collaborative 

decision-making through two distinct ways. First, decision-making tools utilizing geospatial 

information can be used for collaborative decision making with geographically and temporally 

distributed participants. These tools are often referred to as participatory geographic information 

systems (PGIS). Second, through the recent phenomenon of online social networks, geospatial 

information can be shared and utilized through social networks. Each of these problem-solving 

methods is discussed next. 

Several researchers have explored the area of collaborative decision-making utilizing geographic 

data. In their framework development research, Mennecke and Crossland [8] call for additional 

exploration in the areas of GIS and its capabilities in collaborative decision-making. PGIS provides the 

capability for decision-making utilizing geospatial information collaboratively with geographically and 

temporally distributed participants. Through the ubiquity provided by networked computing and recent 

technologies, it may be possible for groups of organizations to collaborate and form virtual 

organizations [52]. In addition to PGIS, grassroots groups and community organizations have adopted 

public-participatory geographic information systems (PPGIS) to address the need for public  

decision-making utilizing complex geospatial data [53]. In their work, Conroy and Gordon [54] 

empirically analyzed a software application to increase citizen involvement in complex policy 

discussions and proposed that geovisualization can offer citizen participants opportunities to better 

envision scenarios and can provide additional communication channels to decision makers. Jankowski 

and Nyerges [55] studied the use of GIS in a collaborative decision-making environment and 

discovered that decision outcomes such as participant agreements and shared understanding could be 

more effectively reached through the use of PPGIS. While there are numerous potential benefits to 

implementing PPGIS, there are also challenges, including diminished participation and limited 

evaluations of real-life PPGIS implementations [56]. However, while evaluations of decision-quality 

are difficult to measure when using a PPGIS, as such evaluations are generally based on future 

complaints if at all evaluated, research has shown that participants in public-participatory  

decision-making have shown a significant amount of satisfaction in the decision process [57]. 

Furthermore, there have been varied opinions and examples regarding the benefits of public-participatory 
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planning, or visioning [58], which emphasize that future research will be needed to better understand 

the benefits of PPGIS. 

While this paper primarily addresses geospatial decision making in the context of individual 

decision-makers, group decision-making must be further explored, as there are significant differences. 

For instance, prior experience, education, language and cultural differences could present themselves 

as barriers to effective decision-making. Finally, unlike individual decision-making, behavioral 

phenomena found in groups, such as the concept of ―group think‖, may present themselves [59,60]. 

In addition to collaborative decision-making, another area of research in the usage of geospatial 

data involves how such data is utilized within online social networks. This is especially important with 

the increasing use of online social networks, where large quantities of geospatially-referenced data are 

shared quickly and easily. Goodchild [61] labels the geographic data that is commonly shared through 

online social networks as Volunteered Geographic Information (VGI). Some online social networks 

have included geographic information as a core component in their implementations. The availability 

of geographic information within online social networks has even allowed researchers to map online 

social networks in relation to the physical world [62]. Thus, a geographic visualization of online social 

networks can provide researchers with a geospatial representation of a virtual phenomenon. From a 

business perspective, a geospatial understanding of social networks can allow strategic decision 

makers to target marketing campaigns or locate retail operations in geographic areas appropriate for 

their target audiences. The benefits of VGI have been further demonstrated after recent large-scale 

disasters, such as the Haitian earthquake in 2010, by informing disaster responders with essential 

information [63]. However, significant drawbacks exist with the ability to successfully interpret VGI. 

These drawbacks exist primarily because VGI varies in quality and accuracy. For example, one image 

may be tagged with the word ―Paris‖ while another is tagged with precise geographic coordinates. 

Additionally, as there are few validation processes, a user can easily misidentify or intentionally 

provide incorrect geospatial tagging [64,65]. Additionally, Stephens [66] suggests that projects 

utilizing VGI contain an inherent gender bias stemming from low female participation in VGI data 

collection and subsequent reviews of user generated content. 

2.3. User-Characteristics 

In addition to task-characteristics, researchers suggest that the characteristics of the user also play a 

role in decision-performance. Such characteristics include context-based factors, experience level,  

self-efficacy, cognitive workload and spatial reasoning ability.  

Several researchers have highlighted the importance of research investigating user-characteristics 

when using tools with geovisualization capabilities, such as SDSS and GIS (e.g., [25,27,42,46,67,68]). 

