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Abstract:



It is known that several discrete integrals, including the Choquet and Sugeno integrals, as well as some of their generalizations, are comonotonically modular functions. Based on a recent description of the class of comonotonically modular functions, we axiomatically identify more general families of discrete integrals that are comonotonically modular, including signed Choquet integrals and symmetric signed Choquet integrals, as well as natural extensions of Sugeno integrals.
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1. Introduction


Aggregation functions arise wherever merging information is needed: Applied and pure mathematics (probability, statistics, decision theory and functional equations), operations research, computer science and many applied fields (economics and finance, pattern recognition and image processing, data fusion, etc.). For recent references, see Beliakov et al. [1] and Grabisch et al. [2].



Discrete Choquet integrals and discrete Sugeno integrals are among the best known functions in aggregation theory, mainly because of their many applications, for instance, in decision-making (see the edited book [3]). More generally, signed Choquet integrals, which need not be nondecreasing in their arguments, and the Lovász extensions of pseudo-Boolean functions, which need not vanish at the origin, are natural extensions of the Choquet integrals and have been thoroughly investigated in aggregation theory. For recent references, see, e.g., [4,5].



The class of n-variable Choquet integrals has been axiomatized independently by means of two noteworthy aggregation properties, namely comonotonic additivity (see, e.g., [6]) and horizontal min-additivity (originally called “horizontal additivity”, see [7]). Function classes characterized by these properties have been recently described by the authors [5]. Quasi-Lovász extensions, which generalize signed Choquet integrals and Lovász extensions by transforming the arguments by a one-variable function, have also been recently investigated by the authors [8] through natural aggregation properties.



Lattice polynomial functions and quasi-Sugeno integrals generalize the notion of Sugeno integrals [9,10,11,12,13]: The former by removing the idempotency requirement and the latter also by transforming arguments by a one-variable function. Likewise, these functions have been axiomatized by means of well-known properties, such as comonotonic maxitivity and comonotonic minitivity.



All of these classes share the feature that its members are comonotonically modular. These facts motivated a recent study that led to a description of comonotonically modular functions [8]. In this paper, we survey these and other results and present a somewhat typological study of the vast class of comonotonically modular functions, where we identify several families of discrete integrals within this class using variants of homogeneity as distinguishing feature.



The paper is organized as follows. In Section 2, we recall basic notions and terminology related to the concept of signed Choquet integrals and present some preliminary characterization results. In Section 3, we survey several results that culminate in a description of comonotonic modularity and establish connections to other well studied properties of aggregation functions. These results are then used in Section 4 to provide characterizations of the various classes of functions considered in the previous sections, as well as of classes of functions extending Sugeno integrals.



We employ the following notation throughout the paper. The set of permutations on [image: there is no content] is denoted by [image: there is no content]. For every σ∈[image: there is no content], we define:


[image: there is no content]={x=(x1,…,xn)∈[image: there is no content]:xσ(1)⩽⋯⩽xσ(n)}








Let [image: there is no content] and [image: there is no content]. We let I denote a nontrivial (i.e., of positive Lebesgue measure) real interval, possibly unbounded. We also introduce the notation, [image: there is no content], [image: there is no content] and [image: there is no content]. For every [image: there is no content], the symbol, [image: there is no content], denotes the n-tuple whose ith component is one, if [image: there is no content], and zero, otherwise. Let also [image: there is no content] and [image: there is no content]. The symbols, ∧ and ∨, denote the minimum and maximum functions, respectively. For every [image: there is no content], let [image: there is no content] be the n-tuple, whose ith component is [image: there is no content], and let [image: there is no content]. For every permutation, σ∈[image: there is no content], and every [image: there is no content], we set [image: there is no content], [image: there is no content] and [image: there is no content].




2. Signed Choquet Integrals


In this section, we recall the concepts of Choquet integrals, signed Choquet integrals, and symmetric signed Choquet integrals. We also recall some axiomatizations of these function classes. For general background, see [4,5,8].



A capacity on [image: there is no content] is a set function, [image: there is no content], such that [image: there is no content] and [image: there is no content] whenever: [image: there is no content].




Definition 1. 

