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Abstract: Freeness occupies an important position in the study of hyperplane arrangements. In this
paper, we conclude the freeness of three special classes of signed graphic arrangements based on the
addition–deletion theorem and Abe’s free path theory.
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1. Introduction

It is known that the Coxeter arrangements are free; see V. I. Arnold [1,2], and K.
Saito [3]. This was generalized to the case of unitary reflection groups by H. Terao [4]. T.
Józefiak and B. E. Sagan [5] explicitly constructed the basic derivations of some classes of
subarrangements of Coxeter arrangements. P. H. Edelman and V. Reiner [6] characterized
the freeness and supersolvability of subarrangements between An−1 and Bn combinatori-
ally. Stanley [7] characterized the freeness and supersolvabilitiy of graphic arrangements
associated with chordal graphs. Abe [8] also gave the characteristic polynomial of a multi-
arrangement. T. Zaslavsky [9] described that graphic and sign-symmetric arrangements
can be reduced to ordinary graph theory; arrangements that are neither graphic nor sign-
symmetric can also be handled, but they require a theory of signed graphs. At present, the
graphic arrangements associated with signed graphs are still very active areas of research,
especially the freeness of hyperplane arrangements (e.g., M. Yoshinaga [10], Ziegler [11]
and Bailey [12]). In this paper, we focus on the freeness of signed graphic arrangements.

A hyperplane arrangement A is a collection of finite hyperplanes, H, which comprise
the kernel of a linear form of variables x1, ..., xl in the vector space Kl . A graph G = (V, E)
is an ordered pair in which V = VG = {1, 2, ..., l} = [l], called the vertex set, and E = EG is
called the edge set of G, which is the collection of two-element subsets of V.

A signed graph is a tuple G = (VG, E+
G , E−

G , LG) [13] where

(1) VG is a finite set called the set of vertices;

(2) E+
G is a subset of

(
VG
2

)
called the set of positive edges;

(3) E−
G is a subset of

(
VG
2

)
called the set of negative edges;

(4) LG is a subset of VG called the set of loops.

Let G be a signed graph with l vertices, let K be a field, let V = Kl , and let x1, ..., xl
be a basis for the dual space V∗. Associated with the signed graph G, the signed graphic
arrangement A (G) in the l-dimensional vector space over K is defined as follows:

A (G) = {xi − xj = 0 | {i, j} ∈ E+
G } ∪ {xi + xj = 0 | {i, j} ∈ E−

G } ∪ {xi = 0 | {i} ∈ L}

where L is the loop set of the graph G; in this paper, we focus on the case of E−
G ∪ E+

G = E
and E−

G ∩ E+
G = ∅, and we assume that L = ∅.

Axioms 2024, 13, 208. https://doi.org/10.3390/axioms13030208 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13030208
https://doi.org/10.3390/axioms13030208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms13030208
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13030208?type=check_update&version=1


Axioms 2024, 13, 208 2 of 11

Some results for the freeness of signed graphic arrangements have been obtained.
Suyama, Michele, and Tsujie [14] characterized the freeness of signed graphic arrangements
corresponding to graphs in the case G+ ⊇ G−, and they show that when the signed graph G
with G+ ⊇ G−, the arrangement A (G) is free if and only if A (G) is divisionally free or G is
a balanced chordal. Michele and Tsujie [15] generalized this result, and they give a complete
characterization for the freeness of arrangements between Boolean arrangements and Weyl
arrangements of type Bl in terms of signed graphs. However, there are many unknown
results for the freeness of signed graphic arrangements. In this article, we characterized the
freeness of three other kinds of signed graphic arrangements. The following theorems are
our main results.