Slocum et al. [67] reported that context-based factors influence the ability to interpret geo-visualized 

information. For example, ―expertise, culture, sex, age, sensory disabilities, education, ethnicity, 

physiology and anatomy, and socioeconomic status‖ influence the ability to interpret geospatial 

information [67]. Additionally, Zipf [68] posits that geovisualization must address user contexts such 

as pre-existing knowledge of the area presented in the map, physical impairments as well as cognitive 

abilities. Additionally, Zipf [68] posits that a user’s cultural context can influence the interpretation of 

the colors used in a map. For example, in some cultures, the color green represents parkland or forests, 
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while in others it represents bodies of water. In their work, Albert and Golledge [46] measured gender 

as a control variable. One of their conclusions was that men performed significantly better in 

operations involving ―not‖ operators. Additionally, the authors found that there were no significant 

differences in performance scores between subjects with GIS experience versus those that had none. 

This is an essential observation as GIS and SDSS technologies are often implemented as Web-based 

technologies that allow users with limited experience to use geovisualization. Finally, both Zipf [68] 

and Slocum et al. [67] point out the importance of considering sensory disabilities when developing 

geovisualization technologies. 

Speier and Morris [25] discovered that task experience, database experience, gender and computer 

self-efficacy were non-significant in their analysis of query interface design on decision performance. 

Other user-characteristics, such as measurement variables related to information learning as well as 

fatigue related to working through multiple tasks were controlled for by Swink and Speier [29]. 

Mennecke et al. [27] compared subjects with previous SDSS experience to subjects with limited SDSS 

experience to determine if experience influenced decision-performance. In their experiments, the 

cognitive effort required in the decision-making process was measured using a condensed version of 

the ―Need for Cognition‖ (NFC) instrument. However, their research found only marginal support in 

that solution accuracy increased and no support in that solution efficiency was different between 

subject groups. Additionally, Mennecke et al. [27] discovered that experience only presented 

significant improvement on solution accuracy when working with paper maps. They also discovered 

that students were more efficient than professionals in solving geographic problems. While this may 

seem surprising, it likely can be explained in that professionals incorporate multiple levels of analysis 

that students with limited experience may not be able to draw upon. 

Additionally, Jarupathirun and Zahedi [42] posit, that based on empirical research into the theories 

associated with goal setting, users who set a higher goal level will be motivated to expend more effort 

toward reaching the desired goals. Jarupathirun and Zahedi [42] also argue that intrinsic incentives, 

such as perceived effort and perceived accuracy, can influence goal commitment levels, which are 

known to moderate the effects of goal levels on performance [69]. Finally, in order to reduce a lack of 

motivation and prior experience, some researchers have provided financial incentives and tasks were 

often drawn from domains familiar to the subjects [28]. 

Additionally, self-efficacy had strong positive influences on task-technology fit and the expected 

outcomes, as well as a strong negative influence on perceived goal-difficulty. It is suggested that 

repeated, successful completion of tasks could improve self-efficacy, which could be accomplished 

through training and learning as well as tutorials and support systems [30]. 

Another user-characteristic was that of the mental workload exhibited by subjects performing 

geospatial decision-making tasks. Speier and Morris [25] measured Subjective Mental Workload 

(SMW) using the NASA Task Load Index (NASA-TLX) after each completed task and discovered that 

when comparing visual- and text-based interfaces, with low- and high-complexity decisions, the use of 

visual interfaces carried a reduced SMW. Speier and Morris [25] suggest that research into the SMW 

could benefit from additional investigation and particularly the NASA-TLX measure could use 

additional validation, as the user-reported cognitive loads might not represent actual cognitive loads 

that would be measured utilizing actual physiological responses. 
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Finally, the significance of the spatial reasoning ability of the decision-maker must be further 

explored, as there are conflicting research results regarding the ability of spatial reasoning to aid in 

decision-making using geospatial data. Some research has presented no or conflicting evidence of the 

effects of spatial ability on decision performance (e.g., [22,29,30,42]). For example, Smelcer and 

Carmel [22] discovered no statistical significance between spatial ability and the effects of information 

representation, task difficulty and geographic relationships on decision performance. The researchers 

speculated that due to the nature of the tasks, which did not involve the need to navigate spatial 

problems, spatial visualization techniques were not required [22]. Swink and Speier [29] call ―for more 

in-depth investigations of visual skills related to decision-making performance.‖ Additionally, while in 

their early work Jarupathirun and Zahedi [42] questioned whether spatial ability has any impact on 

system utilization and decision-making performance, they follow-up with a determination that spatial 

ability as measured through spatial orientation ability and visualization ability had no significant effect 

on the perceived task-technology fit [30]. These findings are of value as they suggest that high spatial 

ability is not a necessary requirement for efficient and effective decision-making using geospatial data. 