The Choquet integral with respect to a capacity, μ on X, is the function [image: there is no content] defined as:


Cμ(x)=∑i=1nxσ(i)μ(Sσ↑[image: there is no content])-μ(Sσ↑(i+1))x∈(R+n)σ,σ∈[image: there is no content]















The concept of a Choquet integral can be formally extended to a more general set of functions and n-tuples of [image: there is no content] as follows. A signed capacity on X is a set function, [image: there is no content], such that [image: there is no content].




Definition 2. 

The signed Choquet integral with respect to a signed capacity, v, on X is the function, [image: there is no content]:[image: there is no content]→R defined as:


[image: there is no content](x)=∑i=1nxσ(i)v(Sσ↑[image: there is no content])-v(Sσ↑(i+1))x∈[image: there is no content],σ∈[image: there is no content]



(1)











From (1), it follows that [image: there is no content]([image: there is no content])=v(S) for every [image: there is no content]. Thus, Equation (1) can be rewritten as:


[image: there is no content](x)=∑i=1nxσ(i)[image: there is no content](1Sσ↑[image: there is no content])-[image: there is no content](1Sσ↑(i+1))x∈[image: there is no content],σ∈[image: there is no content]



(2)







Thus defined, the signed Choquet integral with respect to a signed capacity, v, on X is the continuous function, [image: there is no content], whose restriction to each region, [image: there is no content] (σ∈[image: there is no content]), is the unique linear function that coincides with v (or equivalently, the corresponding pseudo-Boolean function, [image: there is no content]) at the [image: there is no content] vertices of the standard simplex, [image: there is no content]∩[image: there is no content], of the unit cube, [image: there is no content]. As such, [image: there is no content] is called the Lovász extension of v.



From this observation, we immediately derive the following axiomatization of the class of n-variable signed Choquet integrals over a real interval, I. A function, [image: there is no content], is said to be a signed Choquet integral if it is the restriction to [image: there is no content] of a signed Choquet integral.




Theorem 3 ([4]). 

Assume that [image: there is no content]. A function, [image: there is no content], satisfying [image: there is no content]is a signed Choquet integral if and only if:


f(λx+(1-λ)x′)=λf(x)+(1-λ)f(x′)λ∈[0,1],x,x′∈Iσn,σ∈[image: there is no content]















The next theorem provides an axiomatization of the class of n-variable signed Choquet integrals based on comonotonic additivity, horizontal min-additivity and horizontal max-additivity. Recall that two n-tuples, x,x′∈[image: there is no content], are said to be comonotonic if there exists σ∈[image: there is no content], such that [image: there is no content]. A function, [image: there is no content], is said to be comonotonically additive if, for every comonotonic n-tuples, x,x′∈[image: there is no content], such that x+x′∈[image: there is no content], we have:


[image: there is no content]








A function, [image: there is no content], is said to be horizontally min-additive (respectively (resp.) horizontally max-additive) if, for every x∈[image: there is no content] and every [image: there is no content], such that x-x∧c∈[image: there is no content] (respectively x-x∨c∈[image: there is no content]), we have:


f(x)=f(x∧c)+f(x-x∧c)resp.f(x)=f(x∨c)+f(x-x∨c)












Theorem 4 ([5]). 

Assume [image: there is no content]or [image: there is no content]. Then, a function, [image: there is no content], is a signed Choquet integral if and only if the following conditions hold:

	(i)

	
f is comonotonically additive or horizontally min-additive (or horizontally max-additive if [image: there is no content]).




	(ii)

	
f(cx[image: there is no content])=cf(x[image: there is no content])for all [image: there is no content]and [image: there is no content], such that cx∈Iand all [image: there is no content].














Remark 1. 

It is easy to see that condition [image: there is no content] of Theorem 4 is equivalent to the following simpler condition: f(x[image: there is no content])=sign(x)xf(sign(x)[image: there is no content]) for all [image: there is no content] and [image: there is no content].







We now recall the concept of the symmetric signed Choquet integral. Here, “symmetric” does not refer to invariance under a permutation of variables, but rather to the role of the origin of [image: there is no content] as a symmetry center with respect to the function values.




Definition 5. 

