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1. Introduction

In 1942, Jackson [1,2] extended the concept of summation theorems over pair-products
of functions such as Bessel functions [3] (p. 992 No. 8.53) to sums of pair-products of
the broader class of Generalized Hypergeometric functions. Though his focus was on
hypergeometric functions of two variables (x, y), as a special case, he replaced y = x4”,
resulting in »F; functions expanded as pairs of »F; functions (his Equation (1.55)) and 1F;
functions (Whittaker functions) expanded as pairs of 1F; functions (his Equation (I1.69)).
In 1962, Ragab [4] found six such expressions involving Slater’s [5] generalization of
Whittaker functions to ,F, functions having p > 1, all but one of which have x? rather than
x as the argument in the sum, such as

b 10 1c¢ 1c «? = (—1)x*(a);(b);(c —b),
F - -, =, -, = e =
2 3(2 +2’2’”+2’2+2’2’16> EO r1(2a),(C)ar(c+ 7 — 1),
X 2F2(a+r,b+r;2a+r,c+2r;x)1Fl(b+r;c+2r;—g). (1)

In addition to the sums that were ;F3 hypergeometric functions for many of his results,
he expressed a 4Fs function as a sum of products of »F, functions. Verma [6] rederived
Jackson’s and some of Ragab’s results in 1964 and added expansions of 3F, functions as a
product of a ,F; function with another 3F, function. He also expressed a 5F5 generalized
Whittaker function as a sum of products of »F, functions.

If one excludes pair-products of generalized hypergeometric functions in the summands,
one finds a very active modern field of study of summations theorems. To cite just a few
of many, Choi, Milovanovi and Rathie [7] express Kampé de Fériet functions as certain
finite sums, as do Wang and Chen [8]. Wang [9] expresses Kampé de Fériet functions
and various related functions as infinite sums, as does Yakubovich [10] for generalized
hypergeometric functions. Liu and Wang [11] reduce Kampé de Fériet functions to Appell
series and generalized hypergeometric functions via generalizations of classical summation
theorems due to Kummer, Gauss, and Bailey, with extensions by Choi and Rathie [12].
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Awad et al. [13] give an excellent summary of those classical summation theorems for
generalized hypergeometric functions and provide extensions.

The present paper, in contrast, derives infinite summation theorems for 3F4 hyperge-
ometric functions in terms of pair-products of ,F; functions. In special cases these reduce
to 2F3 functions expanded in sums of pair products of |F, functions. While interesting
in itself, this result has a specific application in calculating the response of the atoms to
laser stimulation in the Strong Field Approximation (SFA) [14-19]. Whereas perturbation
expansions will not converge if the applied laser field is sufficiently large, the Strong Field
Approximation (SFA) is an analytical approximation that is non-perturbative. Keating [20]
applied it specifically to the production of the positive antihydrogen ion.

As a sketch of the difference between perturbation expansions and the SFA, consider
the exact transition amplitude for a one-electron system,

i *
Ty = (¥sHinlgi) = =5 [ [ €500 D Hugl” (x, )8 xat, @
where ) X
_ Wy Ze
Ho= 2m (47teq)r @)

is the time-independent Hamiltonian describing the hydrogenic atom or ion in the absence
of the radiation field (or Coulomb interaction for particle scattering problems), and

Hig(t) = —ihGA-V 4 A% = SA p+ £A7 )

m

is the perturbing Hamiltonian describing the interaction of the hydrogenic atom with the

radiation field. Since the unperturbed wave functions 4)1»(0) (x, t) form a complete set, one
may expand the exact final state ¥ ¢(x, t) in them and produce a perturbation series,

1
T = <<Pf|Hint|<Pi> + <<Pf|Hint E Hint|<l>i> 4+, )

— Hy +ie
where in the second-order term one would normally insert a sum over the bound states #,
and integral over the continuum states k, of a complete set of intermediate states |¢,) (¢ |-
For strong laser fields, the series (5) will not converge.