This is essential when developing a technology for the web, where it will be impossible to ensure that 

all users of a technology have a prerequisite spatial ability [30].  

However, other research has discovered that there are effects between spatial ability and decision 

performance (e.g., [25,29,70]). For example, Swink and Speier [29] determined that increased spatial 

orientation produced a higher decision quality and required less decision time; however this finding 

was only significant for large problems with low data dispersion. Additionally, Speier and Morris [18] 

found that spatial reasoning ability alone had no significant effects on decision outcomes. However, 

when combined with interface design, spatial reasoning ability had a significant effect on decision 

accuracy. Research in other domains has identified a connection between spatial ability and 

geovisualization tools. For example, Rafia et al. [70] discuss the use of Web-based virtual 

environments to facilitate the instruction of spatial thinking skills. In their study of 98 pre-service 

undergraduate students, only 7 students, or about 7%, were found to have any previous spatial 

experience. Rafia et al. [70] imply that such a gap is a crucial issue and creates a hurdle for students 

pursuing careers that require qualitative spatial reasoning. As students with no pre-existing spatial 

thinking had difficulties in courses requiring spatial thinking ability, perhaps users lacking spatial 

thinking skills would have difficulties utilizing geovisualization tools. 

Additionally, students who have participated in courses that utilize geovisualization tools, such as 

computerized cartography or geographic information systems, have demonstrated improvement in their 

spatial thinking ability [71]. In their research, Lee and Bednarz [71] point out that psychometric testing 

designed to assess spatial abilities, such as spatial visualization and spatial orientation, were generally 

focused on small-scale spatial thinking and thus were not necessarily valid to test large-scale 

geographic spatial abilities. However, Lee and Bednarz [71] discovered that recently, new spatial 

analysis tests have been developed which considered large-scale geographic spatial abilities (e.g., [72–75]). 

More recently, a multi-dimensional geospatial reasoning ability scale that includes measures of 

geospatial orientation and navigation, geospatial memorization and recall as well as geospatial 

visualization has been proposed [76]. This geospatial reasoning ability scale addresses the potential 

shortcomings that Lee and Bednarz [71] revealed in their research. Table 2 presents various  

user-characteristic measures found in the examined research. 
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Table 2. Measures of user-characteristics in examined research. 

User-Characteristic Measure Study 

VZ-2 (Spatial Visualization) [22] 

Three Paper/Pencil Tests [46] 

S-1 (Spatial Orientation) [29] 

General Measure of Information Rate [47] 

NFC (modified) [27] 

S-1 (Spatial Orientation)  

NASA-TLX 
[25] 

VZ-2 (Spatial Visualization)  

S-1 (Spatial Orientation)  

Self-Efficacy 

[30] 

New ―Spatial Skills Test‖ [71] 

GRA (Geospatial Reasoning Ability) [76] 

2.4. Decision-Making Performance 

Another key component of geospatial decision-making is that of decision-making performance. To 

determine decision-making performance, most researchers utilize the objective measures of  

decision-time and decision-accuracy as indicators of decision-making performance (e.g., [26,28,31]). 

However, in their measure of decision performance, Smelcer and Carmel [22] simply refer to  

decision-time. Others propose varying additional indicators such as decision-concept and regret which, 

among others, are discussed below (e.g., [77,78]).  

While decision-time and decision-accuracy are common indicators of decision-performance, Sirola [77] 

posits that the use of an appropriate decision-analysis methodology will undoubtedly influence 

decision-performance metrics and could modify the decision maker’s perceptions of the decision-making 

process and result. These decision-analysis methodologies can include cost-risk comparisons, 

knowledge-based systems, cumulative quality function, chained paired comparisons, decision trees, 

decision tables, flow diagrams, pair-wise comparison, cost functions, expected utility, information 

matrices, multi-criteria decision aids and logical inference/simulation.  

In their vignette-based research, Speier and Morris [25] identify decision-performance as decision 

outcomes, which consist of subjective mental workload, decision-accuracy and decision-time 

constructs. Their research highlights significant interaction effects between interface type (text/visual) 

and task complexity on SMW, as well as interface type and task complexity individually.  

