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Abstract: Let K be a finite extension of Q and let S = {ν} denote the collection of
normalized absolute values on K. Let V +

K denote the additive group of adeles over K and let
c : V +

K → R≥0 denote the content map defined as c({aν}) =
∏

ν∈S ν(aν) for {aν} ∈ V +
K .

A classical result of J. W. S. Cassels states that there is a constant c > 0 depending only
on the field K with the following property: if {aν} ∈ V +

K with c({aν}) > c, then there
exists a non-zero element b ∈ K for which ν(b) ≤ ν(aν), ∀ν ∈ S. Let cK be the greatest
lower bound of the set of all c that satisfy this property. In the case that K is a real quadratic
extension there is a known upper bound for cK due to S. Lang. The purpose of this paper is
to construct a new upper bound for cK in the case that K has class number one. We compare
our new bound with Lang’s bound for various real quadratic extensions and find that our new
bound is better than Lang’s in many instances.
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1. Introduction

Let K be a finite extension of Q and let S = {ν} denote the collection of normalized absolute
values on K. Let V +

K denote the additive group of adeles over K and let K+ denote the additive
group of K viewed as a subgroup of V +

K . Let c : V +
K → R≥0 denote the content map defined

as c({aν}) =
∏

ν∈S ν(aν) for {aν} ∈ V +
K . We have the following classical result due to J. W. S.

Cassels [1](Lemma, p. 66).
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Proposition 1.1 (J. W. S. Cassels) There is a constant c > 0 depending only on the field K with the
following property: Let {aν} ∈ V +

K be an adele for which c({aν}) > c. Then there exists a non-zero
element b ∈ K+ ⊆ V +

K for which ν(b) ≤ ν(aν), ∀ν ∈ S.

Let {c} denote the set of all positive constants for which Proposition 1.1 holds. Then {c} is a
non-empty set of real numbers that is bounded below by 0. Thus inf({c}) exists. We define
cK = inf({c}) to be the content bound for K. In the case that K is a real quadratic field extension
there is a known upper bound for cK due to S. Lang [2](Chapter V, §1, Theorem 0).

Proposition 1.2 (S. Lang) Let d be a positive square-free integer and let K = Q(
√
d) be a

quadratic extension.

(i) If d ≡ 1 (mod 4), then cK ≤ (2 + 2
√
d)2,

(ii) if d ≡ 2, 3 (mod 4), then cK ≤ 16d.

In this paper we construct a new upper bound for cK in the case that K is a real quadratic extension with
class number one. We prove the following proposition.

Proposition 1.3 Let K be a real quadratic extension with class number one. Let f be a fundamental
unit of K with f > 1. Then cK ≤ f .

It is of interest to compare our new bound with Lang’s bound for various extensions with class number
one. For example, if K = Q(

√
86), then the fundamental unit f = 10405 + 1122

√
86 > 20810. Since

16 · 86 = 1376 < 20810, in this case Lang’s bound is better. On the other hand, if K = Q(
√

93), then
the fundamental unit f = 29+3

√
93

2
< 29. Since (2 + 2

√
93)2 > 453, the new bound of Proposition 1.3 is

better. Overall, our new bound is better than Lang’s in many instances.
For the convenience of the reader we begin with a review of some preliminary material (§2, §3.) In §4

we prove the formula for our new bound and in §5 we compare our new bound on cK with Lang’s bound
for some real quadratic extensions K.

2. Absolute Values

Let K be a finite extension of Q with ring of integers R. An absolute value on K is a function
η : K → R≥0 that satisfies

(i) η(x) = 0 if and only if x = 0,
(ii) η(xy) = η(x)η(y),∀x, y ∈ K,
(iii) there exists a constant M so that η(1 + x) ≤M whenever η(x) ≤ 1.