In the Strong Field Approximation, one says that the photodetached state ¥ f(t) is
fully detached: it is so far from the atomic nucleus (and any other bound electrons) so as
to make negligible the effects of the inter-particle interactions compared to the effects of a
strong laser field. One may therefore approximate Y ¢() by the Volkov solution [21] for a
“free” particle in a field,

Yr(x t) = x(xt) = exp(—ik - x)exp {;l <Ekt + /Hint(t’)dt’ﬂ (6)
so that the T-matrix is
Tfi ~ *% / / X" (x,t)Hmt‘I’fO)(x, Hd3xdt . (7)

This is the (zeroth order) Strong Field Approximation.
As one solves for this T-matrix, the Volkov solution generates terms

exp [;1 /Hint(t’)dt'} = explk - wg sin(wt) + kBosin(2wt) + 2kBowt], (8)

where & is called the “quiver” (motion) of the electron in the laser field (not the fine
structure constant) and By is called the “shiver”. One uses the generalized Bessel function
Jn(x,y) in what follows because its integral representation
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Jn(x,y) = % /_ﬁ expli(xsin(0) + ysin(260) — n)]do 9)

is a convenient form in which to represent the exponential in (8).

The next section maps Keating’s terminology onto the present problem. The third
section lays out how one would perform angular integrals over these generalized Bessel
functions using a series expansion, with a subsection that shows how to perform these
angular integrals without the need for a series expansion. Comparison of these two
approaches gives the desired summation theorem. The fourth section shows how to obtain
a summation theorem for a closely related problem.

2. The Transition Amplitude

The SFA transition amplitudes involve integrals over differential angles, in Keat-
ing’s notation,

Zy (kao, - / (k- a0, — 3 )40 (10)

of the generalized Bessel functlon, introduced above, which also has a series expansion

Z Jn— 2h ]h ) (11)

h=—c0

We extend Keating’s function somewhat with an additional cosine-squared factor

=5 (kao, —g) - / cos? (0)2 (k- ao, —%)dﬂ (12)

whose power 2p can be set to 0 to reproduce Keating’s result or retained with higher integers.
This integral can be solved analytically by expanding cos”(8)], (k- &y, —3) in a
Laplace series, that is in terms of spherical harmonics [22]

cos? (0)] (k- @0, =2 ) = EFP" kg, —2)Yi(6,9), (13)
where, in a parallel notation to Keating’s,

z : z .
Fp (kao, =) = / cos? (0)] (k - ao, 7) Y}, (6,¢)dQ). (14)
With these definitions,

= kao—3) [ cos(8) 2 (c a0, —3)d0
J X By (ke =5)Yi0n (8, @) Lo Fype (Ko, —3)Y7,,(0,9)4Q o)
Yim Fﬁ: (kao, =3)) Lirmy F r(k‘"Of 5)(51’15711 "m
Zlm Fﬁ: (kaor _%))Flm (kﬂé(), %)

Using the definition of the Generalized Bessel function, we find

Fl(hao,—2) = Y. [cos (@)l sV (000 J(~2) . (16)

h=—o0

2

In the derivation leading to the ;F; functions that are the focus of this work, we wish
to avoid the infinities that come from negative indices of the Bessel functions that we will

integrate over. So, using J = { (1) } forn = { :vii } and [3] (p. 979 No. 8.472.5)

J_n(z) = (=1)NJx(z) [N is a natural number], (17)

this becomes
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pi’l
Flm (kao’ 2

Jpz]i” kag)

h=—c0  h=(n—0)/2+1

(n—0)/2 0
_ ( Z + Z )fCOSP(G)]nzh(k'WO)Y%(GI‘P)dQ]h(_é)

- 2 fcosp(e)]n-i-z]'(k‘lXo)Yl’%(G,q‘))dQ ]—j(_%)
j=(n=06)/2

e}

+ Y [ cost ()], aj(k- @)Y, (6,4)d J;(—5)

j=(n— 5)/2+1

= 2 fCOSp ]2]+n(k NO)YZ (G'CP)dQ]*]'(_%)
j=(m—-06)/2

[0 9)

+ (=D)"F Y [cosP(0) (k- w0) Y}, (6,)dQ i (—3) .

j=(n—06)/2+1
Then
2h
F" (kaog, —3) = 2 TP (ko) Ju(—5)

h—foo

- I k)] (-3)

j= nz)/2

oy Y A " (kao) J;(— %),

j=(n—8)/2+1

where we have extended Keating’s definition to

Jpz]in(kﬂé ) = /Cosp(e)fzjﬂm(k'’XO)YZ*;H(Q’('b)dQ

(18)

(19)

(20)

We pause to note that if p = 0, this is simply the Laplace series of a conventional Bessel
function with integer indices Jpj+, (k- &g) = Jpj+,(kag cos#), whose derivation we have

not seen in the literature prior to Keating’s.

