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Abstract: The properties of the Gabor and Morlet transforms are examined with respect to
the Fourier analysis of discretely sampled data. Forward and inverse transform pairs based
on a fixed window with uniform sampling of the frequency axis can satisfy numerically the
energy and reconstruction theorems; however, transform pairs based on a variable window
or nonuniform frequency sampling in general do not. Instead of selecting the shape of the
window as some function of the central frequency, we propose constructing a single window
with unit energy from an arbitrary set of windows that is applied over the entire frequency
axis. By virtue of using a fixed window with uniform frequency sampling, such a transform
satisfies the energy and reconstruction theorems. The shape of the window can be tailored
to meet the requirements of the investigator in terms of time/frequency resolution. The
algorithm extends naturally to the case of nonuniform signal sampling without modification
beyond identification of the Nyquist interval.
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1. Introduction

The primary criticism leveled at the use of the continuous wavelet transform for the spectral analysis
of discretely sampled data is that it fails to give quantitatively meaningful results. The power spectral
density produced from the convolution of a wavelet basis and a discrete signal gives a qualitative picture
of the temporal variation of its frequency content; however, when one attempts the reconstruction of the
signal, the residual is not on the order of the precision of one’s computational device. Likewise, the
integrated margins of the power spectral density do not precisely equal the energy of the original signal.
In other words, the discrete implementation of the continuous wavelet transform and its inverse do not
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satisfy the energy and reconstruction theorems of spectral analysis. The goal of this investigation is to
devise a multiresolution analysis that does satisfy those theorems.

Our insistence upon the satisfaction of the energy and reconstruction theorems is because they are first
principle requirements related to the conservation of physical energy. When suitably defined, energy
is not to be created nor destroyed; neither should it get lost in the shuffle. There is a deep relation
between energy content and information content, as quantum mechanics teaches us, thus a loose grip
on one implies a loose grip on the other. On a more practical level, the satisfaction of those theorems
is among the requirements for a maximum entropy spectral analysis of data that includes the effects of
measurement uncertainty, whose consideration is beyond the scope of this article.

The review by Torrence and Compo [1] remains a popular resource for practitioners of wavelet
analysis. It relies on the method by Farge [2] for the reconstruction of the data signal. Grossmann
and Morlet [3] are credited with establishing the reconstruction theorem in the continuum. Meyer [4]
and Mallat [5] developed the theory of multiresolution analysis, and Daubechies [6] constructed the first
orthonormal basis with compact support, leading to the implementation of the dyadic wavelet transform
in terms of finite impulse response digital filter banks [7]. Some interesting applications of the continuous
wavelet transform for the spectral analysis of data can be found in references [8–19].

This paper is organized as follows. First, we will quickly review the theory of the continuous Fourier
transform and its discrete implementation. Next, we will look at the Gabor transform and its relation to
the wavelet transform using the Morlet basis. We will then propose an algorithm for a layered window
transform whose spectral density is similar to that of the Morlet transform yet which satisfies the energy
and reconstruction theorems. Following that, we will demonstrate that the algorithm works unaltered
for data with irregular sampling once the corresponding Nyquist interval is identified. Finally, we will
look at how the selection of the window affects the time/frequency resolution of the transform. We will
conclude with a brief summary and suggestions for applications.

Some notations used throughout this paper are explained here. Scalars are written as s, while vectors
and matrices are written as v and M respectively and may be defined in terms of their components, e.g.,
v ≡ vs = v(s). The transpose of a vector or matrix is indicated by the superscript vT , and the conjugate
transpose by M†, using the standard rules for matrix multiplication. Inner products may be written in
bra-ket notation as 〈a |b〉s, and matrix entries as the ket-bra |a〉〈b |. Expectation values are notated as
〈v(s)〉s. Sets will be indicated by their boundaries [a, b], and whether continuous or discrete must be
derived from context. The operation of rounding up, i.e., taking the next greatest integer, is denoted by
dae, and when the notation a → b is encountered, it is understood to mean “a is replaced by b”. The
programs used for this analysis are available online [20].

2. Continuous and Discrete Fourier Transforms

Let us begin by considering the Fourier transform in the continuum over axes of time and frequency.
Suppose we have some signal y(t), possibly complex valued, of finite energy Ey ≡ 〈y |y〉t =∫∞
−∞ y

∗(t)y(t)dt < ∞. If the signal carries units of uy, then the signal energy has units of uE ≡ u2
yut.

The units of signal energy are proportional to those of physical energy in joules by a factor of the load
impedance EJ = Ey/ZL; for example, if the signal has units of volts uy = V and time is measured
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in seconds ut = s so that uE = V 2s, then accounting for the load impedance in ohms uZ = Ω gives
physical units of V 2s/Ω = (ml2/t2q)2t/(ml2/tq2) in terms of mass, length, time, and charge, which
is equivalent to joules. The units of frequency are reciprocal to those of time uf = u−1

t , and the term
“power” is understood to mean “energy density” and must be qualified by the domain for its distribution.
The squared modulus |y(t)|2 ≡ P (t) can thus be identified as the temporal power of the signal.

Under suitable conditions not elaborated here, the Fourier integral and its inverse,

ŷ(f) ≡
∫ ∞
−∞

exp(−i2πft)y(t)dt , ˆ̂y(t) ≡
∫ ∞
−∞

exp(i2πft)ŷ(f)df (1)

define an integral transform pair satisfying the Plancherel energy theorem
∫∞
−∞ |y(t)|2dt =

∫∞
−∞ |ŷ(f)|2df

and the Fourier inversion theorem ˆ̂y(t) = y(t). The representation over the frequency axis ŷ(f) carries
units of uŷ = uyut so that the squared modulus |ŷ(f)|2 ≡ P (f) gives the spectral power of the signal,
and the spectral energy is Eŷ ≡ 〈ŷ | ŷ〉f =

∫∞
−∞ ŷ

∗(f)ŷ(f)df . When the signal is of finite duration
t ∈ [0, T ], the Fourier transform’s response to a component sinusoid y(t) = exp(i2πf ′t) is

ŷ(f) =

∫ T

0

exp[−i2π(f − f ′)t]dt = exp(−iπf∆T )
sin(πf∆T )

πf∆

(2)

expressed in terms of the frequency offset f∆ ≡ f − f ′, thus the spectral power of the uniform window
function ΦT (t) = T−1/2 normalized to unit energy describes the leakage in the frequency spectrum
induced by the finite duration of the signal,

LT (f∆)df∆ ≡ |Φ̂T (f∆)|
2
df∆ = T−1

[
sin(πf∆T )

πf∆

]2

df∆ (3)

with domain f∆ ∈ [−∞,∞]. The continuum leakage function is not periodic in f∆, as its magnitude
decays according to f−2