Theorem 1. For a signed graph G, denoted by V and E, the vertex set and the edge set, respectively,
T is a chordal subgraph of G, E(T) ⊂ E+

G , and E(G − T) = ∅. The signed graphic arrangement
A = A (G) is free if the vertex v ∈ V(G − T) satisfies one of the following conditions:

(1) For all vi ∈ V(T), vvi /∈ E(G), i.e., v is an isolated point.
(2) There exists only vi ∈ V(T) such that vvi ∈ E(G).
(3) If there exist two different vi, vj ∈ V(T) and vvi, vvj ∈ E−

G , then it implies vivj ∈ E+
G .

Theorem 2. If the signed graphic hyperplane arrangement A = A (G) satisfies the following
conditions, then it is free.

(1) The graph G = T ∪ Q, T is a chordal graph, and E(T) ⊂ E+
G , Q satisfies V(Q) ∩ V(T) =

{v1, v2} and E(Q) ∩ E(T) = {v1v2}.
(2) The graph Q is switching equivalent to K′

4 or K′
4\e, where e is an edge of K′

4.

Theorem 3. For a graph G = T ∪ U = (VG, E+
G , E−

G ), T is a chordal subgraph of G, E(T) ⊂ E+
G ,

E(T) ∩ E(U) = {v1v2}, and the subgraph U is a cycle containing an odd number of negative
edges. Then, the signed graphic hyperplane arrangement A = A (G) is free.

The organization of this article is as follows. In Section 2, we review some basic
definitions and results of the hyperplane arrangement, including the combinatorial and
algebraic properties, which are helpful for studying freeness. Some related examples
and theorems are also shown in this section. In Section 3, we mainly characterize the
freeness of four signed graphic arrangements, A (K2

3), A (K1
3), A (K′

4), and A (K′
4\e); their

corresponding graphs are the subgraphs in our main theorems. In Section 4, we focus on
proving the main theorems. In Section 5, we raise some questions about the freeness of
signed graphic arrangements for further research.

2. Preliminaries

In this section, we briefly review some basic definitions and results from [16].
Let A be a finite hyperplane arrangement denoted by

L(A ) = {B | B =
⋂

H∈A

H ̸= ∅}

the intersection partial ordered set of A .
An arrangement A is central if the intersection of all hyperplanes is not empty, and

L = L(A ) is a geometric lattice for central arrangements. We only discuss the central case
in this paper since every signed graphic arrangement contains the origin as its center.

For an arrangement A , the meet of X, Y ∈ L(A ) is defined by X ∧ Y =
⋂{Z ∈ L |

Z ⊇ X ∪ Y}, and their join is defined by X ∨ Y = X ∪ Y. A pair (X, Y) ∈ L × L is called a
modular pair if for all Z ≤ Y, one has Z ∨ (X ∧ Y) = (Z ∧ X) ∨ Y. A pair (X, Y) ∈ L × L
is a modular pair if and only if r(X) + r(Y) = r(X ∨ Y) + r(X ∧ Y), where r is the rank
function of L. An element X is called a modular element if it forms a modular pair with
each Y ∈ L.
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For an X ∈ L(A ), the localization of A at X ∈ A is the subarrangement

AX := {H ∈ A | H ⊇ X},

and the restriction A X is the arrangement

A X = {X ∩ H : H ∈ A \AX , H ∩ X ̸= ∅}.

For a given hyperplane H ∈ A , we have a triple (A , A ′, A ′′) of arrangements where
A ′ = A − {H} and A ′′ = A H .

The characteristic polynomial χ(A , t) of an arrangement A is defined by

χ(A , t) = ∑
X∈L(A )

µ(X)tdim(X)

where µ(X) denotes the Möbius function of L(A ), defined recursively by

µ(Kl) := 1, µ(X) := − ∑
Y<X

µ(Y).

For a vector space V, S = S(V∗) is the symmetric algebra of the dual space V∗. Given
a basis of V∗, then S is isomorphic to a polynomial ring K[x1, ..., xl ]. Denoted by Der(S),
the module of derivations of S is

Der(S) := {θ : S → S | θ is K−linear, θ( f g) = θ( f )g + f θ(g) for f , g ∈ S}.