Since this function is independent of the azimuthal angle, we can reduce the Laplace
series to a sum over Legendre polynomials. Using the definition of the spherical harmonics

Yi(0.9) = (-1 /212

—~

I—m)!
[+ m)!

Py(cos@)e ™,

—~

we obtain

21+1 (I —m)!
(I+m)!

/cosl" (0)J2j£n (katg cos 0) Py (cos 0)d(cos G)dﬂ/e*i’”‘l’d(p

" ko) = (1) 2 I T o,

where we again extend Keating’s defined function to be

. 7T
ij/ZJi”(k,XO) = 27'[/ cos? (0) J2j+n (kag cos 8) P (cos 8)d(cos 6) .
-7

Let x = cos(#), then

) 1
k71;7,2]i7’l(k060) =27 ‘/71 xp]2jin(ka0x)Pl(x)dx .

(21)

(22)

(23)

(24)

(25)
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3. The Fourier-Legendre Series of a Bessel Function of the First Kind

In a prior paper [23], we dropped the complicated indices to cleanly express the Bessel
function in a series of Legendre polynomials, on the assumption [24] that the series

= ¥ ain (k)P (x) (26)
L=0

converges uniformly. (Let D be a region in which the above series converges for each value
of x. Then the series can be said to converge uniformly in D if, for every & > 0, there exists
anumber N’(¢) such that, for n > N’ it follows that

In (kx) 2 arn(k Z arn (k

L=n+1

<e (27)

for all x in D). The coefficients are given by the orthogonality of the Legendre polynomials,

2L+ 1
ﬂLN(k) =

1
[ Intix) P (x)d (28)
Following Keating’s lead, but without the complicated indices, we showed that
L—1;L-N <( i) kHZM)
aLN(k) = \/7(2L + 1)2 ZM 0 2L+2M+1 er L+M+3 ))

« (1+(_1)L+2M+N)(1 L+2 )

_ A2 L2 (204 1)kLiL—N (1 +2((LI§€A+;]\I))( )
- r(3(2L+3)) 2 -

x 2F3<2+2,2+1L+77——+1 + N1
= /m27272(2L + 1)kLil- N(1+(—1)L+N)F(L+1)
P 1L N L, N ._ K
Bk +LE+uL+ - Y41+ ¥ +1-8),

X

where the final two steps are new with the prior work [23]. Whenever N > 1 is an integer
larger than L, and of the same parity, the conventional form of the hypergeometric function
in the second expression—with its prefactors—gives indeterminacies (ratios of infinities)
in computation. For this reason, we have included the final form involving regularized
hypergeometric functions [25]

2F3(ﬂ1, an; bl/ b2/ b3}Z) = F(bl)r(bZ)r(b3) 2?3(&1,&2,’ bl/ bZ/ b3/ Z) (30)

and cancelled the I'(b;) with gamma functions in the denominators of the prefactors that
would otherwise each give infinities in this case.

For the special cases of N = 0 and 1 the order of the hypergeometric functions is
reduced since the parameters a, = b3 and a; = by, resp., giving

ZL 2L-2
aro(k) = f&@ﬁ”aﬂnﬂy
— Jmily2L- 2(2L+1)kL1“(7+1) (1+ (=DH) (D)
X 1?2(%"‘2,2"‘1 L+2/_]§TZ)/

and
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(k) = SRS (D) )
x B(E+L5+30+5-5) )
= it 2L+ R (§ 1) (14 (1))
X 15( +1,§+2,L+——ﬁ).

In each special case, the first form involving a hypergeometric function has no indetermina-
cies, but we include the regularized hypergeometric function version for completeness.
We now have everything in place to prove the following theorem.

Theorem 1. There exists a summation theorem for 3F, hypergeometric functions of the follow-

ing form:
Fa(§+1 558 +1aa—b+1biz) =al(B)l(a—b+1)
. 7T2(2L+1)i—2a+4L+22u—8L—7<( 1)b+L- 1+1) <( 1)7- b+L+1)
X
2
=0r(L+3)r(3eL+3))T(-5+ 5+ §>r(? +Lq l)r(f —§+E+1) (33)
I'(2L+2)?2 a7
% r(—§(+§+)%+1)z i 21:3(2_|'2’2_|'1 2+ +2'2+ +2'L+2r4)
x B(E+LE+1u5- b+ b1+ b+ b4+ 55),
wherea =1,3,5,7---andb=1,2,3,---,a
Proof of Theorem 1. Stepping outward from (29) in the string of definitions, with k — kay,
0.2j+ {a 0,2j+
.,]] ) n( O) _ (_1)1 21+1 (l+$ "—71 ] n(ktxo)5m0,
B o\ MHE‘/ZZ*Z’(M )l (IFn)—2j B 2'+(1ii’l) i
= DY E T e (0P 1) () 1 2p) (34)
x oB(b+ b+t i+ (5FE) +1i+ (F44) +1 1)
so that