∆ .
With regard to practical data analysis, let us suppose now that the signal is given in terms of discrete

samples in time with uniform duration and spacing. (Those requirements will be relaxed in Section 5.)
The time axis can then be described in terms of integers t ∈ [1, T ] with unit ut ≡ ∆t given by the sample
rate, allowing the signal to be written as a vector y ≡ yt = y(t). The signal energy can be expressed in
terms of matrix multiplication as Ey = y†Dty, where the temporal metric Dt = IT∆t is proportional to
the identity matrix of order T . The effect of frequency aliasing induced by the uniform sampling is often
misunderstood. If we evaluate the Fourier transform of the discrete window with unit energy,

Φ̂T (f∆) = T−1/2

T∑
t=1

exp(−i2πf∆t)∆t = T−1/2 exp[−iπf∆(T + 1)]
sin(πf∆T )

sin(πf∆)
∆t (4)

we find that the leakage function becomes periodic in f∆,

LT (f∆)df∆ → T−1

[
sin(πf∆T )

sin(πf∆)

]2

∆2
tdf∆ (5)

with period 1 in units of uf = ∆−1
t . The principle branch is usually chosen as f ∈ [−1/2, 1/2]∆−1

t , but
one should always respect the periodic nature of the spectrum. The normalization of the spectral power
likewise is defined over one period of the frequency axis,

∑T
t=1 |y(t)|2∆t =

∫ 1/2

−1/2
|ŷ(f)|2df . In Figure 1
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we compare the continuum and discrete leakage functions for a window with duration T = 5, where we
see the expected oscillatory lobes as well as the periodicity induced by the discrete sampling in time.

Figure 1. Comparison of the continuous time leakage function in (a) to its discrete time
counterpart in (b) for a uniform window of duration T = 5 over a continuous frequency axis.

Now let us consider the discretization of the frequency axis into uniform bins over its principle branch
f ∈ [−fc, fc], where fc ≡ (2∆t)

−1 is the Nyquist critical frequency. To fully specify the frequency
metric Df , one must state its order N , equal to the number of positive frequencies ≤ fc, as well as its
parity P ∈ {0, 1}, indicating whether an even or odd number of bins N ′ = 2N + P is used to span
the domain. When P = 1, the bins on the edges corresponding to frequencies ±fc have a bin width
equal to one half that of the others, so that the limits of integration are respected; because of aliasing, the
integrand will have the same value at those locations, so that only one full bin’s contribution is counted.
This convention differs from that usually given for the discrete Fourier transform [21], where the factor
of 1/2 is absorbed by the coefficients rather than the metric. The order N specifies the spacing of the
frequencies as ∆f = (2N∆t)

−1, and the metric can be written as Df/∆f = IN ′−(|1〉〈1 |+|N ′〉〈N ′ |)P/2
so that Tr Df = ∆−1

t . The central frequencies of the bins can be expressed as fn = [n− (N ′ + 1)/2]∆f

for integers n ∈ [1, N ′]. Figure 2 compares the even and odd discretizations of order N = 4. While the
odd parity discretization is perhaps more familiar, for many of our purposes the even discretization will
prove more convenient.

Figure 2. Comparison of the even (a) and odd (b) frequency discretizations of order N = 4

with the central frequencies indicated by ×.

We are finally ready to define the two-sided discrete Fourier transform (of order N and parity P ) of
a discretely sampled signal (of duration T ). If we collect our Fourier basis functions into the form of
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a matrix, Θ ≡ Θ(t, n) = exp(i2πfnt), then we can easily write the discrete transform pair in terms
of matrix multiplication, ŷ ≡ Θ†Dty and ˆ̂y ≡ ΘDf ŷ, as well as the spectral energy Eŷ = ŷ†Df ŷ. In
component notation, one has

ŷ(n) ≡
T∑
t=1

exp(−i2πfnt)y(t)∆t , ˆ̂y(t) ≡
N ′∑
n=1

exp(i2πfnt)ŷ(n)∆f (6)

where ∆f is understood to account for the edge bins if P = 1. If the signal y(t) is real, so that
ŷ(−f) = ŷ(f)∗, then one may define the one-sided transform, retaining only the nonnegative portion of
the frequency axis with N ′ → N + P bins and fn → [n − (P + 1)/2]∆f , by renormalizing the basis
functions to twice the energy via Θ→

√
2 Θ and letting ˆ̂y(t)→ Re ˆ̂y(t). Hereafter, we will assume y(t)

is real so that we can focus our attention on the one-sided spectrum.
In the fully discrete setting, the satisfaction of the energy and reconstruction theorems is dependent

upon there being a sufficient number of degrees of freedom (DOF) in the basis functions to fully represent
the information content of the signal. For real y(t), the number of DOF is equal to the signal duration
T . For the one-sided transform, whether of even or odd parity, the number of DOF is equal to 2N , as
each frequency’s coefficient has both an amplitude and a phase, ŷn = An exp(iωn), except for the cases
fn = 0 or fc that have only an amplitude. The critical frequency fc is identified as the lowest positive
frequency whose basis function is entirely real over the discrete time axis, an observation that will prove
useful when we consider the case of irregularly sampled data. The minimal order beyond which the
energy and reconstruction theorems are satisfied can be evaluated as Nmin = dT/2e for a real signal
(and Nmin = T for a complex one). That condition is realized (for even T ) when Θ†Θ∆t = IN ′T ,
indicating that the basis functions Θ form an orthogonal set for N = T/2. However, orthogonality over
the discrete time axis is not a requirement, as y†Dty = ŷ†Df ŷ and y = ˆ̂y exactly (meaning to the
precision of one’s computational device) for any N ≥ Nmin and either parity P .

Lastly, let us look at what happens when one tries to express the fully discrete, one-sided Fourier
transform over an axis of period (or scale) s rather than frequency f . In the continuum, the relation
between the axes f = s−1 yields the Jacobian |df/ds| = s−2, thus the spectral power over scale
P (s) ≡ |ŷ(s)|2 is equal to the spectral power over frequency P (f) multiplied by the Jacobian,
P (s) = f 2P (f), otherwise expressed as ŷ(s) = fŷ(f). In the discrete setting, however, one must be
explicit with the mapping of the bin boundaries so that

∑
n |ŷ(fn)|2∆f =

∑
n |ŷ(sn)|2∆s. Let ∆f = b−a

be the width of one frequency bin centered on fn = (a + b)/2, which gets mapped to the scale bin
∆s = a−1 − b−1 such that ∆f/∆s = ab and P (sn) = abP (fn). One may very well ask, in what sense is
sn = f−1

n the center of the scale bin? The value fn is both the mean and the median of the frequency bin
with uniform measure pf = ∆−1

f , but the mean period over that bin is 〈f−1〉f = log(b/a)∆−1
f . The value

sn is recognized as the median of the scale bin with measure ps = s−2∆−1
f , such that

∫ 2/(a+b)

1/a
psds = 1/2.