Let A be an arrangement in V with the defining polynomial

Q(A ) = ∏
H∈A

αH

where H = ker(αH). We define D(A ) as a module over the polynomial ring S as follows

D(A ) = D(Q(A )) = {δ ∈ Der(S) | δ(αH) ⊂ αHS, ∀H ∈ A }.

If D(A ) is a free S-module of rank l, we call the arrangement A a free arrangement.
It is known that if A is free, there exists a homogeneous basis η1, ..., ηl for D(A ) satisfying
the following property: for each ηi = fij

∂
∂xj

where fij is zero or a homogeneous polynomial
of the degree bj, the degree sequence b1, ..., bl is called the exponent of A and is denoted by
exp A = (b1, ..., bl).

According to Terao’s factorization theorem [17], if A is a central and free arrangement
with exp A = (b1, ..., bl), then its characteristic polynomial χ(A , t) can be factorable as
follows:

χ(A , t) = (t − b1)(t − b2) · · · (t − bl).

This theorem can help us to distinguish whether some arrangements are free or not; in
particular, the arrangement is not free if its characteristic polynomial is not factorable.

Example 1. Let Kn be a complete graph with n vertices; for any two vertices joined by an edge,
the corresponding arrangement A (Kn) = {xi − xj = 0 | 1 ≤ i < j ≤ n} is called the braid
arrangement, and it is free. The intersection of the partially ordered set L(A (Kn)) is isomorphic to
the partition lattice, and its characteristic polynomial can be calculated through its Möbius function;
it is factorable as follows:

χ(A (Kn), t) = t(t − 1)(t − 2) · · · (t − n + 1).

People have found many other ways to study the freeness of a hyperplane arrangement.
We will introduce the corresponding definitions and theorems in the following section.
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An induction table between two free arrangements A and B is a sequence of free
arrangements.

A = A0 ≺ A1 ≺ · · · ≺ Ak = B.

If an l-arrangement A has a maximal chain of modular elements, we then call A
supersolvable; see [6].

An equivalent definition of the modular coatom is given in [18]. A subarrangement
A ′ is a modular coatom of an arrangement A if

(1) For all hyperplane pairs H1, H2 ∈ A −A ′, there always exists a hyperplane H3 ∈ A ′

such that H1 ∩ H2 ⊂ H3.
(2) Rank A ′ = rank A − 1.

An arrangement is supersolvable if A has an M-chain

∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ar = A

of subarrangements in which each Ai−1 is a modular coatom of Ai for 1 ≤ i ≤ r.
The following statements are known.

(1) If A is supersolvable, then A is free [16].
(2) If A is an arrangement associated with a chordal graph, then A is supersolvable [6].

We now give some properties of a signed graph [13].
For a given signed graph G = (VG, E+

G , E−
G , LG), the sign function of G is the function

sgn : E+
G ∪ E−

G ∪ LG → {+,−}, defined by

sgn(e) =

{
+, e ∈ E+

G ;
−, e ∈ E−

G ∪ LG.

For a given signed graph G and a map σ : VG → {+,−}, we find a signed graph G′

which has the same underlying graph and is equivalent to a permutation on the coordinates
of G. If e = {i, j} ∈ EG, then sgnG′(e) = σ(i)sgnG(e)σ(j). We call G′ the switching of G by
σ and denote it as Gσ.

If there exists a switching function σ such that G2 = Gσ
1 , we say they are switching

equivalent and write G1 ∼ G2.
Since switching is an equivalent relationship, switching operations classify signed

graphs into different classes. In this paper, our discussion is always based on switching
equivalence because the degrees of freeness of two switching-equivalent arrangements
are same. For example, the following two graphs, K4 in Figure 1 and Kσ

4 in Figure 2, are
switching equivalent, while the corresponding arrangements A (K4) and A (Kσ

4 ) are both
free with the same factorable characteristic polynomials.

χ(A (K4), t) = χ(A (Kσ
4 ), t) = t(t − 1)(t − 2)(t − 3).