FO? (kavg, —3) = 2 P ha)] (<3 + (<) Y 3 (ko) Ji(~3)

j=(n=8)/2 j=(n—08)/2+1
_ v 20+1 7T3/22 20 kao )—2j )2+ ) |
_]':(r;)/Z( v F 21+3 ( o +1)(%((l,n>,2]-))
35
< J(=3)2R(4 +§/§+1l+2,—1 +(4- )+1]+( +4) +1;- 1) (35)
> / L(k (I4n
+ (_1)n Z (_1>l\/ 2411—;1 w2 (2( o) £ )+ (( 1)2]+(l ") + 1)(1((“,[1)72]'))
j=(n=06)/2+1
x Ji(=5)oB(d+ b b+ i+ i+ (5+4) 1+ (- 1) +L-1ad),
and finally
2 (kao, —3) = z,o 0 (g, —2) FO (katg, — )
- Lo e L J(-8-u(-3)
=—(n-4)/2
3/22 21 k I n) 2+(l+ ) I
x (2z+3 ( 1) PO 1) (g ap) (36)
7-[3/2 (ktx())” 2M—n et I
% T(1(2143)) (( 1) n+1>(%(l—2M—n))
x oB(f+ b h+ni4 3+ (5-1) 1+ (b +1) +L-1a3)

1
2
x 2F3(§+%,§+1;l+%,§—M BH+1L L+ M+ +1;,-1K%3))
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A More Direct Approach

On the other hand, we can transform from Bessel to hypergeometric functions using [26]
(p. 220 No. 2.21.2.11), [27] (p. 212 No. 6.2.7.1), or [28]

(3) oR (v+1-%)
I'(v+1)

Ju(z) = (37)

and combine pairs using [29,30] or [27] (p. 228 No. 6.4.1.26)

b ¢ 1b ¢
oFiGb;z) oF1 (56 2) = 2F3<2+2 — 2,2+2,b,c,b+c—1,4z> (38)

so that [27] (p. 216 No. 6.2.7.39)

2Tk pov 1y v . s
Ju(2)]v(z) = r(y+1)r(v+1)21:3(2+2+2,2+2+1,V+1,1/+1,;l+1/+1,—z ) (39)

Then

© © 9=2j=2M=20 (jcp, 9))2+2M+2n
J7(kag cos(6), —3) = (25)/2 N (25)/2 r(zj+n(+1§rc(351\(/fi)n+1) J=i(=3)]-m(=3)
j==(n— =—(n—

X 2F3(j+M+n+ %,j+M+n+1;2j+n+1,2M+n+1/2]'+2M+2”+1/'—k2“02“’52(9>)
" oo s 272=2M (kg cos(6))HT2M
! u ( %/2+1 M (Z 5)/2 ra sy i (- 2)J-m(=32)
j=(n— ==(n—
x 2F3(j+M+ 2T MAL2j+2M 41,2 —n+1,2M +n + 1?—"2“’52(9)“3)
n © ad 272-2M () cos(6) ) I M z z )
T (=" (1—-0)/2 M=(n—0)/2+1 rarrmnrem ey )i (- 2)Im(=3)
j=—(n— =(n-
x 2B (j+ M+, + M+ 1,2 +2M+1,2M — 1 +1,2j + n +1; =K cos?(6)a3)

[e.9) [0.9)

2=2j=2M+2n (4 9))2i+2M—2n
e g (—2) T (-3)

j=(n—=0)/2+1 M=(n—95)/2+1
2B (j+ M=t 4, j+ M= n+1;2/42M =20 +1,2j = n+1,2M = n + 1, ~k? cos? (6)a3) .