The edges for odd parity are handled similarly with respect to the half-width bins. For either parity, the
bin whose lower boundary is a = 0 is the one that causes trouble, as ∆s = ∞ in that case. One can
contrive to neglect that bin for odd parity by subtracting the mean of the signal y(t) → y(t) − 〈y(t)〉t,
but that procedure does not repair the problem for even parity.

To illustrate the difficulty, in Figure 3 we display the mapping of the spectral power for a signal with
duration T = 20, a sum of two sinusoids at frequencies 1/40 and 1/4 normalized to unit energy Ey = 1.
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In panels (a) and (b) we show the mapping for the one-sided transform of order N = 20 and odd parity
over domain f ∈ [0, fc]. While the higher frequency’s contribution remains apparent, that of the lower
frequency has been washed away by the measure factor. The DOF carried by the lowest frequency bin
are unrecoverable from the mapping over scale on account of the infinite bin width. In panels (c) and (d)
we repeat the procedure but for domain f ∈ [fc, 2fc]. This time, all the DOF are properly mapped, thus
the energy and reconstruction theorems are satisfied. In Table 1 we give some numerical results from the
evaluation shown in the figure. In short, there is nothing to be gained by working on the scale axis rather
than frequency other than a headache in dealing with the effect of aliasing, as one requires the same set
of basis functions Θ and minimal order Nmin to satisfy the fundamental theorems of spectral analysis in
either case.

Figure 3. Comparison of the mapping over odd parity axes of frequency f and scale s = f−1

of the discrete spectral power of a signal with two sinusoidal components for f ∈ [0, fc] in
(a) and (b) and for f ∈ [fc, 2fc] in (c) and (d) with the central frequencies indicated by ×.

Table 1. Numerical results from the evaluation of Figure 3.

P
f ∈ [0, fc] f ∈ [fc, 2fc]

Tr Df
∑

n P (fn)∆f Tr Ds
∑

n P (sn)∆s Tr Df
∑

n P (fn)∆f Tr Ds
∑

n P (sn)∆s

0 0.5 1.0 INF NAN 0.5 1.0 1.0 1.0
1 0.5 1.0 INF NAN 0.5 1.0 1.0 1.0

3. Gabor and Morlet Transforms

Let us turn now to the consideration of how to transform the signal y ≡ y(t) into a time-frequency
representation Ŷ ≡ Ŷ (f, t) by modulating the exponential oscillations of the Fourier basis with a
discrete window function, Θ(f, t) → Ψ(f, t) ≡ Φ(t)Θ(f, t). The Gabor transform is defined by the
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use of a Gaussian window with decay parameter σ, which we will notate as Φ(t) ∝ exp−π/2(t2/σ2) ≡
e−πt

2/2σ2 . Its normalization to unit energy Φ → Φ/〈Φ |Φ〉1/2t depends upon the duration of the
window, parametrized by its half-width τ . In the continuum, one can write

∫∞
−∞Φ2(t)dt ∝ σ and∫ τ

−τ Φ2(t)dt ∝ σ erf(π1/2τ/σ); however, in the discrete setting with index t ∈ [−τ, τ ], the window
energy

∑
t Φ2(t)∆t is not expressible in closed form. For the one-sided spectrum, Φ →

√
2 Φ so that

its energy equals 2. To fully specify which Gabor transform is being used, one must state the values of
N , P , σ, and τ . We will return to the question of finding the minimal order of the Gabor transform for
a signal of duration T in Section 5; for now, we will assume that N is greater than Nmin of the previous
section so that the fundamental theorems are satisfied.

There are two alternatives for the definition of the phase convention in the transform, which differ in
whether the phase is expressed relative to the origin of the signal’s time axis or that of the window:

Ŷ (n, t̂) ≡
τ∑

t′=−τ

Φ(−t′) expi2π[−fn(t̂+ t′)]y(t̂+ t′)∆t (7)

ˆ̂y(t) ≡
N ′∑
n=1

expi2π(fnt)
τ∑

t′=−τ

Φ(t′)Ŷ (n, t+ t′)∆t∆f (8)

where the time axis for the transform coefficients carries an index t̂ ∈ [1− τ, T + τ ], or else

Ŷ (n, t̂) ≡
τ∑

t′=−τ

Φ(−t′) expi2π(−fnt′)y(t̂+ t′)∆t (9)

ˆ̂y(t) ≡
N ′∑
n=1

τ∑
t′=−τ

Φ(t′) expi2π(−fnt′)Ŷ (n, t+ t′)∆t∆f (10)

The latter is more familiar, but either is equally valid in terms of satisfying the energy and reconstruction
theorems. The sign of the argument to the window function is chosen deliberately so that these
expressions remain valid for the case of a window that is not symmetric in t′. The signal is zero
padded for values of t̂ + t′ outside the original domain of [1, T ], as no other value could be assigned
without changing the energy hence information content of the signal. For either phase convention,
the temporal spectral power is defined as P (n, t̂) ≡ |Ŷ (n, t̂)|

2
with units of energy per time per

frequency. (The normalization of the window introduces a factor of ∆
−1/2
t so that Ŷ carries units

of uyu
1/2
t .) For comparison with the signal energy Ey, let us evaluate the spectrum’s energy as

EŶ ≡
∑

n

∑
t̂ P (n, t̂)∆t∆f and the reconstruction’s energy as Eˆ̂y ≡

∑
t |ˆ̂y(t)|

2
∆t.

For this section and the next, let us consider a particular real signal y(t) comprised of 4 sinusoids with
unit amplitude and non-stationary frequency of duration T = 200. The variation in the instantaneous
frequencies is assigned an amplitude of 5% and a period of T . Phases for the oscillations and variations
are selected randomly. In Figure 4 we show the results of the one-sided Gabor transform with N = 200

and P = 0 using window parameters of σ = 2
√
π and τ = 12. Panel (a) displays the contours of the

energy density P (n, t̂) over axes of time and frequency. Also indicated are the instantaneous frequencies
used to generate the data. Panels (b) and (c) display the marginal energy densities over axes of frequency
and time, respectively. The marginal energy densities are evaluated by taking each sum over an axis
independently, i.e., P (n) ≡

∑
t̂ P (n, t̂)∆t and P (t̂) ≡

∑
n P (n, t̂)∆f . Panel (d) gives the absolute
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value of the residual r(t) ≡ ˆ̂y(t) − y(t), which is on the order of the machine precision ∼ 10−16. The
ratios EŶ /Ey and Eˆ̂y/EŶ are equal to unity to the same precision, thus the fundamental theorems are
satisfied. At these parameter values, the spectral resolution is poor while the temporal resolution is sharp.

Figure 4. One-sided Gabor transform of a real signal as described in the text. The power
spectrum is shown in (a) with the signal’s instantaneous frequencies indicated by the dashed
lines. The marginal spectral power is shown in (b) as×, as is the marginal temporal power in
(c), and each is compared with the convolution of the window and signal energies indicated
by +. The absolute value of the reconstruction residual is displayed in (d).