1 2

3 4

Figure 1. The graph K4.



Axioms 2024, 13, 208 5 of 11

1 2

3 4

Figure 2. The signed graph Kσ
4 .

The following theorems are used frequently in this paper. Abe and Yamaguchi gave a
theorem on the free path [19].

Theorem 4. Let A ⊃ {H1, H2}, Ai := A \{Hi} (i = 1, 2) and let B := A \{H1, H2}. If A
and B are both free, then at least one of A1 and A2 is free.

Orlik and Terao gave the theorems as follows in [16].

Theorem 5 (addition). Let (A , A ′, A ′′) be a triple of arrangements. If A ′ and A ′′ are both free
with exp A ′ = (b1, ..., bl−1, bl − 1) and exp A ′′ = (b1, ..., bl−1), i.e., exp A ′′ ⊂ exp A ′, then
A is free with exp A = (b1, ..., bl−1, bl).

Theorem 6 (deletion). Let (A , A ′, A ′′) be a triple of arrangements. If A and A ′′ are both free
with exp A = (b1, ..., bl−1, bl) and exp A ′′ = (b1, ..., bl−1), i.e., exp A ′′ ⊂ exp A , then A ′ is
free with exp A ′ = (b1, ..., bl−1, bl − 1).

Theorem 7 (addition–deletion). Let (A , A ′, A ′′) be a triple. Any two of the following state-
ments imply the third.

(1) A is free with exp A = {b1, ..., bl−1, bl}.
(2) A ′ is free with exp A ′ = {b1, ..., bl−1, bl − 1}.
(3) A ′′ is free with exp A ′′ = {b1, ..., bl−1}.

3. Some Lemmas

In this section, we will give some lemmas regarding the signed graphic arrangements
(see [9,20]) which help us prove our main results.

Lemma 1. For the signed graph K2
3 shown in Figure 3, its corresponding signed graphic hyperplane

arrangement A (K2
3) is free.

1 2

3

Figure 3. The signed graph K2
3 .

Proof. The signed graphic hyperplane arrangement A (K2
3) has a modular coatom A ′(K3)

which is associated with Figure 4, and A ′(K3) is a braid arrangement and is supersolvable.
Thus, the signed graphic hyperplane arrangement A (K2

3) definitely is a supersolvable
arrangement, and it is free.
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1 2

3

Figure 4. The graph K3.

Remark 1. To show Terao’s factorization theorem, we will calculate the characteristic polynomial of
A (K2

3) through its Hasse diagram of the lattice L(A (K2
3)) in Figure 5 below.

{H1, H2, H3, H4, H5}

{H1, H2, H3} {H1, H4, H5} {H2, H4} {H2, H5} {H3, H4} {H3, H5}

{H1} {H2} {H3} {H4} {H5}

K3

Figure 5. The Hasse diagram of the lattice L(A (K2
3)).

The hyperplanes in A (K2
3) are

H1 : x1 − x2 = 0
H2 : x2 − x3 = 0
H3 : x3 − x1 = 0
H4 : x1 + x3 = 0
H5 : x2 + x3 = 0.

From the Hasse diagram, we can obtain the Möbius function of every element in L(A (K2
3)).

For example, the element K3 with a rank of 0 is 1, while µ(Hi) = −1 for 1 ≤ i ≤ 5,
µ(H1, H2, H3) = 2, µ(H2, H4) = 1. Finally, we can obtain its characteristic polynomial,

χ(A (K2
3), t) = (t − 1)(t − 2)2,

which is factorable.

Lemma 2. For the signed graph K1
3 shown in Figure 6, the corresponding signed graphic hyperplane

arrangement A (K1
3) is free and supersolvable.

1 2

3

Figure 6. The signed graph K1
3 .
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Proof. According to Theorem 4 and Lemma 1, the arrangement A (K1
3) is in the free path

A (K3) ⊂ A (K1
3) ⊂ A (K2

3); the freeness of A (K1
3) is obvious. And we can find a modular

coatom A (K1
2) (Figure 7).