Let v be a signed capacity on X. The symmetric signed Choquet integral with respect to v is the function, [image: there is no content]:[image: there is no content]→R, defined as:


[image: there is no content](x)=[image: there is no content]([image: there is no content])-[image: there is no content](x-)x∈[image: there is no content]



(3)











Thus defined, a symmetric signed Choquet integral is an odd function in the sense that [image: there is no content]. It is then not difficult to show that the restriction of [image: there is no content] to [image: there is no content] is the function:


[image: there is no content](x)=∑i=1pxσ(i)[image: there is no content](1Sσ↓[image: there is no content])-[image: there is no content](1Sσ↓(i-1))+∑i=p+1nxσ(i)[image: there is no content](1Sσ↑[image: there is no content])-[image: there is no content](1Sσ↑(i+1))x∈[image: there is no content]



(4)




where the integer, [image: there is no content], is given by the condition, [image: there is no content], with the convention that [image: there is no content] and [image: there is no content].



The following theorem provides an axiomatization of the class of n-variable symmetric signed Choquet integrals based on horizontal median-additive additivity. Assuming that I is centered at zero, recall that a function, [image: there is no content], is said to be horizontally median-additive if, for every x∈[image: there is no content] and every [image: there is no content], we have:


[image: there is no content]



(5)




where [image: there is no content] is the n-tuple, whose ith component is the middle value of [image: there is no content]. Equivalently, a function, [image: there is no content], is horizontally median-additive if and only if its restrictions to [image: there is no content] and [image: there is no content] are comonotonically additive and:


f(x)=f([image: there is no content])+f(-x-)x∈[image: there is no content]











A function, [image: there is no content], is said to be a symmetric signed Choquet integral if it is the restriction to [image: there is no content] of a symmetric signed Choquet integral.




Theorem 6 ([5]). 

Assume that I is centered at zero, with [image: there is no content]. Then, a function, [image: there is no content], is a symmetric signed Choquet integral if and only if the following conditions hold:

	(i)

	
f is horizontally median-additive.




	(ii)

	
f(cx[image: there is no content])=cf(x[image: there is no content])for all [image: there is no content], such that cx∈Iand all [image: there is no content].














Remark 2. 

It is easy to see that condition [image: there is no content] of Theorem 6 is equivalent to the following simpler condition: f(x[image: there is no content])=xf([image: there is no content]) for all [image: there is no content] and [image: there is no content].







We end this section by recalling the following important formula. For every signed capacity, v, on X, we have:


[image: there is no content](x)=[image: there is no content]([image: there is no content])-C[image: there is no content](x-)x∈[image: there is no content]



(6)




where [image: there is no content] is the capacity on X, called the dual capacity of v, defined as [image: there is no content](S)=v(X)-v(X∖S).




3. Comonotonic Modularity


Recall that a function, [image: there is no content], is said to be modular (or a valuation) if:


[image: there is no content]



(7)




for every x,x′∈[image: there is no content], where ∧ and ∨ are considered componentwise. It was proven [14] that a function, [image: there is no content], is modular if and only if it is separable, that is, there exist n functions, [image: there is no content] ([image: there is no content]), such that [image: there is no content]. In particular, any one-variable function [image: there is no content] is modular.



More generally, a function, [image: there is no content], is said to be comonotonically modular (or a comonotonic valuation) if Equation (7) holds for every comonotonic n-tuples, x,x′∈[image: there is no content]; see [8,15]. It was shown [8] that a function, [image: there is no content], is comonotonically modular if and only if it is comonotonically separable, that is, for every σ∈[image: there is no content], there exist functions, [image: there is no content] ([image: there is no content]), such that:


f(x)=∑i=1nfiσ(xσ(i))=∑i=1nfσ-1[image: there is no content]σ([image: there is no content])x∈Iσn











We also have the following important definitions. For every [image: there is no content] and every [image: there is no content] (resp. [image: there is no content]), we denote by [image: there is no content] (resp. [image: there is no content]) the n-tuple, whose ith component is zero, if [image: there is no content] (resp. [image: there is no content]), and [image: there is no content], otherwise. Recall that a function, [image: there is no content], where [image: there is no content], is invariant under horizontal min-differences if, for every x∈[image: there is no content] and every [image: there is no content], we have:


f(x)-f(x∧c)=f([image: there is no content])-f([image: there is no content]∧c)



(8)




Dually, a function, [image: there is no content], where [image: there is no content] is invariant under horizontal max-differences if, for every x∈[image: there is no content] and every [image: there is no content], we have:


f(x)-f(x∨c)=f([image: there is no content])-f([image: there is no content]∨c)



(9)







The following theorem provides a description of the class of functions that are comonotonically modular.