The marginal densities of the Gabor power spectrum can be compared with the convolution of
the window’s energy density with that of the signal in either the temporal or spectral representations.
Looking first at the temporal representation, one finds the relation

P (t̂) =
τ∑

t′=−τ

Φ2(−t′)y2(t̂+ t′)∆t (11)

where Φ in this case is normalized to unit energy. In the spectral representation, the convolution is taken
in the modular (periodic) sense, most easily performed using the two-sided transform. Let ŷ(fn) be the
two-sided Fourier transform of the signal with order N and parity P , and let Φ̂(f ′m) be the transform
of the window function, again normalized to unit energy, with the same order and odd parity such that
M = 2N + 1. Then P (n) in the two-sided sense n ∈ [1, 2N + P ] can be written

P (n) ≈
M∑
m=1

|Φ̂(M + 1−m)|
2
|ŷ[mod(n+m−N − 2, 2N) + 1]|2∆f (12)

where mod(a, b) ≡ a mod b and with respect to the half-width of the edge bins, from which the values
corresponding to the one-sided transform can be extracted and doubled. The relation above is written as
an approximation because there is some subtlety to the evaluation of the RHS.

So far, we have imposed no condition on the window duration T ′ = 2τ + 1 other than being odd
for integer τ , and indeed, there is none. In the lower limit τ = 0, the basis functions are constant,
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Ψ(0, n) =
√

2 (or 1 for the two-sided transform), and all frequency resolution is lost, yet the fundamental
theorems are still satisfied for any order N ≥ 1. In the opposite extreme, for example τ = T such that
T ′ � T with σ =∞, the basis functions become essentially those of the Fourier transform with minimal
order Nmin. Simply put, the duration of the window in the short-time Fourier transform does not need
to be short. When the temporal bandwidth of the window approaches or exceeds that of the signal, the
evaluation of the RHS in Equation (12) becomes suspect if the order N is not sufficient to resolve both
the signal and the window; the practical solution is to increase N . Furthermore, one can verify that the
Gabor transform remains well behaved (if not particularly useful) for the case σ → iσ so that the window
grows exponentially rather than decaying. The only requirement is that the window be real valued and
normalized explicitly, i.e., discretely, to unit energy, times 2 for the one-sided transform.

We can now introduce the Morlet transform by promoting the window parameters from constants to
functions of the central frequency, Φ(t) → Φn(t). Let σn ≡ σ/fn, and with respect to the discrete
sampling in time, let τn ≡ dτ/fne for constants σ and τ . The parameter τ itself does not need to be
an integer, as τn is what defines the window duration for bin n. A difficulty with τn arises immediately
for odd parity when fn = 0; one can ameliorate the situation by using τn from the lowest positive
bin in that case. Again, either the phase convention of Equations (7 and 8) or (9 and 10) can be used.
In Figure 5 we show the results of the one-sided Morlet transform of order 200 and even parity with
parameters σ =

√
π and τ = 6 chosen so that the window of the previous Gabor transform corresponds

to the Morlet window at the critical frequency fc. The power spectrum in panel (a) has the marginal
densities shown in panels (b) and (c); however, this time the ratios EŶ /Ey and Eˆ̂y/EŶ differ from unity
on the order of 1%, interestingly by nearly the same value. Likewise, the absolute value of the residual
displayed in panel (d) is on the order of 1%, comparable to the Farge method [2] as reported by Torrence
and Compo [1]. While the lowest frequency component has been well resolved, the spectral resolution
of the upper frequencies remains poor. Furthermore, without a single window in operation, one cannot
perform the comparison of the marginal densities with the convolution of the window and signal energy
densities corresponding to Equations (11) and (12).

Let us insert here some comments on what is called the admissibility condition. The statement often
is made by authors that the wavelet must have a mean of zero so that its Fourier coefficient at f = 0

vanishes. While that remark might apply in the continuum, it is not appropriate for discretely sampled
wavelets of finite duration. If one examines in detail the proof of the admissibility condition [22], one
finds that it relies crucially on the property of continuity. In full, the admissibility condition states that
if the wavelet is continuous in time with continuous Fourier transform, then its mean must be zero.
In the context considered here, neither of those conditions is met: In the temporal representation the
wavelet is a piece-wise constant function with jump discontinuities at the edges of the temporal bins,
and likewise for the frequency representation that, while of arbitrary resolution beyond the minimal
order, must nonetheless be evaluated discretely for any practical analysis of data. If one computes the
leakage functions for the discrete Morlet basis [23], one finds that an artificial discontinuity is induced
by the imposition of the zero mean condition. As a final argument against subtracting the mean of the
discrete basis functions, note that the Gabor transform works perfectly well for any values of the window
parameters without including such procedure.
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Figure 5. One-sided Morlet transform of a real signal as described in the text. The power
spectrum is shown in (a) with the signal’s instantaneous frequencies indicated by the dashed
lines. The marginal spectral power is shown in (b) as ×, as is the marginal temporal power
in (c). The absolute value of the reconstruction residual is displayed in (d).

There are many suggestions found in the literature for improving the performance of the discretely
implemented continuous wavelet transform. Let us examine a few of them here, with their absolute
residuals displayed in Figure 6 and a numerical summary in Table 2. For panel (a) the mean of the
signal is subtracted before entering the spectral analysis. As one can see, this procedure results in few
changes, but for consistency of comparison the remaining panels will also use the mean subtracted signal.
Noticing that the ratios EŶ /Ey and Eˆ̂y/EŶ are very nearly equal, one can renormalize the spectrum
and reconstruction a posteriori by their geometric mean C = (Eˆ̂y/Ey)

1/2, yielding the residual shown
in panel (b). This renormalization prescription works best when there is not much energy in the upper
portion of the frequency axis [23]. Perhaps more familiar is the prescription to shift the central frequency
2π → ω1. At these window parameter values, a shift of ω1/2π = 1.0127 is found to work well [24],
giving the residual shown in panel (c). If one then applies the renormalization prescription, one gets
the residual displayed in panel (d). While there has been a noticeable improvement of three orders of
magnitude, the root-mean-square residual remains far above the machine precision.
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Figure 6. Absolute residuals for several methods of improving the transform response as
described in the text. In panel (a), the mean of the signal is subtracted; in panel (b), the mean
is subtracted with renormalization of the coefficients; in panel (c), the mean is subtracted
with a shift of central frequency; and in panel (d), the mean is subtracted with frequency
shift and renormalization.

Table 2. Numerical results from the evaluation of Figure 6.