The trivial absolute value is defined as η(0) = 0 and η(x) = 1 for x 6= 0.
Two absolute values η1 and η2 on K are equivalent if there exist r ∈ R>0 so that η1(x) = (η2(x))r,

∀x ∈ K. Thus, the absolute values on K can be partitioned into equivalence classes. It is well-known
that up to equivalence the non-trivial absolute values on Q consist of

| |∞, | |2, | |3, | |5, | |7, . . . .
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Here | |∞ is the ordinary absolute value on R restricted to Q, and for a rational prime p, | |p is the p-adic
absolute value defined as |0|p = 0 and

|x|p =
1

pm

for x = (r/s)pm, (r, p) = (s, p) = 1, m ∈ Z.
Let η be an absolute value on K. Then η determines a topology on K where the basic open sets are

of the form Ux,ε, x ∈ K, ε > 0, with

Ux,ε = {y ∈ K : η(x− y) < ε}

The topology thus described is the η-topology on K. Let Kη denote the completion of K with respect
to the η-topology. In a natural way the absolute value η on K extends to a unique absolute value on Kη,
which we also denote by η, cf. [3](Chapter XII, §2). In the case K = Q, η = | |∞, the completion
Q| |∞ is the set of real numbers R. If K = Q, η = | |p, then the completion Q| |p is the field of p-adic
rationals, Qp. If L is a finite extension of the completion Kη, then the absolute value η on Kη extends
uniquely to an absolute value η∗ on L and L is complete with respect to the η∗-topology [3](Chapter XII,
Proposition 2.5).

If K is a finite extension of Q of degree N , then each absolute value on Q extends to a finite number
(≤ N ) of absolute values η onK [1](Chapter II, Theorem, p. 57). To see how the ordinary absolute value
| |∞ extends to K, let K = Q(α) for some α ∈ C, and let p(x) = irr(α; Q). Let p(x) =

∏g
i=1 pi(x)

denote the factorization of p(x) over R into irreducible polynomials. Note that g ≤ N . For each i,
1 ≤ i ≤ g, there exists an embedding λi : K → R(αi), α 7→ αi, where αi is a root of pi(x). One defines
an absolute value ηi on K by setting

ηi(x) = |λi(x)|∗∞, ∀x ∈ K

where | |∗∞ is the unique extension of | |∞ to R(αj). The collection η1, η2, . . . , ηg is the set of extensions
of | |∞ to K.

The p-adic absolute value | |p extends to K in the following manner. Let (p) = P e1
1 P

e2
2 · · ·P

eg
g be

the unique factorization of (p) into prime ideals Pi of R. Each Pi corresponds to an extension ηi of | |p
to K as follows. Put ηi(0) = 0. For r ∈ R, r 6= 0, let tr be the integer tr ≥ 0 for which (r) ⊆ P tr

i ,
(r) 6⊆ P tr+1

i . Now let x = r/s ∈ K, r 6= 0, s 6= 0. One then puts

ηi(x) =
1

p(tr−ts)/ei

The collection η1, η2, . . . , ηg is the set of extensions of | |p to K. Since g ≤ N , there are at most
N extensions.

The extensions η of | |∞ are the Archimedean absolute values on K. The extensions of η of | |p are
the non-Archimedean (or discrete) absolute values on K. Absolute values η on K obtained as extensions
constitute all of the absolute values on K (up to equivalence.)

If ηi is Archimedean and corresponds to a real embedding λi, then the local degree dηi = [R(αi) :

R] = 1, and we define the normalized absolute value to be

νi(x) = ηi(x),∀x ∈ K
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If ηi is Archimedean and corresponds to a complex embedding λi, then the local degree dηi = 2, and we
define the normalized absolute value as

νi(x) = (ηi(x))2,∀x ∈ K

If ηi is a discrete extension of | |p corresponding to the prime ideal Pi, the local degree is dηi = eifi

where fi = [RPi/PiRPi : Fp] is the residue class field degree. In this case the normalized absolute value
is given as

νi(x) = (ηi(x))eifi =

(
1

p(tr−ts)/ei

)eifi
=

1

p(tr−ts)fi

where x = r/s.
If ν is the normalized absolute value obtained from η, then the ν-topology on K is equal to the

η-topology onK since ν and η are equivalent absolute values. In what follows we let S = {ν} denote the
set of normalized absolute values on K; Kν denotes the completion of K with respect to the ν-topology.
For ν discrete, we let Rν denote the ring of integers in Kν . The absolute value ν extends to an absolute
value on Kν (also denoted by ν.) We consider Kν to be endowed with the ν-topology.