X

The integral we wish to perform is
=P A - 20012 (k- o — 2
2 (ktxo, 2) /cos (0)]; (k xg, 2)dQ
s
- 27r/77rCOSZP(G)]%(kaocos(G),—%)d(cos(@)) 41)

= 2n/_11f<u2)du :471/01f<u2)du zzn/()lf(y)yflmdy.

We can then use [26] (p. 334 No. 2.22.2.1)

a
/o v a—y)P Ty (an, e ap, by, by —wy) dy

I[(a)T(B)a*+P-1
= ()1“(28—?—/3) p+1Fq+1(a1, o, p, a5y, by, + B —aw) (42)

[R(a) >0AR(B) >0Aa>0]
with o = {j+M+n+1,j+M+1,j+M+1, j+M—n+1} + p for the four terms,

respectively, and with 2 = 1 and B = 1 for each of the four.
Then
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00 o0 272]‘72M72n+1(ka0)2j+2M+2n z z
= 2 ) )y (2'+2M+2n+1)F(2'+n+1)F(2M+n+1)]j(_E)LM(_E)
j=—(n-0)/2 M=—(n-0)/2\"] ]
X 3F4<]+M+Tl+ /]+M+7’l+ ,]—|—M—|—7’l+1
2j+n+1,j+M+n+;,2M+n+1,2j+2M+2n+1;—k2a%>
00 =) 2—2]'—2M+1(k0(0)2]'+2M
n . —_
+ 27(=1) )3 X (2j+2M+1)F(2j—n+1)F(2M+n+1)]J( )] M( 2)

j=(n—=6)/241 M=—(n—46)/

X 3F4<]+M+ M+ ,]+M+1]+M+32]+2M+12]—n+12M+n+1—k2 )

i ) 272]72M+l (ka0)2]+2M )] (_E)]M(_§>

+ 2m(-1)" . .
( )],If(H)/z M3 2 7 2M A DT 2]+ 1+ T2M = +1

X 3F4<]+M+ =] +M+ ,]4—M—i—1]+M—l—32]+2M+12M—n—|—12]+n+1—k2 )
) ) 2—2]—2M+2n+1(k“0)2]+2M—2n ]( )] (_7)
(2j+2M —2n+ 1) (2j—n+1)I2M —n+1)" M\™2

+ 27
j=(n—0)/2+1 M=(n—-05)/2+1

X 3F4<]+M—n+ = J+tM—n+ ,]+M—n+l
2j +2M — 2n+12]—n+1]+M—n+32M—n+1—k2 > (43)
Examination of Equations (36) and (43) shows that

3P4(%+g+%,%+g+5%+g+1;;¢+1,ﬁ+g+%,v+1,y+v+1;z) =(u+v+DT(p+ DI (v+1)
0 n2(2L+1)((_1)L+y+1)((_1)L+v+1)r(2L_|_2)21'4L—2‘u—2v2—8L+}t+V—6

X

2
LZOF(L+%)2F(%(2L+3)) r(f——+1)r( +4 +1)r(f——+1)r(%+%+1)
x ZHHWZF(L P 7+1,7+§+1;;)
X 2F3< +LE+504+3,5-5+1,% +%+1;§1) (44)
= (p+v+1DI(p+1)T (v+1)
% i 7T2(2L+1)((—1)L+V_|_1)((_1)L+V+1)r(2L+2)2i4L—2y—2v2—8L+y+v—6
2
=0 F(%(2L+3))
x A2 (f 4 L i+ L+ 3 b - h+ 1+ +13)
x Bk +LE+LL+3E -5 +1E+5+1).

Numerical checks show that the right-hand side requires as few as three nonzero
terms—L = 0,2,4 or L = 1, 3, 5, depending on the parity of y—in the sum to obtain
seven-digit accuracy for y 4+ v < 10 when the variable is set to the arbitrary value z = 0.17,
as seen in Table 1.



Axioms 2024, 13, 203

90f17

Ju(kx cos(0))

2F3 (%, L, %;Z> = Yo

Table 1. The left and right sides of (44) when the variable is set to the arbitrary value z = 0.17 and
we include only three nonzero terms in the sum, shown through the digit with which the two sides
disagree. When z = 0.0017 the accuracy increases, as seen in the last line, while for z = 17 the
accuracy decreases; the penultimate line. The results are symmetrical with respect to y and v.