Theorem 7 ([8]). 

Assume that [image: there is no content]. For any function, [image: there is no content], the following assertions are equivalent:

	(i)

	
f is comonotonically modular.




	(ii)

	
f|[image: there is no content]is comonotonically modular (or invariant under horizontal min-differences); f|[image: there is no content]is comonotonically modular (or invariant under horizontal max-differences); and we have f(x)+f(0)=f([image: there is no content])+f(-x-)for every x∈[image: there is no content].




	(iii)

	
There exist, g:[image: there is no content]→Rand h:[image: there is no content]→R, such that, for every σ∈[image: there is no content]and every [image: there is no content]:


f(x)=f(0)+∑i=1ph(xσ(i)1Sσ↓[image: there is no content])-h(xσ(i)1Sσ↓(i-1))+∑i=p+1ng(xσ(i)1Sσ↑[image: there is no content])-g(xσ(i)1Sσ↑(i+1))








where [image: there is no content]is such that [image: there is no content], with the convention that [image: there is no content]and [image: there is no content]. In this case, we can choose g=f|[image: there is no content]and: h=f|[image: there is no content].













We finish this section with remarks on some properties subsumed by comonotonic modularity, namely, the following relaxations of maxitivity and minitivity properties.



Recall that a function, [image: there is no content], is said to be maxitive if:


f(x∨x′)=f(x)∨f(x′)x,x′∈[image: there is no content]



(10)




and it is said to be minitive if:


f(x∧x′)=f(x)∧f(x′)x,x′∈[image: there is no content]



(11)




As in the case of modularity, maxitivity and minitivity give rise to noteworthy decompositions of functions into maxima and minima, respectively, of one-variable functions.



In the context of Sugeno integrals (see Section 4), de Campos et al. [6] proposed the following comonotonic variants of these properties. A function, [image: there is no content], is said to be comonotonic maxitive (resp. comonotonic minitive) if (10) (resp. (11)) holds for any two comonotonic n-tuples x,x′∈[image: there is no content]. It was shown in [12] that any of these properties implies nondecreasing monotonicity, and it is not difficult to observe that comonotonic maxitivity together with comonotonic minitivity imply comonotonic modularity; the converse is not true (e.g., the arithmetic mean).



Explicit descriptions of each one of these properties was given in [9] for functions over bounded chains. For the sake of self-containment, we present these descriptions here. To this end, we now assume that [image: there is no content], and for each [image: there is no content], we denote by [image: there is no content], the n-tuple in [image: there is no content], whose i-th component is b, if [image: there is no content], and a, otherwise.




Theorem 8 ([9]). 

Assume [image: there is no content]. A function, [image: there is no content], is comonotonic maxitive (resp. comonotonic minitive) if and only if there exists a nondecreasing function, g:[image: there is no content]→R, such that:


f(x)=⋁[image: there is no content]g[image: there is no content]∧⋀[image: there is no content][image: there is no content](resp.f(x)=⋀[image: there is no content]geX∖S∨⋁[image: there is no content][image: there is no content])








In this case, we can choose [image: there is no content].







These descriptions are further refined in the following corollary.




Corollary 9. 

Assume [image: there is no content]. For any function, [image: there is no content], the following assertions are equivalent:

	(i)

	
f is comonotonic maxitive (resp. comonotonic minitive).




	(ii)

	
There are unary nondecreasing functions, [image: there is no content]([image: there is no content]), such that:


f(x)=⋁[image: there is no content]φS⋀[image: there is no content][image: there is no content](resp.f(x)=⋀[image: there is no content]φS⋁[image: there is no content][image: there is no content])








In this case, we can choose φS(x)=f([image: there is no content]∧x)(resp. [image: there is no content]) for every [image: there is no content].




	(iii)

	
For every σ∈[image: there is no content], there are nondecreasing functions, [image: there is no content]([image: there is no content]), such that for every [image: there is no content]:


f(x)=⋁[image: there is no content]fiσ(xσ(i))(resp.f(x)=⋀[image: there is no content]fiσ(xσ(i)))








In this case, we can choose [image: there is no content](resp. [image: there is no content]).














Remark 3. 

(i) Note that the expressions provided in Theorem 8 and Corollary 9 greatly differ from the additive form given in Theorem 7.

	(ii)

	
An alternative description of comonotonic maxitive (resp. comonotonic minitive) functions was obtained in Grabisch et al. ([2], Chart 2).