1 2

Figure 7. The signed graph K1
2 .

Therefore we have an M-chain of K1
3:

∅ = A (K1
2) ⊂ A (K1

3).

So, A (K1
3) is supersolvable.

Lemma 3. For the signed graph K′
4 shown in Figure 8, the hyperplane arrangement A (K′

4) is free.

1 2

3 4

Figure 8. The signed graph K′
4.

Proof. The hyperplane arrangement A (K′
4) is

H1 : x1 − x2 = 0
H2 : x2 − x4 = 0
H3 : x3 + x4 = 0
H4 : x3 − x1 = 0
H5 : x1 − x4 = 0
H6 : x2 − x3 = 0

For hyperplane H3 : x3 + x4 = 0 and A ′(G1) = A (K′
4)− H3 (Figure 9), the restriction

A ′′(K2
3) = A (K′

4)
H3 (which is isomorphic to A (K2

3) in Figure 10) is

H1 : x1 − x2 = 0
H2 : x2 − x′3 = 0
H3 : x1 − x′3 = 0
H4 : x2 + x′3 = 0
H5 : x1 + x′3 = 0

1 2

3 4

Figure 9. The graph G1.
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1 2

3’

Figure 10. The signed graph K2
3 .

Since A ′(G1) is an arrangement associated with a chordal graph, the triple (A , A ′, A ′′)
satisfies the conditions of the addition–deletion theorem, so A (K′

4) is free according to the
addition–deletion theorem.

Lemma 4. For the signed graph K′
4\e shown in Figure 11, the corresponding signed graphic

hyperplane arrangement A (K′
4\e) is free.

1 2

3 4

Figure 11. The signed graph K′
4\e.

Proof. The hyperplane arrangement A (K′
4\e) is

H1 : x1 − x2 = 0
H2 : x2 − x4 = 0
H3 : x3 + x4 = 0
H4 : x3 − x1 = 0
H5 : x1 − x4 = 0

For hyperplane H3 : x3 + x4 = 0 and A ′(G2) = A (K′
4\e)− H3 (Figure 12), the restric-

tion A ′′(K1
3) = A (K′

4\e)H3 (which is isomorphic to A (K1
3) in Figure 5) is

H1 : x1 − x2 = 0
H2 : x2 − x′3 = 0
H3 : x1 − x′3 = 0
H4 : x1 + x′3 = 0

1 2

3 4

Figure 12. The graph G2.

Since A ′(G2) is an arrangement associated with a chordal graph, the triple (A , A ′, A ′′)
satisfies the conditions of the addition–deletion theorem, so A (K′

4\e) is free according to
the addition–deletion theorem.

4. Proof of Main Results

In this section, we prove our main results.
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Proof of Theorem 1. If the vertex v ∈ V(G − T) satisfies conditions (1) and (2), the graph
G is obviously switching equivalent to a chordal graph, so we only need to prove (3).

Firstly, we prove the situation in which there is only one vertex v ∈ V(G − T) that
satisfies condition (3). Assume the hyperplanes H1, H2 correspond to the edges vvi, vvj,
respectively; then, H1 ∩ H2 are contained in the hyperplane H3 : xi − xj = 0 of A . Let
Ar−1 = A \{H1, H2}; then, Ar−1 is a modular coatom of A , and we can obtain a modular
coatom chain according to the same method.

A0 ⊂ A1 ⊂ · · · ⊂ Ar = A .

We denote by A0 the arrangement associated with G0 in which G0 has two cases.
CASE 1. If the number of edges incident to the vertex v is even, we can finally obtain an
isolated vertex of G0; then, G0 is a chordal graph. Therefore, A0 is supersolvable, and A is
also supersolvable and free.
CASE 2. If the number of edges incident to the vertex v is odd, then there only exists a
vertex u ∈ V(G0) such that {vu} ∈ E(G0). In this case, G0 is switching equivalent to a
chordal graph, so A0 is supersolvable. Therefore, A is also supersolvable and free.