3. The Adele Ring

Let K be a finite extension of Q and let S = {ν} denote the set of normalized absolute values on K.
For each discrete ν, Rν is a compact open subset of Kν . The adele ring VK over K is the topological
ring that is the restricted product of the completions Kν with respect to the collection {Rν : ν discrete},
together with the restricted product topology on the completions Kν with respect to the collection {Rν :

ν discrete}. This means that VK consists of those vectors

{. . . , aν , . . . } ∈
∏
ν∈S

Kν

for which aν ∈ Rν for all but finitely many ν. The ring structure of VK is given component-wise:

{. . . , aν , . . . }+ {. . . , bν , . . . } = {. . . , aν + bν , . . . }

{. . . , aν , . . . } · {. . . , bν , . . . } = {. . . , aνbν , . . . }

We write {aν} for the adele {. . . , aν , . . . }. A basis for the topology on VK consists of open sets of
the form ∏

ν∈S

Uν

where Uν is open in Kν for all ν and Uν = Rν for all but finitely many ν.
Let V +

K denote the additive group of the adele ring VK and let K+ denote the additive group of K.

Proposition 3.1 Let b ∈ K+, b 6= 0. Then
∏

ν∈S ν(b) = 1.

Proof. For two proofs, see [1](Chapter II, Theorem, p. 60 and p. 66). �

Proposition 3.2 K+ embeds into V +
K through the map b 7→ {b, b, b, . . . }.
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Proof. Let b ∈ K+ and write b = a/c, where a, c ∈ R, c 6= 0. Since there are only a finite number of
prime divisors of c, c−1 ∈ Rν for all but a finite number of ν. Thus {bν} with bν = b for all ν ∈ S is an
adele of K. It is easy to show that the map b 7→ {b, b, b, . . . } is an injection of groups K+ → V +

K . �
With these preliminaries in mind, we now give two upper bounds for the content bound cK in the case

that K is a real quadratic extension with class number one.

4. Two Bounds for cK

Let d be a square-free positive integer, let K = Q(
√
d) denote the real quadratic extension with ring

of integers R. Let cK be the content bound for K. We recall some number-theoretic facts about K.
If d ≡ 1 (mod 4) then R = Z[1+

√
d

2
] and if d ≡ 2, 3 (mod 4) then R = Z[

√
d]. The discriminant

disc(R) = d if d ≡ 1 (mod 4), and disc(R) = 4d if d ≡ 2, 3 (mod 4). If d ≡ 1 (mod 4), then the only
rational primes that ramify are divisors of d. If d ≡ 2, 3 (mod 4), the rational primes that ramify are 2

and the divisors of d.
The set of normalized absolute values on K is computed as follows. The Archimedean absolute value

| |∞ on Q extends to two normalized absolute values, ρ1, ρ2, defined as follows. For a+ b
√
d ∈ K,

ρ1

(
a+ b

√
d
)

=
∣∣∣a+ b

√
d
∣∣∣
∞

and
ρ2

(
a+ b

√
d
)

=
∣∣∣a+ b

√
d
∣∣∣
∞

=
∣∣∣a− b√d∣∣∣

∞

The discrete absolute values on Q extend to K in the following manner. If p | disc(R), then (p) = P 2

for some prime ideal P of R. Thus | |p extends to one normalized absolute value ν on K. On the other
hand, if p - disc(R) and (d

p
) = −1, then (p) = P for P prime, and so, p remains prime in R. In this

case, | |p extends to one normalized absolute value ν on K. If p - disc(R) and (d
p
) = 1, then (p) = PQ

for P,Q prime and so, | |p extends to two normalized absolute values ν, ν ′.
Let S = {ν} denote the set of normalized absolute values on K, and let V +

K be the additive group of
adeles. There is a known bound for cK due to S. Lang [2].