4. Classes of Comonotonically Modular Integrals


In this section, we present axiomatizations of classes of functions that naturally generalize Choquet integrals (e.g., signed Choquet integrals and symmetric signed Choquet integrals) by means of comonotonic modularity and variants of homogeneity. From the analysis of the more stringent properties of comonotonic minitivity and comonotonic maxitivity, we also present axiomatizations of classes of functions generalizing Sugeno integrals.



4.1. Comonotonically Modular Integrals Generalizing Choquet Integrals


The following theorem provides an axiomatization of the class of n-variable signed Choquet integrals.




Theorem 10. 

Assume [image: there is no content]or [image: there is no content]. Then, a function, [image: there is no content], is a signed Choquet integral if and only if the following conditions hold:

	(i)

	
f is comonotonically modular.




	(ii)

	
[image: there is no content]and f(x[image: there is no content])=sign(x)xf(sign(x)[image: there is no content])for all [image: there is no content]and [image: there is no content].




	(iii)

	
If [image: there is no content], then f(1X∖S)=f(1)+f(-[image: there is no content])for all [image: there is no content].














Proof. 

(Necessity) Assume that f is a signed Choquet integral, f=[image: there is no content]. Then, condition (ii) is satisfied in view of Theorem 4 and Remark 1. If [image: there is no content], then by (6), we have:


[image: there is no content](-[image: there is no content])=-C[image: there is no content]([image: there is no content])=[image: there is no content](1X∖S)-[image: there is no content](1)








which shows that condition (iii) is satisfied. Let us now show that condition (i) is also satisfied. For every σ∈[image: there is no content] and every x∈[image: there is no content], setting [image: there is no content], such that [image: there is no content], by (2) and conditions (iii) and (ii), we have:


[image: there is no content](x)=∑i=1nxσ(i)[image: there is no content](1Sσ↑[image: there is no content])-[image: there is no content](1Sσ↑(i+1))=∑i=1pxσ(i)[image: there is no content](-1Sσ↓(i-1))-[image: there is no content](-1Sσ↓[image: there is no content])+∑i=p+1nxσ(i)[image: there is no content](1Sσ↑[image: there is no content])-[image: there is no content](1Sσ↑(i+1))=∑i=1p[image: there is no content](xσ(i)1Sσ↓[image: there is no content])-[image: there is no content](xσ(i)1Sσ↓(i-1))+∑i=p+1n[image: there is no content](xσ(i)1Sσ↑[image: there is no content])-[image: there is no content](xσ(i)1Sσ↑(i+1))








which shows that condition (iii) of Theorem 7 is satisfied. Hence, [image: there is no content] is comonotonically modular.







(Sufficiency) Assume that f satisfies conditions (i)–(iii). By condition (iii) of Theorem 7 and conditions (ii) and (iii), for every σ∈[image: there is no content] and every x∈[image: there is no content], we have:


f(x)=∑i=1pf(xσ(i)1Sσ↓[image: there is no content])-f(xσ(i)1Sσ↓(i-1))+∑i=p+1nf(xσ(i)1Sσ↑[image: there is no content])-f(xσ(i)1Sσ↑(i+1))=∑i=1pxσ(i)f(-1Sσ↓(i-1))-f(-1Sσ↓[image: there is no content])+∑i=p+1nxσ(i)f(1Sσ↑[image: there is no content])-f(1Sσ↑(i+1))=∑i=1nxσ(i)f(1Sσ↑[image: there is no content])-f(1Sσ↑(i+1))








which, combined with (2), shows that f is a signed Choquet integral.  ☐




Remark 4. 

Condition (iii) of Theorem 10 is necessary. Indeed, the function, f(x)=[image: there is no content]([image: there is no content]), satisfies conditions (i) and (ii), but fails to satisfy condition (iii).








Theorem 11. 

Assume I is centered at zero, with [image: there is no content]. Then, a function, [image: there is no content], is a symmetric signed Choquet integral if and only if the following conditions hold:

	(i)

	
f is comonotonically modular.




	(ii)

	
f(x[image: there is no content])=xf([image: there is no content])for all [image: there is no content]and [image: there is no content].














Proof. 