Jarupathirun and Zahedi [30] explored perceived decision-quality, perceived decision-performance, 

decision-satisfaction and SDSS satisfaction and suggest further inclusion into the Technology 

Acceptance Model (TAM) or the Unified Theory of Acceptance and Use of Technology (UTAUT) 

models. Additionally, Dennis and Carte [26] discovered that when using map-based presentations, 

users were more likely to utilize a perceptual decision process while tabular data presentations induced 

an analytical decision process. In their work, time and accuracy were used as measurements of 

decision performance. While numerous researchers utilized perceived or objective decision 

performance measures to determine the results of decision-making performance, Hung et al. [78] 

suggest that perceived regret should also be considered, as many decision makers consider potential 
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regret when making decisions. In their study it was found that there was a significant reduction in 

regret for participants who utilized a DSS. Other constructs and theories, particularly those from 

psychology and organizational behavior, are also utilized, including research in self-efficacy, 

motivation, goal-setting and Image Theory. For example, Jarupathirun and Zahedi [30] introduced a 

perceived performance construct consisting of decision satisfaction, SDSS satisfaction, perceived 

decision-quality and perceived decision-efficiency. In their findings, perceived decision-efficiency was 

the greatest motivator for goal commitment. While decision-quality is likely more important than 

efficiency, the authors proposed that there might be a perception that SDSS improves decision-quality 

inherently. These findings are consistent with other studies in which task-characteristics have been 

shown to have an impact on user satisfaction as measured through task-technology fit [79]. 

In their study of visual-query interfaces, Speier and Morris [25] discovered that decision-making 

performance increased by utilizing a visual query interface when working with complex decisions. In 

addition, Swink and Speier [29] discovered that moderate amounts of data dispersion required longer 

decision times than did tasks with low data dispersion. 

Based on the reviewed literature, the most common measures of decision-making performance are 

the objective measures of decision-time and decision-accuracy. 

3. Conceptual Model 

Based on the reviewed literature and associated theoretical frameworks, a conceptual model of 

business decision-making using geospatial data is proposed. This model consists of four distinct 

constructs, including information presentation, task-characteristics, user-characteristics and  

decision-performance. Information presentation was determined to be a key antecedent of  

decision-performance as suggested through Vessey’s [4] Cognitive Fit Theory. Literature has shown 

that different information presentation methods may be required based on the geospatial problem being 

solved. Additionally, task-characteristics have demonstrated an impact on decision-performance. 

Specifically, task complexity, problem type, data dispersion, group decision-making and data quality 

have been shown to define task-characteristics. In addition to information presentation and  

task-characteristics, user-characteristics have also been shown to influence decision-performance. Such 

user-characteristics include age, gender, prior experience, culture, sensory ability, education,  

self-efficacy, task motivation, goal-setting, mental workload, and geospatial reasoning ability. Finally, 

while decision-accuracy and decision-time were the most common measures of decision-performance, 

decision-satisfaction, decision-regret and decision-methodology could be valid measures of  

decision-performance. 

The relationships between these constructs are presented through the following three propositions: 

Proposition P1: Information presentation effects decision-performance. 

Proposition P2: Task-characteristics effect decision-performance. 

Proposition P3: User-characteristics effect decision-performance. 

Figure 1 presents this conceptual model visually. It is suggested that future research should further 

explore this model empirically and identify key antecedents and measures for each of the constructs. 

Specific measures of information presentation, task characteristics, user characteristics and  

decision-performance were purposefully abstracted, as it is our goal to provide researchers with a  
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high-level and unbiased model that can be applied to all research exploring geospatial decision-making 

scenarios involving individuals. 

Figure 1. Conceptual geospatial decision-making model. 

 

4. Discussion 

This literature review highlights key measures and constructs suggested for future experiments and 

to test the conceptual model and determine its antecedents. Future research should further explore the 

design of relevant measurement instruments and the development of laboratory experiments to test the 

proposed conceptual model and propositions.  

4.1. Limitations of Reviewed Literature  

Four key limitations were discovered in the reviewed literature, including (1) the choice of research 

subjects; (2) the selection of task types; (3) the motivation of subjects to successfully complete the 

problem solving experiment and 4) a lack of experiments testing the full conceptual model.  

First, in the majority of the reviewed literature, undergraduate students were utilized as research 

subjects (see Table 3), which may not accurately represent business decision makers who utilize 

geospatial data (e.g., [22,25,29]). However, research conducted by Mennecke et al. [27] discovered 

that there were few differences between the results of university students and business professionals 

when performing their study. Jarupathirun and Zahedi [30] cited Mennecke et al. [27] in their research 

as a strong validation that university students are a valid proxy for professionals. However, 

Jarupathirun and Zahedi [30] suggest that as many university students are of a younger population, 

they may have been more likely to have had previous experiences with Web-based SDSS, such as 

automated banking kiosk locators and online mapping tools, such as Google Maps [9], providing them 

with prior SDSS experience. Thus, it is recommended that future studies, which elect to use student 

populations, provide a justification of the sample choice and clearly discuss limitations of 

generalizability per the recommendations of Compeau et al. [80]. 