Panel (a) (b) (c) (d)

〈r2(t)〉1/2t 1.8215e −02 2.6142e −03 1.8213e −04 4.1799e −05
EŶ /Ey − 1 1.2885e −02 −1.7468e −06 1.2674e −04 −4.4658e −10
Eˆ̂y/EŶ − 1 1.2889e −02 1.7468e −06 1.2674e −04 4.4658e −10

4. Layered Window Transform

The primary feature of the Morlet transform is that it uses a different window function Φn for each
bin along the frequency axis. That is also its main difficulty, as each bin corresponds to a particular
instance of the Gabor transform, any of which would work fine independently, but when the separate
bins are isolated and combined, there is no reason to suppose that their marginal sums will equal the
signal energy. The correspondence between the Morlet and Gabor transforms becomes more apparent
if one redefines the window decay σn relative to the window width τn rather than the central frequency
fn, in which case regions along the frequency axis of the Morlet spectrum are drawn from a particular
Gabor spectrum. Simply pasting together pieces from different Gabor transforms from the outset appears
doomed to failure, and it is surprising that the Morlet transform in the discrete setting works as well as it
does. While we have not given up entirely on the Morlet transform, if one wants to make quantitative use
of the results of a spectral analysis, the energy and reconstruction theorems must be satisfied precisely.
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How, then, are we to devise a multiresolution analysis that satisfies the fundamental theorems of
spectral analysis? The answer lies in focusing our attention on the distribution of energy in the window
function. Suppose we have one unit of energy, an “atom” so to speak, distributed with temporal power
Φ2
A(t) in the continuum, which we wish to use as the basis for a multiresolution analysis. Let the window

at scale τ be defined by Φτ (t) ∝ ΦA(t/τ) for positive integer τ , which scales the relative unit of time by
integral amounts. One can supplement this definition for τ = 0 by letting Φ0(0) = 1 and 0 otherwise.
For an exponential decay with scale invariant parameter σ, one can write Φτ (t) ∝ exp−π/2(t2/τ 2σ2),
where the normalization to unit energy is done explicitly over the integers t ∈ [−τ, τ ]. (Alternately, one
could hold the window width fixed for all τ .) The layered window ΦL(t) is then defined to be the sum
in terms of energy, not amplitude, of the windows Φτ (t) over some set of scales τ ∈ [τ1, τL] with L
members, normalized to unit energy, Φ2

L(t) ≡ L−1
∑

τ Φ2
τ (t). For a one-sided transform, ΦL →

√
2 ΦL

of course. This single window, with duration T ′ = 2τL + 1, is to be used for all the frequency bins in the
windowed Fourier transform.

Since the atomic window ΦA is arbitrary, the distinction between summing the window energies Φ2
τ

versus summing the window amplitudes Φτ is really just a matter of interpretation. Whichever way
one defines the sum over scales, the layered window eventually is normalized explicitly to one unit
of energy, or two units for a one-sided transform. Using the construction above in terms of energy,
the amplitude of the layered window is the root-mean-square of the amplitudes of the scaled windows,
while the construction summing the window amplitudes is not so simply normalized. With respect to
its physical motivation, energy is the quantity that ultimately gets quantized, not amplitude, which is a
property reflected in our favored definition of the layered window. The selection by the investigator of
the set of scales {τ} to use in the construction specifies the domain of energy distributions to which the
transform will be sensitive.

Let us return now to consideration of our four frequency test signal, with its mean restored. For
comparison with the previous Gabor and Morlet transforms, let the decay parameter here be σ =

√
π/6,

and let τ ∈ [12, 96]. The results of such analysis are displayed in Figure 7. Compared with the
Morlet transform, the spectral resolution is much improved in the upper portion of the frequency axis,
as seen in panel (a). Since only one window is in operation, the marginal densities of panels (b)
and (c) can be compared with the convolution of the window and signal energy densities in either
the temporal or spectral representations. The absolute residual shown in panel (d) is on the order of
the machine precision, with maybe a slight accumulation of truncation errors. The ratios EŶ /Ey and
Eˆ̂y/EŶ equal unity to machine precision. The layered window transform, by virtue of using a single
window for all frequencies, satisfies the energy and reconstruction theorems to the accuracy of one’s
computational device.

As a final comparison, let us put the Fourier power spectrum of the signal alongside the marginal
spectral energy densities of the Gabor, Morlet, and layered window transforms, displayed in Figure 8.
The Fourier spectrum in panel (a) is the typical mess one gets when analyzing non-stationary signals,
but its net energy does equal the signal energy. The Gabor spectrum in panel (b) has lost its frequency
resolution on account of the tight temporal bandwidth of the selected window parameters, yet retains
the correct normalization. The Morlet spectrum in panel (c) resolves the low frequency portion of
the spectrum but not the high frequency region and does not have the correct normalization. The
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layered window spectrum in panel (d) is normalized to the signal energy and resolves both the low
and high frequency parts of the spectrum while maintaining sufficient temporal resolution to be useful
in identifying non-stationary features in the signal.

Figure 7. One-sided layered window transform of a real signal as described in the text. The
power spectrum is shown in (a) with the signal’s instantaneous frequencies indicated by the
dashed lines. The marginal spectral power is shown in (b) as ×, as is the marginal temporal
power in (c), and each is compared with the convolution of the window and signal energies
indicated by +. The absolute value of the reconstruction residual is displayed in (d).

Figure 8. Comparison of the Fourier power spectrum in (a) with the marginal spectral
energy densities of the Gabor transform in (b), the Morlet transform in (c), and the layered
window transform in (d).
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5. Irregular Sampling and Minimal Order

Let us now consider the case of an irregularly sampled signal y(t), with regard to the analyses
by Lomb [25] and Scargle [26]. Irregular sampling has long vexed practitioners of wavelet analysis,
leading to a variety of suggestions for how to overcome its difficulties. Because of the nature of stellar
observations, the astrophysical community often presents data that contains gaps or is otherwise on an
irregular time axis. The method by Foster [27] focuses on the normalization of the gapped wavelet basis
functions, while the method by Frick et al. [28] focuses on the admissibility condition; taken together,
those ideas lead to the edge adapted algorithm proposed by Johnson [29]. More familiar perhaps is
the lifting scheme by Sweldens [30], which operates in the context of the dyadic wavelet transform
implemented in terms of finite impulse response digital filter banks.

For simplicity, we will assume that the samples each have a uniform duration ∆t, which is not greater
than any of the inter-measurement periods, so that the time metric Dt remains proportional to the identity
matrix; otherwise, a suitably generalized Dt must be used. Let the observation times be given by the
vector t ≡ td indexed by d ∈ [1, D], where D is the total number of samples, in some unit ut not
necessarily equal to ∆t such that the values td are integers; ut is the resolution of the time measuring
apparatus, thus ∆t must also be an integer. Similarly, the measurements can be written as the vector
y ≡ yd so that the signal energy remains Ey = y†Dty in units of u2

yut. Missing values, i.e.,
measurements at integer times not in t, are effectively treated as zero. Let us look first at how the
discretized Fourier transform is modified in this case.