(Necessity) Assume that f is a symmetric signed Choquet integral, f=[image: there is no content]. Then, condition (ii) is satisfied in view of Theorem 6 and Remark 2. Let us now show that condition (i) is also satisfied. For every σ∈[image: there is no content] and every x∈[image: there is no content], setting [image: there is no content], such that [image: there is no content], by Equation (4) and condition (ii), we have:


[image: there is no content](x)=∑i=1pxσ(i)[image: there is no content](1Sσ↓[image: there is no content])-[image: there is no content](1Sσ↓(i-1))+∑i=p+1nxσ(i)[image: there is no content](1Sσ↑[image: there is no content])-[image: there is no content](1Sσ↑(i+1))=∑i=1p[image: there is no content](xσ(i)1Sσ↓[image: there is no content])-[image: there is no content](xσ(i)1Sσ↓(i-1))+∑i=p+1n[image: there is no content](xσ(i)1Sσ↑[image: there is no content])-[image: there is no content](xσ(i)1Sσ↑(i+1))








which shows that condition (iii) of Theorem 7 is satisfied. Hence, [image: there is no content] is comonotonically modular.







(Sufficiency) Assume that f satisfies conditions (i) and (ii). By condition (iii) of Theorem 7 and condition (ii), for every σ∈[image: there is no content] and every x∈[image: there is no content], we have:


f(x)=∑i=1pf(xσ(i)1Sσ↓[image: there is no content])-f(xσ(i)1Sσ↓(i-1))+∑i=p+1nf(xσ(i)1Sσ↑[image: there is no content])-f(xσ(i)1Sσ↑(i+1))=∑i=1pxσ(i)f(1Sσ↓[image: there is no content])-f(1Sσ↓(i-1))+∑i=p+1nxσ(i)f(1Sσ↑[image: there is no content])-f(1Sσ↑(i+1))








which, combined with (4), shows that f is a symmetric signed Choquet integral.   ☐



The authors [8] showed that comonotonically modular functions also include the class of signed quasi-Choquet integrals on intervals of the forms [image: there is no content] and [image: there is no content] and the class of symmetric signed quasi-Choquet integrals on intervals, I, centered at the origin.




Definition 12. 

Assume [image: there is no content] and let v be a signed capacity on X. A signed quasi-Choquet integral with respect to v is a function, [image: there is no content], defined as f(x)=[image: there is no content](φ(x1),…,φ(xn)), where [image: there is no content] is a nondecreasing function satisfying [image: there is no content].







We now recall axiomatizations of the class of n-variable signed quasi-Choquet integrals on [image: there is no content] and [image: there is no content] by means of comonotonic modularity and variants of homogeneity.




Theorem 13 ([8]). 

Assume [image: there is no content](resp. [image: there is no content]), and let [image: there is no content]be a nonconstant function, such that [image: there is no content]. Then, the following assertions are equivalent:

	(i)

	
f is a signed quasi-Choquet integral, and there exists [image: there is no content], such that f([image: there is no content])≠0(resp. f(-[image: there is no content])≠0).




	(ii)

	
f|[image: there is no content]is comonotonically modular (or invariant under horizontal min-differences); f|[image: there is no content]is comonotonically modular (or invariant under horizontal max-differences); and there exists a nondecreasing function, [image: there is no content]satisfying [image: there is no content], such that f(x[image: there is no content])=sign(x)φ(x)f(sign(x)[image: there is no content])for every [image: there is no content]and every [image: there is no content].














Remark 5. 

If [image: there is no content] (resp. [image: there is no content]), then the “nonconstant” assumption and the second condition in assertion [image: there is no content] of Theorem 13 can be dropped off.







The extension of Theorem 13 to functions on intervals, I, centered at zero and containing [image: there is no content] remains an interesting open problem.



We now recall the axiomatization obtained by the authors of the class of n-variable symmetric signed quasi-Choquet integrals.




Definition 14. 

Assume I is centered at zero and let v be a signed capacity on X. A symmetric signed quasi-Choquet integral with respect to v is a function, [image: there is no content], defined as f(x)=[image: there is no content](φ(x1),…,φ(xn)), where [image: there is no content] is a nondecreasing odd function.








Theorem 15 ([8]). 

Assume that I is centered at zero, with [image: there is no content], and let [image: there is no content]be a function, such that f|[image: there is no content]or f|[image: there is no content]is nonconstant and [image: there is no content]. Then, the following assertions are equivalent:

	(i)

	
f is a symmetric signed quasi-Choquet integral, and there exists [image: there is no content], such that f([image: there is no content])≠0.