Proposition 4.1 (S. Lang) Let d be a positive square-free integer and let K = Q(
√
d) be a

quadratic extension.

(i) If d ≡ 1 (mod 4), then cK ≤ (2 + 2
√
d)2,

(ii) if d ≡ 2, 3 (mod 4), then cK ≤ 16d.

Proof. For a proof see [2](Chapter V, §1, Theorem 0). �
To prove our formula for a new bound on cK , we need some lemmas regarding units in R. The units

group of R is
〈−1〉 × 〈h〉

where h is a fundamental unit in R. Note that h ∈ R.

Lemma 4.2 There exists a fundamental unit f in R with f > 1.
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Proof. Let h be a fundamental unit. We consider first the case h > 0. If h > 1, then we set f = h and
condition is satisfied. Else, assume that 0 < h < 1. Then hh−1 = 1 implies that h−1 > 1. Of course,
h−1 is a fundamental unit and so we set f = h−1. If h < 0, then −h > 0 is a fundamental unit and as
shown above we may take f > 1. �

Lemma 4.3 If h is a fundamental unit of R, then h = ±h−1.

Proof. Let NK/Q : K → Q be the norm map defined as

NK/Q

(
a+ b

√
d
)

=
(
a+ b

√
d
)(

a+ b
√
d
)

= a2 − b2d

for a, b ∈ Q. The norm map restricts to give a mapNK/Q : R→ Z. Now suppose that h is a fundamental
unit with inverse h−1. Then NK/Q(h) and NK/Q(h−1) are in Z. Moreover, hh−1 = 1 yields

1 = NK/Q(hh−1) = NK/Q(h)NK/Q(h−1)

Consequently, NK/Q(h) = ±1, and thus hh = ±1, or h = ±h−1. �
We now give the new bound on cK .

Proposition 4.4 Let d be a square-free positive integer, let K = Q(
√
d) and assume that K has class

number one. Let f > 1 be a fundamental unit in R. Then cK ≤ f .

Proof. We show that if {aν} is an adele in V +
K with c({aν}) ≥ f , then there exists b ∈ K+, b 6= 0, so

that ν(b) ≤ ν(aν) for all ν ∈ S. For ν discrete, let Kν denote the completion of K with respect to the
ν-topology, and let Rν denote the ring of integers in Kν . We have

aν = uνπ
mν
ν

where uν is a unit in Rν , mν ∈ Z, and where πν is a uniformizing parameter for Rν . Since {aν} is an
adele, mν ≥ 0 for all but a finite number of ν, and since

∏
ν∈S ν(aν) > 0, mν = 0 for all but a finite

number of ν. Let ν1, ν2, . . . , νk denote the collection of discrete ν for which mνi 6= 0, listed so that
ν1, ν2, . . . , νl are those νi with mνi > 0 and νl+1, νl+2, . . . , νk are the νi for which mνi < 0.

For i = 1, 2, . . . , k, let Pνi denote the ideal of R corresponding to the discrete normalized absolute
value νi. Then the ideal

P
mν1
ν1 P

mν2
ν2 · · ·Pmνl

νl

is principal and generated by an element α ∈ R. Moreover, the ideal

P
−mνl+1
νl+1 P

−mνl+2
νl+2 · · ·P−mνkνk

is principal and generated by an element β ∈ R.
Let Λ = α/β. We can assume without loss of generality that Λ > 0. For all ν discrete, ν(aν) = ν(Λ).

Thus

f ≤
∏
ν∈S

ν(aν) = ρ1(aρ1)ρ2(aρ2)
∏
ν dis.