To identify the Nyquist critical frequency, one must find the lowest positive Fourier basis function
that is entirely real (technically up to a constant phase) over the given set of observation times [31].
That procedure is easily accomplished by shifting and scaling the time axis t → t′ such that
fc ≡ (2ut′)

−1 in the new time units. If one defines tg to be the greatest common divisor over the
set of inter-measurement periods, the new time axis can be written t′d ≡ (td − t1)/tg + 1 in units of
ut′ ≡ tgut such that t′d ∈ [1, T ] remains integer valued. At the critical frequency, the Fourier basis
function is expiπ(2fct

′
d) = ±1, and the Fourier spectrum has period 1 in units uf = u−1

t′ . Having found
the units in which fc = 1/2, let us drop the prime distinguishing the scaled time axis in the following,
and for convenience let us suppose ∆t = 1 in the scaled units; otherwise one must be extra careful with
the scaling of the energy units.

The next task is to determine the minimal order for satisfaction of the energy and reconstruction
theorems. Let ND ≡ dD/2e, and let NT ≡ dT/2e. For N < ND there are an insufficient number of
DOF in the discrete Fourier transform to fully represent the information content of the (real) signal, thus
the fundamental theorems are not satisfied in general. Likewise, forN ≥ NT there are more than enough
DOF to represent the signal;NT gives the minimal order of the analogous regularly sampled signal where
the missing entries are assigned the value zero. For ND ≤ N < NT , the Fourier transform might work,
depending upon the particulars of the irregular sampling. To satisfy the reconstruction theorem ˆ̂y = y

for ˆ̂y ≡ Qy in the one-sided case, one must have Q ≡ Re ΘDfΘ†Dt = ID to the order of machine
precision; the energy theorem also is satisfied when that condition is met. (For a complex signal, the
entire matrix, not just its real part, must be utilized, and of course Df must cover one full period of the
frequency axis.) The basis functions are evaluated only at the observation times Θ(d, n) = expi2π(fntd),
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because those are the only locations at which the reconstruction theorem must be satisfied. In Table 3
we compare the norm of the reconstruction residual r ≡ ˆ̂y−y for some signal with D = 10 and T = 28

with the distance between the quality matrix Q and the identity ID according to the Frobenius metric
at various orders N with P = 0. To produce a smooth picture of the spectral content, one should take
N � NT .

Table 3. Comparison of the norm of the residual of the Fourier transform with the distance
from the quality matrix Q to the identity ID at various orders N and even parity for an
irregularly sampled signal with D = 10 and T = 28 such that ND = 5 and NT = 14.

N 5 6 7 8 9
‖r‖F 3.5943e +00 5.1760e +00 3.0368e +00 5.5110e −15 3.0148e +00

‖Q− ID‖F 2.4495e +00 2.8284e +00 2.4495e +00 5.6505e −15 2.0000e +00
N 10 11 12 13 14
‖r‖F 6.6842e −01 5.4143e −15 2.6771e +00 6.2415e −15 7.4742e −15

‖Q− ID‖F 1.4142e +00 4.3648e −15 2.0000e +00 4.2983e −15 4.9648e −15

Turning now to the consideration of the Gabor transform (and by extension all windowed Fourier
transforms with a fixed Φ), the construction of the quality matrix is a bit more complicated, owing to the
convolutions along the time axis. It is commonly remarked that the number of DOF along the frequency
axis is multiplied by the number of times the window duration T ′ = 2τ +1 fits within the signal duration
T , but the situation is more subtle than that, as one must also account for the bandwidth of the window
given by the decay σ. Beginning with the case of regular sampling D = T , using the phase convention
of Equations (9 and 10), one can write the composition of the inverse and forward transforms as

ˆ̂y(t) = Re
N ′∑
n=1

τ∑
t′=−τ

Φ(t′) expi2π(−fnt′)
τ∑

t′′=−τ

Φ(−t′′) expi2π(−fnt′′)y(t+t′+t′′)∆t∆t∆f (13a)

= Re
2τ∑

t′′′=−2τ

∑
t′+t′′=t′′′

Φ(t′)Φ(−t′′)
N ′∑
n=1

expi2π(−fnt′′′)y(t+ t′′′)∆f∆t∆t (13b)

≡
2τ∑

t′′′=−2τ

q(t′′′)y(t+ t′′′)∆t (13c)

which yields one row in the quality matrix Q indexed by t′′′ ∈ [−2τ, 2τ ] indicating the diagonal where
q(t′′′) appears such that Q has the form of a Toeplitz matrix of rank T . For a symmetric window
Φ(−t′) = Φ(t′) written as a diagonal matrix Φ such that Ψ ≡ ΦΘ, the values q(t′′′) can be extracted
from Ψ∗DfΨ†. For an irregularly sampled signal T > D, one retains only those rows and columns of Q

corresponding to actual data entries, Q→ Q(t, t). In Table 4 we compare the residual norm of the Gabor
transform with τ = 12 and two values of σ with the distance from Q to ID at various N with P = 0

for an irregularly sampled signal of duration T = 100 with D = 30 entries. As N approaches ND from
below, the quality of reconstruction improves until the residual is on the order of machine precision.
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Table 4. Comparison of the norm of the residual of the Gabor transform with width τ = 12

and the indicated decay σ with the distance from the quality matrix Q to the identity ID at
various ordersN and even parity for an irregularly sampled signal withD = 30 and T = 100

such that ND = 15 and NT = 50.

σ N 6 7 8 9 10

2
√
π

‖r‖F 5.4222e −04 2.8233e −05 5.1908e −07 1.1113e −08 7.3918e −11
‖Q− ID‖F 5.2358e −04 2.0300e −05 4.4962e −07 7.0963e −09 5.1610e −11

N 11 12 13 14 15
‖r‖F 2.7305e −13 1.2477e −14 6.2789e −15 5.8445e −15 7.2210e −15

‖Q− ID‖F 1.6628e −13 4.3047e −16 4.1495e −16 2.8105e −16 2.2323e −16
σ N 6 7 8 9 10

4
√
π

‖r‖F 4.5343e −01 2.6201e −01 7.5299e −02 3.4864e −02 6.9207e −03
‖Q− ID‖F 4.3784e −01 1.8839e −01 6.5223e −02 2.2263e −02 4.8319e −03

N 11 12 13 14 15
‖r‖F 1.0987e −03 7.8620e −05 1.0067e −14 1.2076e −14 1.2964e −14

‖Q− ID‖F 6.6716e −04 6.9627e −05 6.0970e −16 7.7092e −16 1.0855e −15

For the Morlet basis functions, the construction of Ψ is more involved, as Ψ(t′, n) = Φ(t′, n)Θ(t′, n).
Nonetheless, one can evaluate Q from Ψ∗DfΨ† for any rank T . As a function of order N , one finds
that the deviation ‖Q− IT‖F decreases until N > T/2, after which it bottoms out on the order of a few
percent times T . In Table 5 we compare the norm of the residual for the Morlet basis using σ =

√
π

and τ = 6 for some regularly sampled signal with D = T = 30 with the deviation of Q from ID at
various N with P = 0. If one wishes to investigate the feasibility of devising a Morlet basis with perfect
reconstruction, the evaluation of Q is where to start.