	(ii)

	
f is comonotonically modular, and there exists a nondecreasing odd function, [image: there is no content], such that f(x[image: there is no content])=φ(x)f([image: there is no content])for every [image: there is no content]and every [image: there is no content].














Remark 6. 

If [image: there is no content], then the “nonconstant” assumption and the second condition in assertion [image: there is no content] of Theorem 15 can be dropped off.








4.2. Comonotonically Modular Integrals Generalizing Sugeno Integrals


In this subsection, we consider natural extensions of the n-variable Sugeno integrals on a bounded real interval, [image: there is no content]. By an I-valued capacity on X, we mean an order preserving mapping, [image: there is no content], such that [image: there is no content] and [image: there is no content].




Definition 16. 

Assume that [image: there is no content]. The Sugeno integral with respect to an I-valued capacity, μ, on X is the function, Sμ:[image: there is no content]→I, defined as:


Sμ(x)=⋁[image: there is no content]xσ(i)∧μ(Sσ↑[image: there is no content])x∈Iσn,σ∈[image: there is no content]















As the following proposition suggests, Sugeno integrals can be viewed as idempotent “lattice polynomial functions” (see [16]).




Proposition 17. 

Assume that [image: there is no content]. A function, f:[image: there is no content]→I, is a Sugeno integral if and only if [image: there is no content], [image: there is no content]and for every x∈[image: there is no content]


f(x)=⋁[image: there is no content]f([image: there is no content])∧⋀[image: there is no content][image: there is no content]















As mentioned, the properties of comonotonic maxitivity and comonotonic minitivity were introduced by de Campos et al. in [6] to axiomatize the class of Sugeno integrals. However, without further assumptions, they define a wider class of functions that we now define.




Definition 18. 

Assume that [image: there is no content] and [image: there is no content] are real intervals, and let μ be an I-valued capacity on X. A quasi-Sugeno integral with respect to μ is a function, [image: there is no content], defined by [image: there is no content], where [image: there is no content] is a nondecreasing function.







Using Proposition 11 and Corollary 17 in [10], we obtain the following axiomatization of the class of quasi-Sugeno integrals.




Theorem 19. 

Let [image: there is no content]and [image: there is no content]be real intervals and consider a function, [image: there is no content]. The following assertions are equivalent:

	(i)

	
f is a quasi-Sugeno integral.




	(ii)

	
f is comonotonically maxitive and comonotonically minitive.




	(iii)

	
f is nondecreasing, and there exists a nondecreasing function, [image: there is no content], such that for every [image: there is no content]and [image: there is no content], we have:


f(r∨x)=φ(r)∨f(x)andf(r∧x)=φ(r)∧f(x)



(12)




where [image: there is no content] (resp. [image: there is no content]) is the n-tuple, whose ith component is r∨[image: there is no content](resp. r∧[image: there is no content]). In this case, φ can be chosen as [image: there is no content].














Remark 7. 

The two conditions given in (12) are referred to in [10] as quasi-max homogeneity and quasi-min homogeneity, respectively.







As observed at the end of the previous section, condition (ii) (and, hence, (i) or (iii)) of Theorem 19 implies comonotonic modularity. As the following result shows, the converse is true whenever f is nondecreasing and verifies any of the following weaker variants of quasi-max homogeneity and quasi-min homogeneity:


f(x∨[image: there is no content])=f(x,…,x)∨f([image: there is no content])x∈J,S⊆X



(13)






f(x∧[image: there is no content])=f(x,…,x)∧f([image: there is no content])x∈J,S⊆X



(14)








Theorem 20. 

Let [image: there is no content]and [image: there is no content]be real intervals and consider a function, [image: there is no content]. The following conditions are equivalent:

	(i)

	
f is a quasi-Sugeno integral, [image: there is no content], where [image: there is no content].




	(ii)

	
f is a quasi-Sugeno integral.




	(iii)

	
f is comonotonically modular, nondecreasing and satisfies (13) or (14).




	(iv)

	
f is nondecreasing and satisfies (13) and (14).














Proof. 

[image: there is no content] Trivial.



[image: there is no content] Follows from Theorem 19.