If there are more than one vertices in G − T satisfying condition (3), we can prove the
freeness of A by induction using the number of such vertices in G − T.

Proof of Theorem 2. According to Theorem 7, for the hyperplane H associated with the
negative edge, the deletion A ′(Q) = A (Q) − H is as same as A (G1) or A (G2). The
restriction A ′′(Q) = A H is the same as A (K2

3) or A (K1
3).

The deletion arrangement A ′(G) = A (G − eH) is obviously associated with a chordal
graph; thus, A ′(G) = A (G)− H is free. Next, we prove the freeness of A ′′(G) = A (G)H .
According to Lemmas 1 and 2, A ′′(Q) is supersolvable, so we can obtain a modular coatom
A (Q∗) of A ′′(Q) by deleting two hyperplanes in A ′′(Q) associated with two positive
edges. For the the arrangement A ′′(G), if we delete the same two hyperplanes, we can
then obtain a modular coatom A (G∗) associated with the graph G∗, which is switching
equivalent to a chordal graph; then, A (G∗) is supersolvable., and we can obtain an M-chain
of A ′′(G),

∅ ⊂ · · · ⊂ A (G∗) ⊂ A ′′(G).

So, A ′′(G) is supersolvable and free, and A is free by Theorem 7.

Next we will prove Theorem 3 through the signed graph Σ1 (Figure 13) containing a
cycle with 5 vertices.

v1 v2

v0

v3

v4

vn

Figure 13. The signed graph Σ1, for n = 5.

Proof of Theorem 3. Assume VG = {v0, v1, ..., vn}. Firstly, we consider n = 5 and T to be a
triangle and prove that the arrangement A (Σ1) associated with the graph Σ1 in Figure 13
is free. For the hyperplane H that is associated with one negative edge, the deletion
A ′ = A (Σ1)− H is always associated with a chordal graph, and A (Σ2) is a restriction of
A (Σ1) in which Σ2 in Figure 14 is a restriction of the graph Σ1. According to Theorem 7,
to prove that A (Σ2) is free, it suffices to prove that A (Σ1) is free. Similarly, for another
hyperplane H′ that is associated with the negative edge, the deletion A (Σ2)− H is always
associated with a chordal graph, and A (K′

4\e) is a restriction of A (Σ2) in which K′
4\e
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is a restriction of the graph Σ2. According to Lemma 4, the signed graphic hyperplane
arrangement A (Σ1) is free.

Figure 14. The signed graph Σ2, for n = 4.

When n ≥ 6 and T is a triangle, we can also conclude the freeness of A by the same
deletions and restrictions. If T is not a triangle, then after the same process, the final
arrangement we need to prove satisfies the condition of Theorem 2.

The characteristic polynomial of a free arrangement is factorable. When VG =
{v0, v1, ..., vn} and T is a triangle, we calculate the characteristic polynomial of A , which is
also factorable

χ(A ) = (2t + 1)(t + 1)n.

5. Discussion

Since K. Saito [3] studied logarithmic vector fields and differential forms of hyper-
surfaces and defined their freeness in 1980, research on freeness has played an important
role connecting the algebra, topology, combinatorics, and geometry of hyperplane arrange-
ments. Although H. Terao, Abe, and others have obtained a large number of significant
results, there are still many unknown facts. It is very fundamental and important to
construct free arrangements.

In this article, we construct three kinds of signed graphic arrangements which can
generalize the results on simple graphic arrangements. However, the necessary condition
for the freeness of these signed graphic arrangements is still unknown. We conjecture
that the necessary condition is related to the sufficient conditions in our theorems. In
order to further study the algebraic and topological properties of the free signed graphic
arrangements in this article, it is necessary but difficult to construct the basis of a derivation
module D(A ).
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