Table 5. Comparison of the norm of the residual of the Morlet transform with width
τ = 6 and decay σ =

√
π with the distance from the quality matrix Q to the identity ID

at various orders N and even parity for a regularly sampled signal with D = T = 30 such
that ND = NT = 15.

N 6 7 8 9 10
‖r‖F 3.3471e +00 2.9397e +00 2.7428e +00 2.2582e +00 1.9475e +00

‖Q− ID‖F 2.9527e +00 2.4686e +00 2.0993e +00 1.8244e +00 1.5788e +00
N 11 12 13 14 15
‖r‖F 1.7911e +00 1.5917e +00 1.3310e +00 9.3137e −01 5.3677e −01

‖Q− ID‖F 1.3451e +00 1.1139e +00 8.7648e −01 6.3175e −01 4.0199e −01

Let us close this section by looking at the analysis of the signal from the previous section but with
the number of measurements reduced by a factor of a third (ND = 134) for the same duration T = 200.
The evaluation of the layered window Fourier transform proceeds as before, with the understanding that
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values of y(t̂ + t′) at times not in t are treated as zero; the time axis for the spectrum Ŷ (n, t̂) includes
every integer t̂ ∈ [1 − τL, T + τL]. Using the same parameters as before, σ =

√
π/6 and τ ∈ [12, 96]

with N = 200 and P = 0, in Figure 9 we display the power spectrum, its marginal densities, and the
reconstruction residual for our irregularly sampled signal. While the loss of information has affected
the appearance of the spectrum relative to the regularly sampled case, it nonetheless remains a faithful
representation of the available information. By virtue of using a single fixed window ΦL, the layered
window Fourier transform satisfies the fundamental theorems of spectral analysis even when there are
gaps in the observation record.

Figure 9. One-sided layered window transform of an irregularly sampled signal as described
in the text. The power spectrum is shown in (a) with the signal’s instantaneous frequencies
indicated by the dashed lines. The marginal spectral power is shown in (b) as ×, as is the
marginal temporal power in (c), and each is compared with the convolution of the window
and signal energies indicated by +. The absolute value of the reconstruction residual is
displayed in (d).

6. Window Comparison

Let us conclude the analysis with a comparison of the temporal and spectral bandwidths for several
types of window function, as well as their estimates of the power spectral density carried by a test signal
with a little more complexity than we had before. The test signal is regularly sampled with T = 200 and
four component frequencies, but now only two components are present in the first half of the duration,
while the other two are in the second half. An abrupt transition occurs at the midpoint of the duration.
The amplitude of the frequency variation is now 10%, with a period of T/2, so that each component
covers a broad range of instantaneous frequency. The order for all the transforms in this section will be
the minimal Fourier order of the signal N = 100 with even parity P = 0.

The parameters for the four types of window considered are displayed in Table 6, comprising of two
Gabor windows at either end of the range in scale for the layered window also considered, in addition to



Axioms 2013, 2 303

a random window with an arbitrary duration. The first moments of time and frequency are indicated by t1
and f1 respectively, and the bandwidths (square root of the second moment about the first moment) by t2
and f2. The two Gabor windows are observed to minimize the Fourier uncertainty relation t2f2 ≥ 1/4π,
thus in that sense are optimal, while the layered window has a slightly larger bandwidth product. The
random window has a bandwidth product that is considerably larger, yet all these windows produce a
valid discrete transform pair that satisfies the fundamental theorems of spectral analysis as indicated by
the residual of reconstruction ‖r‖F . The energy densities in the temporal and spectral representation
used to evaluate the bandwidth products are shown in Figure 10, where one can see the trade-off in
time/frequency resolution in action.

Table 6. Comparison of the temporal and spectral bandwidths for various windows, as well
as their rms reconstruction residual for the test signal as described in the text.

Window σ τ t1 t2 f1 f2 4πt2f2 ‖r‖F

Gabor 2
√
π 12 −0.000 1.414 −0.000 0.056 1.000 0.000

Gabor 16
√
π 96 −0.000 11.314 0.000 0.007 1.000 0.000

Layered
√
π/6 [12, 96] 0.000 6.990 0.000 0.014 1.244 0.000

Random — 24 −2.836 13.718 0.000 0.130 22.442 0.000

The power spectral density estimates evaluated from the test signal of this section using the various
windows are displayed in Figure 11, arranged from (a) to (d) according to Table 6. The power spectrum
given by the layered window in (c) does indeed incorporate features of either Gabor transform shown
in (a) and (b); in a sense, it has combined the Gabor transforms over its range of scale in a way that
preserves the energy and reconstruction theorems. With some algebraic manipulation of the expressions
defining the layered window Fourier transform one might be able to show that explicitly, but for now that
statement is intuitive speculation. Interestingly, the spectrum given by the random window is not much
different from the others, driving home the point that the shape of the window truly is arbitrary as long
as it is normalized appropriately.
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Figure 10. Comparison of the temporal and spectral energy densities of the various windows
arranged according to Table 6.

Figure 11. Comparison of the power spectral density of the test signal described in the text
using the various windows arranged according to Table 6. The instantaneous frequencies
used to generate the signal are indicated by the dashed lines.
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7. Discussion

The primary result of this investigation is that the windowed Fourier transform has far more flexibility
and utility than it is usually credited with. To achieve satisfaction of the energy and reconstruction
theorems in the discrete setting, the only requirements on the window are that it be real, nonnegative,
and normalized explicitly to unit energy, or two units for a one-sided transform. While we have looked
only at symmetric windows here, one can easily verify that the expressions for the transform pair, either
Equations (7 and 8) or (9 and 10), remain valid for a window that is not symmetric in t′; with attention
to the details of relocating the temporal bins, the coefficients can be assigned to the time corresponding
to the peak of the window rather than its midpoint. Similarly, a window with an even length duration
T ′ could be used if one is careful with the definition of the phase and the location of the bins. In
fact, any nonnegative function can be used for Φ, or even a list of arbitrary numbers, as long as it is
suitably normalized.

The flexibility in Φ allows one to define a multiresolution spectral analysis in terms of an atomic unit
of energy ΦA(t/τ) evaluated over a range of scales τ . These multiple scalings of ΦA are combined into
a single layered window ΦL that is applied to the entire frequency axis; the phase component of the
basis is independent of the window function. Because only a single window is used, the fundamental
theorems of spectral analysis are satisfied. With a Gaussian ΦA, the form of ΦL very closely resembles
a Lorentzian function, which expresses uniformity over scale when expressed as an angle. The shape of
ΦL can be tailored to the needs of the investigation through inspection of its leakage function. Similarly
to the wavelet transform, the trade-off between resolution in time or frequency is under the control of the
investigator. Any structure seen in the spectral coefficients of the signal is understood to be conditioned
on the selection of the window function; the answer one gets depends upon how the question is asked.