Left-Hand Side of (44) Right-Hand Side of (44) i v z
1.028881345119003 1.028881345119001 0 0 0.17
1.0344878191148 1.0344878191146 0 2 0.17
1.0369001971 1.0369001970 0 4 0.17
1.020434382759 1.020434382749 2 2 0.17
1.01777403 1.01777403 2 4 0.17
1.0140011 1.0140009 4 4 0.17
1.0258250454427744 1.0258250454427744 1 1 0.17
1.0230034607369 1.0230034607370 1 3 0.17
1.022243424630 1.022243424628 1 5 0.17
1.016657722535 1.016657722534 3 3 0.17
1.014587307 1.014587305 3 5 0.17
1.01205576 1.01205571 5 5 0.17
23.049 23.044 0 0 17.0
1.00013910008 1.00013910005 4 4 0.0017

Parameters y and v must be of the same parity or the sum is zero. They also must
be non-negative to avoid infinities. The conventional hypergeometric functions on the
right-hand side—with their prefactors—give indeterminacies in computation (infinities
divided by infinities) unless y and v are both zero or one, so we relied on the second
version, using regularized hypergeometric functions—having cancelled the I'(b;) with
gamma functions in the denominators of the prefactors that also give infinities in this
case—for numerical checks.

The derivation of the Fourier-Legendre series for ], (z) in the prior paper [23], upon which
the present work relies, was restricted to integer i (and, hence, v in the present work) at
two places, Equations (3) and (10) of that paper, with the latter reproduced below in (58).
Equation (3) of that paper is an integer-restricted version (the first term) of the more general
integral representation due to Heine of the Bessel function [31]

e/ & —ikx cos(0) cos(t) : * ikx cos(6) cosh(t)—put
= /0 dte cos(pt) — sm(yn)/o dte (45)

7T

and, hence, is not the blockage to generalization. The essential blockage is that we found
no non-integer version of (58); however, it is possible that one could be found. If found,
one would have to investigate whether the second term of (45) can be integrated over both
cos(0) and t if one wanted to remove the integer restriction on y and v.

When p = v = 0 the order of the hypergeometric functions is reduced, since the
parameters a3 = by on the left-hand side and a, = b3 on the right-hand side. This results in
the following special case:

) 2

. 2
leFz(%—i-%;L—i-%,%—i-l,‘ﬁ) .

n2i4L2—8L76((71)L+1)2(2L+1)F(2L+2)2
r(5+1)'T(1+3)T(3(21+3))?
7.[2i4L2—8L—6((_1)L+1)2(2L+1)r(2L+2)2
r(5+1)r(12L+3))’

W[

7

[SJ[e8)

ZL1F2(%+%)%+1,L+ ( )
46
= Yi-o

When y = v = 1, the order of the hypergeometric functions is also reduced, since the
parameters a3 = b3 on the left-hand side and 4 = b, on the right-hand side. This results
following the special case:
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2L =48l ((_1)L+141)? (2L 1)1 (2L+2)2

r(5+1)°T(5+3)r(L+3) T(3(2L+3)°

2Al—4p—8L—4 ((_1)L+111)* (2L 1)1 (2L+2)?
r(t+1)’r(ieL+3))’

2
3 3.9 5 1. — 0 - L . L 3 3.
2F3<§/j/2/j/3lz) - 32L:0 ZL 11F2(7+1/§+§/L+j/%)

(47)

- 2
= 3LF," A B (k+uL+ 35+ 33)

Since the 3F; hypergeometric function in (44) contains 5 -+ ¥ in most of its parameters,
we can simplify the parameters on the left-hand side somewhat by letting y —a —v —1

and v — b — 1 so that

3F4<% + %, 5,55+ 1,aa —b—l—l,b;z) =al'(b)T(a—b+1)

o 7T2(2L+1)i—2a+4L+22u—8L—7((71)b+L—1+1) ((71)u—b+L+1)

X
2 2
L=0T(L+3) F(%(2L+3)) F(—?+L+§>r<§+%+%>r(f—7+ +1)
[(2L+2)>  1iayp L b, L, 3b, L _

S e SR CAR A S B RS A AR SR ARS )
x st(%Jr%,%H;%—§+7+1,—%+§+ +1, L+2,4) (48)
= al(b)T(a—b+1)

o 77_.2(2L+1)i72u+4L+22a78L77((_1)b+L71_‘_1>1~(2L+2)2((_1)a7h+L+1)
X ) 5

L=0 r(ieL+3)
x 2B (4 +§,L+1L+2,—2+ +3,0 k412
x Bk +LE+LL+E -4+ 5+ 5 +15 -5+ 5414

In this form, we musthavea =1,3,5,7---andb=1,2,3,--- ,a. O

The reduction in order (46) occurs whena = b =1,and a = 3, b = 2 gives (47).