[image: there is no content] Suppose that f is comonotonically modular and satisfies (13). Then:


f(x∧[image: there is no content])=f(x,…,x)+f([image: there is no content])-f(x∨[image: there is no content])=f(x,…,x)+f([image: there is no content])-f(x,…,x)∨f([image: there is no content])=f(x,…,x)∧f([image: there is no content])








Hence, f satisfies (14). The other case can be dealt with dually.







[image: there is no content] Define [image: there is no content]. By nondecreasing monotonicity and (14), for every [image: there is no content], we have:


f(x)⩾f[image: there is no content]∧⋀[image: there is no content][image: there is no content]=f([image: there is no content])∧φ⋀[image: there is no content][image: there is no content]=f([image: there is no content])∧⋀[image: there is no content]φ([image: there is no content])








and thus, f(x)⩾⋁[image: there is no content]f([image: there is no content])∧⋀[image: there is no content]φ([image: there is no content]). To complete the proof, it is enough to establish the converse inequality. Let [image: there is no content] be such that f(e[image: there is no content])∧⋀i∈[image: there is no content]φ([image: there is no content]) is maximum. Define


T=j∈X:φ(xj)⩽f(e[image: there is no content])∧⋀i∈[image: there is no content]φ([image: there is no content])








We claim that [image: there is no content]. Suppose this is not true, that is, φ(xj)>f(e[image: there is no content])∧⋀i∈[image: there is no content]φ([image: there is no content]) for every [image: there is no content]. Then, by nondecreasing monotonicity, we have, [image: there is no content], and since f(eX)⩾⋀[image: there is no content]φ([image: there is no content]),


f(eX)∧⋀[image: there is no content]φ([image: there is no content])>f(e[image: there is no content])∧⋀i∈[image: there is no content]φ([image: there is no content])








which contradicts the definition of [image: there is no content]. Thus [image: there is no content].



Now, by nondecreasing monotonicity and (13), we have:


f(x)⩽feX∖T∨⋁[image: there is no content]xj=f(eX∖T)∨φ⋁[image: there is no content]xj=f(eX∖T)∨⋁[image: there is no content]φ(xj)=f(eX∖T)








Indeed, we have [image: there is no content] for every [image: there is no content] and x⩽eX∖T∨⋁[image: there is no content]xj.



Note that f(eX∖T)⩽f(e[image: there is no content])∧⋀i∈[image: there is no content]φ([image: there is no content]), since, otherwise, by definition of T, we would have:


f(eX∖T)∧⋀i∈X∖Tφ([image: there is no content])>f(e[image: there is no content])∧⋀i∈[image: there is no content]φ([image: there is no content])








again, contradicting the definition of [image: there is no content]. Finally:


f(x)⩽f(e[image: there is no content])∧⋀i∈[image: there is no content]φ([image: there is no content])=⋁[image: there is no content]f([image: there is no content])∧⋀[image: there is no content]φ([image: there is no content])








and the proof is thus complete. ☐




Remark 8. 

An axiomatization of the class of Sugeno integrals based on comonotonic modularity can be obtained from Theorems 19 and 20 by adding the idempotency property.









5. Conclusions


In this paper, we analyzed comonotonic modularity as a feature common to many well-known discrete integrals. In doing so, we established its relation to many other noteworthy aggregation properties, such as comonotonic relaxations of additivity, maxitivity and minitivity. In fact, the latter become equivalent in the presence of comonotonic modularity. As a by-product, we immediately see that, e.g., the so-called discrete Shilkret integral lies outside the class of comonotonic modular functions, since this integral is comonotonically maxitive, but not comonotonically minitive.



Albeit, such an example, the class of comonotonically modular functions, is rather vast and includes several important extensions of the Choquet and Sugeno integrals. The results presented in Section 4 seem to indicate that suitable variants of homogeneity suffice to distinguish and fully describe these extensions. This naturally asks for an exhaustive study of homogeneity-like properties, which may lead to a complete classification of all subclasses of comonotonically modular functions.



Another question that still eludes us is the relation between the additive forms given by comonotonic modularity and the max-min forms. As shown in Theorem 20, the latter are particular instances of the former; in fact, proof of Theorem 20 provides a procedure to construct max-min representations of comonotonically modular functions, whenever they exist. However, we were not able to present a direct translation between the two. This remains as a relevant open question, since its answer will inevitably provide a better understanding of the synergy between these intrinsically different normal forms.
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