ν(Λ) (1)
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Since f > 1, there exists an integer k for which

fk ≤ ρ1(aρ1)

Λ
< fk+1 (2)

Put b = fkΛ. Then ρ1(b) ≤ ρ1(aρ1). Now from Inequality (2),

(∣∣f ∣∣∞)k ρ1(aρ1)

Λ
<

(∣∣f ∣∣∞)k fk+1

= (| ± f−1|∞)kfkf, by Lemma 4.3

= (| ± f−1f |∞)kf

= f

So,

(∣∣f ∣∣∞)k ρ2(Λ) <
fΛ

ρ1(aρ1)
ρ2(Λ)

≤

(
ρ1(aρ1)ρ2(aρ2)

∏
ν dis.

ν(Λ)

)
Λ

ρ1(aρ1)
ρ2(Λ), by (1)

= ρ2(aρ2)ρ1(Λ)ρ2(Λ)
∏
ν dis.

ν(Λ), since ρ1(Λ) = Λ

= ρ2(aρ2)
∏
ν∈S

ν(Λ)

= ρ2(aρ2), by Proposition 3.1.

Observe that

(∣∣f ∣∣∞)k ρ2(Λ) = (ρ2(f))kρ2(Λ)

= ρ2(f
k)ρ2(Λ)

= ρ2(f
kΛ)

= ρ2(b)

thus ρ2(b) < ρ2(aρ2). For ν discrete, fk is a unit in Rν . Thus ν(b) = ν(Λ) = ν(aν) for all ν discrete.
Thus b is as required. �

5. A Comparison of Bounds

Let d be a square-free positive integer, let K = Q(
√
d) and let cK be the content bound for K.

In Table 1 below we compare Lang’s bound on cK (Proposition 4.1) with the new bound obtained in
Proposition 4.4 for all d < 50 for which K has class number one. The values of d were obtained
from [4](A003172). The values of the fundamental unit f were computed using an algorithm based
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on [5](Theorem 11.5) as implemented in [6]. We conclude that our new bound is better than Lang’s
bound in 17 out of 22 of the cases.

Of course, the fundamental unit f has been proven to be a bound for cK only in the case that K has
class number one. It would be of interest to extend Proposition 4.4 to the case whereK has class number
greater than one.

Table 1. Lang’s bound compared with the fundamental unit.

d Lang’s bound (L) new bound (f ) L vs. f

2 32 1 +
√

2 f ≈ 2.41421

3 48 2 +
√

3 f ≈ 3.73205

5 (2 + 2
√

5)2 ≈ 41.8885 1+
√

5
2

f ≈ 1.61803

6 96 5 + 2
√

6 f ≈ 9.89898

7 112 8 + 3
√

7 f ≈ 15.9373

11 176 10 + 3
√

11 f ≈ 19.9499

13 (2 + 2
√

13)2 ≈ 84.8444 3+
√

13
2

f ≈ 3.30278

14 224 15 + 4
√

14 f ≈ 29.9666

17 (2 + 2
√

17)2 ≈ 104.985 4 +
√

17 f ≈ 8.12311

19 304 170 + 39
√

19 ≈ 339.997 L = 304

21 (2 + 2
√

21)2 ≈ 124.661 5+
√

21
2

f ≈ 4.79129

22 352 197 + 42
√

22 ≈ 393.997 L = 352

23 368 24 + 5
√

23 f ≈ 47.9792

29 (2 + 2
√

29)2 ≈ 163.081 5+
√

29
2

f ≈ 5.19258

31 496 1520 + 273
√

31 ≈ 3040 L = 496

33 (2 + 2
√

33)2 ≈ 181.957 23 + 4
√

33 f ≈ 45.9783

37 (2 + 2
√

37)2 ≈ 200.662 6 +
√

37 f ≈ 12.0828

38 608 37 + 6
√

38 f ≈ 73.9865

41 (2 + 2
√

41)2 ≈ 219.225 32 + 5
√

41 f ≈ 64.0156

43 688 3482 + 531
√

43 ≈ 6964 L = 688

46 732 24335 + 3588
√

46 ≈ 48670 L = 732

47 752 48 + 7
√

47 f ≈ 95.9896
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