The difficulties faced by the continuous wavelet transform exemplified by the Morlet basis, with
respect to the fundamental theorems of spectral analysis, can be summarized in the evaluation of its
quality matrix Q. Perfect reconstruction in the discrete setting requires Q to equal the identity matrix
to the precision of one’s computational device. The various adjustments looked at above that improve
the reconstruction residual must be bringing Q closer to that form; however, none of them achieve the
required precision. For an integral transform pair to have quantitative significance, one must demonstrate
that the distance from its Q to I is numerically zero. This investigation has proposed an alternate approach
to multiresolution analysis, which does satisfy the energy and reconstruction theorems while improving
upon the resolution properties of the Gabor transform.

The effects of aliasing and of irregular sampling are easily understood with regard to the periodicity
induced in the Fourier spectrum. The Nyquist interval is given simply by the span between frequencies
that are indistinguishable over the stated measurement times; assigning a value of unity to that range
such that fc = 1/2 is just a matter of choosing the appropriate units for time. The implementation of
the windowed Fourier transform is unaffected beyond zero padding the signal at locations of missing
measurements, whose justification is that no other procedure leaves the energy, hence information
content, unchanged. One should observe that the ends of a regularly sampled signal are treated the
same way. On that note, we can remark that there is no cone of influence for the windowed Fourier
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transform, as every spectral coefficient is important to the satisfaction of the fundamental theorems, even
those outside the temporal domain of the data.

The minimal orderNmin required for a faithful representation of the signal depends upon the temporal
bandwidth of the window and the duration of the data. Pinning that number down for the windowed
Fourier transform is a bit tricky, and if needed is best evaluated explicitly through inspection of Q as
a function of order N . What one can say in general is that 1 ≤ Nmin ≤ NT , where the bounds are
given by the minimal orders for the fully temporal and fully spectral representations of the regularly
sampled signal, respectively. Irregular sampling complicates matters by introducing an order ND < NT

such that ND ≤ Nmin ≤ NT for the full-length Fourier transform and Nmin ≤ ND for the windowed
Fourier transform. For most practical cases of data analysis, one is interested in producing a smooth
plot of the spectral content, thus one would use an order N � Nmin. To verify the marginal density
of the windowed power spectrum in comparison with the convolution of the window and signal energy
densities in the spectral representation, one requires an order N sufficient to resolve both the signal and
the window temporal durations.

Thus far we have heard nary a peep from the actual basis functions used in this analysis, so let us
close the discussion by looking at some of the stars of the show. In Figure 12 we display the real and
imaginary parts of the basis functions, normalized to unit energy, for each of the transforms considered
above at order N = 50 with even parity P = 0 at the lowest and highest entries on the frequency axis,
i.e., f1 = 1/200 and fN = 99/200. The Fourier transform has no intrinsic window, so it is shown for
a duration T ′ = 101 that spans T < T ′. The window parameters chosen are those from the previous
sections: σ = 2

√
π and τ = 12 for the Gabor transform, σ =

√
π and τ = 6 for the Morlet transform,

and σ =
√
π/6 and τ ∈ [12, 96] for the layered window transform. One can observe that the transforms

whose Q equals the identity share the property that these basis functions are phase analogues over the
discrete sample times, whereas the Morlet basis functions are scale analogues. By phase analogue we
mean if Ψ(t′, 1) = a1 + ib1, then Ψ(t′, N) = a1(−1)t

′
+ ib1(−1)t

′+1, a feature shared by all positive
frequency pairs whose midpoint is f = 1/4; the Morlet basis differs from the others in this regard.
Whether that property is required for satisfaction of the fundamental theorems is unclear, but the results
of this analysis suggest that it is.
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Figure 12. Comparison of the lowest Ψ(t′, 1) and highest Ψ(t′, N) frequency basis functions
at order N = 50 with P = 0 using the parameters found in the text, with the real part
indicated by × and the imaginary part by +. The Fourier basis is in (a) and (b), the Gabor
basis is in (c) and (d), the Morlet basis is in (e) and (f), and the layered window basis is in
(g) and (h).

8. Conclusions

In this article we have compared the Fourier, Gabor, and Morlet transforms in the fully discrete
setting applicable to the analysis of sampled data. While the Fourier and Gabor transforms satisfy the
fundamental theorems of energy conservation and perfect reconstruction, the Morlet transform does not.
The magnitude of the residual can be related to the distance from the quality matrix to the identity in
all cases, such that the minimal order for reconstruction can be determined for the Fourier and Gabor
transforms. Various methods of improving the response of the Morlet transform are considered; however,
none of them achieve the desired precision on par with the truncation error of one’s computational device.

An alternate approach to multiresolution analysis is proposed, which constructs a single layered
window from multiple scalings of some atomic unit of energy. This layered window transform satisfies
the fundamental theorems of spectral analysis while providing sufficient temporal resolution to identify
non-stationary features in the signal. The trade-off between time and frequency resolution is under
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the control of the investigator through the selection of the atomic window and the scales over which
it is evaluated. The power spectrum of the layered window transform is similar to that of the Morlet
transform but provides much better frequency resolution.

The premise behind the wavelet transform is that the low frequency elements of a signal should have
a much longer duration than the high frequency elements. There are, however, many examples of real
world signals for which the converse is true. Consider, for example, the digital recording of a kick drum
and cymbal rhythm such that the low frequency bursts have a relatively short duration compared with the
ringing at high frequency. For that type of signal, the wavelet transform is going to provide a poor choice
of basis even if it satisfied the fundamental theorems. The flexibility in the choice of window function
used in the windowed Fourier transform allows one to tailor its response to the needs of the analysis far
better. The result one gets depends upon how one defines the resolution of the window, any of which
provide a valid spectral representation of the signal.

To make quantitative use of the spectral analysis of some discretely sampled signal, one must
demonstrate that the fundamental theorems are satisfied. The windowed Fourier transform can be shown
to satisfy those requirements for any real valued window function that is suitably normalized. The
potential for gaps in the data, or some other form of irregular sampling, is found to pose no problem
once the correct Nyquist interval is identified. Consequently, the windowed Fourier transform can be
applied to data from a wide variety of sources, such as astronomical observations, which are limited
physically to an irregular set of observation times, as well as the common case of regular sampling. The
implementation of a multiresolution spectral analysis in the discrete setting appears to be possible only
when the multiple scalings of the energy distribution are applied evenly across the frequency axis by
combining them into a single layered window.
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