Table 3. Research population groups. 
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Population Study 

University Students  

(including graduate, undergraduate as well as business, psychology and geography students) 
[22,25–31,46,78] 

Professionals [27] 

Second, the problem types examined by existing research have presented some additional 

limitations. While some researchers chose real estate/home finding as their task method (e.g., [25]), 

others chose more domain specific tasks. This is a concern as, for example, the task of locating an 

automated banking kiosk would reflect a fundamentally different problem than determining properties 

that may be impacted by a natural disaster. It is suggested that future research carefully select problem 

types to facilitate comparison of research results.  

Third, the motivation for completing the research tasks accurately can be questioned. To address 

this issue, some researchers provided monetary incentives to participants plus additional monetary 

incentives for higher decision performance [78]. Furthermore, simulated experiments may not 

adequately reveal how individuals make ―real world‖ decisions, as the motivations might be different. 

Additionally, group decision-making may have different motivations than individual decision-making. 

Finally, few studies measured task- and user-characteristics simultaneously with information 

presentation to determine moderating impacts of each construct. Thus, it is suggested that the entire 

conceptual model be tested empirically to determine the effects of each antecedent construct  

on decision-performance. 

In addition to the addressing these limitations, numerous future research opportunities have 

presented themselves in the course of this literature review. 

4.2. Future Research  

It is suggested that additional research be performed to test the conceptual model proposed in 

Section 3. For example, Swink and Speier [29] suggest that complexity levels could be increased to 

determine if their findings still hold true. Albert and Golledge [46] call for more research into specific 

tasks and how groups of individuals are able to make-decisions using geovisualization.  

In their work, Jarupathirun and Zahedi [30] measured effects of perceptual constructs including 

perceived efficiency and perceived accuracy; however, a comparison to objective measures was not 

made and the authors suggested such an experiment as future research. Additionally, the authors 

suggested that user perceptions could be measured over time to develop a more comprehensive 

understanding. Crossland et al. [31] suggest that future research should assess ―decision-maker 

confidence, user process satisfaction, and individual level of motivation‖.  

The surveyed literature suggests numerous future research possibilities within the four research 

themes presented within this paper. These themes include information presentation, task characteristics 

and user characteristics and their effects on decision performance. Potential research questions related 

to decision-making using geospatial data include: 

Which geovisualization techniques improve decision-performance? 

Which specific user-characteristics impact decision-performance? 

Can specific geovisualization techniques overcome user-characteristics that negatively impact 

decision-performance? 
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Which specific task-characteristics impact decision-performance?  

Can specific geovisualization techniques overcome task-characteristics that negatively impact 

decision-performance? 

To answer these questions, it is suggested that future geospatial decision-making research 

emphasize the importance of including measures for each of the three antecedent constructs 

(information presentation, task-characteristics, user-characteristics) to determine their combined 

effects on decision-performance. Future research into decision-making using geospatial data should 

continue to validate existing theory as well as provide business decision-makers with sound best 

practices and tools for decision-making. Furthermore, an understanding of the importance of geospatial 

decision-making could lead design science researchers to develop refined geovisualization tools which 

may overcome potential negative task- and user-characteristics a user’s geospatial ability. 

5. Conclusions  

As organizations collect large amounts of geospatial data, there is a need to effectively utilize the 

collected data to make strategic and organizational decisions. However, literature describing the best 

techniques to make decisions using geospatial data as well as the best approaches for geovisualization 

is limited. This literature review revealed that existing research provides a strong foundation for future 

exploration of how business decision-making using geospatial data occurs. Additionally, a conceptual 

model for the study of effects of geovisualization on decision-performance is presented and defined 

through existing theory. The conceptual geospatial decision-making model proposes that information 

presentation, user-characteristics and task-characteristics together impact decision-performance. More 

specifically, we feel that this model can be applied to individual business decision-making  

when utilizing geospatial data. Along with the conceptual model, numerous applicable research 

methods, existing constructs, potential limitations, validity concerns and potential future research 

questions were presented. 

Based on discrepancies of previous research into the effects of geospatial reasoning ability on 

decision-performance, it is suggested that problem solving using geovisualized information must be 

explored further in order to ensure that businesses and individuals are able to make better decision 

using geographic data. Continuing this important area of IS research will allow practitioners to more 

effectively utilize geovisualization tools to organize and present large quantities of geospatial data. 
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