4.Forp=1
Consider, now, an additional power of the cosine function (which equals x in what
follows) that will give a different Fourier-Legendre series than does a pure Bessel function,

xJn (kx) Z aly(k (49)

Theorem 2. The Fourier-Legendre series coefficients of x ] (kx) are

() = NS () ()
X 2B+ 5Lt -5 +55+7% +2'_E> (50)
+ L+ 2r—(2%L(—23L(ig)1))kL+1 ( i ( 1)L+N71)(1(LL—~]_\}+1))
x ng(%+1,%+%;L+2,% N+35+5+3 E)]

Proof of Theorem 2. The key step in modifying the prior derivation [23], generalizes the
expansion coefficient at one point to

2L+1i N

“iN(k) 5 1

T 1 .
/ [/ elkx COSGJCPPL(JC)dx} cos(N6)do, (51)
0 -1
in which we use [26] (p. 987 No. 8.511.4) or [32] (p. 671 Eq. (B.46))

pikxcos® _ Y @I+ )i ji (k cos 0) Py (x) . (52)
l/
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Then, using the recurrence relation for Legendre functions [32] (p. 666 eq. (B.4)) , one finds

(k) = 1Y (7 [ = (z';f;o(zz' +1)i ju (kcos 0) Py (x))xppL(x)dx} cos(N6)do )
.q7 . l,P/ X I'+1 Py X
aly(k) = 2L+1’ — [ [f% (21/20(21’ +1)i" jy (k cos 9)){ 211’15 ) 4 +2)l'4[-1+1( )}PL(x)dx} cos(Nb)de,

which complicates the use of Legendre function orthogonality [32] (p. 666 eq. (B.5)) to
truncate the series. For L = 0 only the left-hand term in the curly brackets will contribute
with the I’ = 1 term in the sum. When L = 1, the left-hand term will again contribute with
the I’ = 2 term in the sum, as will the right-hand term with the I’ = 0 term in the sum.
This pattern continues with the first term nonzero only when I’ = L + 1, and the second
nonzero only when I’ = L — 1. Thus,

aly (k) = 2L it g [ I (sz oi ]l,(kcose)){ggjﬂ}{z/pl, LX)+ (I + 1) Py (x )}pL(x)dx} cos(N)do
= it — [ [f (Zzu 1]1’(kC059)){2V 1or-1L+ §I’+3 Or41 L} cos(N8)do

N (41
_ 2L+1 fO [ZK-HM 1(kC059) ég )

- fo [ kCOSQ)(L+1)+1L 1]L 1(kcos6)L ]cos (N6)d

(54)
O + Zz[ Y 1(kc059 (5&1 cos(N6)d

where the factor of L takes the second term to zero when L = 0 so we need not worry about
spherical Bessel functions with an index less than zero. (This is the same reason why the
first term of the I’ sum in the second line really starts at 1 so that the ¢ sum starts at 0 for
the first sum in the third line). Note that [33] (p. 23, No. 171.4) gives only the second of
these two terms, but one can interchange the meaning of m and 7 in this to give the first,
the central line in

2142 _
1 (2n+1n)j(L2n+3) m=n+1
[1 XPy(x) Py (x) dx = (2”712)% m=n—1. (55)
0 otherwise

Using the series expansion [34]

%) 7}1)MX2M
< _ o= (LE1) 1 L+1 , 56
i (@) =V * MZZ;O MIT(M+ (L£1) +3) 6)
we find
aly(k) = fo (L4 ( kzxo cos@)(L+1) +iL_1jL_A}I(koc0 cos 0)L] cos(NB)do
. L+ (1)

— —-N 1 L 1 k 0 2M+L+1

72\/# I [(2) (L+ )ZO4MM'1"(L+M+ )( cos(0)) )

NL-1 @ (_1)M
+ (é) L (kcos(0))>M+L=1| cos(NO)dO .
W0 4MMIT (L 4+ M+ 1)

This integral can be performed using an integral—that has three branches over the
interval [O, %]—that Grobner and Hofreiter [33] (p. 110, No. 332.14a) extended to the
interval [0, 7r] with a prefactor (1 + (—1)"*"), which renders the central one of the three
possibilities nonzero only for even values for m + n:

7T

T
/0 cos™B cos(nd)dd = (1+ (—1)’”*”)W

(,nmn> m>n>—1,m—n=2K. (58
2

The other two branches, for odd m + n on [0, 5|, are zero on [0, 7] when this prefactor is
included. (The lower limit on m [m > n > —1] was a finding of the prior paper). Then
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1o

(k)

X

X 4+ X

0 M 1 \2M+L+1
1N (i (1) (k)
— 5 L+1
v [(2) ( )MZZ;OALMM!F(L+M+%)
T 2M+L+1
W(%(2M+L+17N))

()M
4MM'T(L +M+ 1)

T 2M+L—-1 )
2ZMFLAL (2M+L—-1-N)

VTN | iL-121- ZLLkL 1 L+N+1 L—1
7 [ r(1(2L+1)) ((= +1)(2(L N- 1))

1 1 L_N N K2
oB(5+y5l+tpr-3+55+7% ’_I)

‘L+12—2L 3(L+l)k +1 B i1
| I(3(2L+5)) (1+ (=)t 1)(1 L-N+1))

2F3<2+1'é+2'L+§r§_*+212+ +21_£)]
@i—N[lL 11-2L kL=1(1 4 (—1)LFNH)T(L)
2F3(2—|—2,2,L+1 L‘%"‘%f%"‘%*‘%‘%
iEH1272L73 (L 4 1)k (14 (- )N (L +-2)
2F3(2+112+21L+§ri_ﬁ+2'2+ +*_ﬁ>}'

1+ (_1)2M+L+1+N)

k)2M+L71 (1 + (_1>2M+L71+N)

(59)

O

For the special cases N = {0, 1}, these reduce somewhat [35] to

[L-1gl-2L L—1 2
2f< ( 22L+1)(1+(_1)L+1)L( )kL 111:2(2’2 +2’L+2’_7)

L+12 2L-3 —1 L+1y1L4+1 .L 3 5._K
2L+5 ( )(L+1)(ﬂ)k+ 1F2(2+1,2+2,L+2/_4>>

L—1~1-2L .
\zf(r(;r;)(l-i-( 1)E ) Lk —IT (L )1F2<2,L+2/2+, _ki).

(60)

jL+19—-2L-3

W(l + (fl)L—l)(LnL1)kL+1F(L+2)1F2< +LL+3,L+3 kz))

and

jL—1p1-2L L+2\7 (L-1\1.L—1 L, 1.L 1. K
lf( o) (LT CDFP)LER)E b 7+§/7+1/L+§'_T)
3

L1 2L~ L L+1y, L L, 3.L 5. k2
1"1(%(2L+5)) (1+(71) )(L+1)( L )k +11F2(§+j/j+2/[/+§,*z

jL—1p1-2L

(61)
)| S (DML B (s Bk b E o)

jL+1p—2L-3

W(1+(—1)L)(L+1)kL+1r(L+2)1F2< +3L+3,L+2,- )}

We now have the necessary elements in place to prove the following:

Theorem 3. A second summation theorem for 3F, hypergeometric functions:
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F(3+558+paa—b+1b3 1;2)
314 2+222 paﬂ + 2+p+ ZP_>1

E}l(kﬂéo,

il 420322 T(B)T (a — b+ 1) (a + 2p) p1

o 2L—292-4L _1)b+L beylzbir a—b+L+1
222 (1+( 1) )( 1) (1+( 1) )H

L L-1 L 1 L. h L b
<r(%(2L+l))<Lb)2P3(2+2' j/_j j +1, + 2/L+2/ 4) (62)
(L+1) L+1 L L 3._b L b L 5.
16F(%(2L+5))(%( b+L+2))ZZF3(2+1,2+2/—2+2+2,2+2+1,L+2/i>)
L (1 L-1 L 1
T(3(2L+1)) \3(—atb+L-1 2 P

(L+1) L+ L L, 3. b, L 3 b, L 3 5.
e R P (R R T PR S R P B R AR )
wherea=1,3,57---andb=1,2,3,---,a.

Proof of Theorem 3. We will not display intermediate results as we step outward from
(59) since they mirror those for p = 0 but with twice as many terms. With x = k«, the final
form is

5) = T B (k0,5 B ko, —3)

I B Y. Ji(=3)]-m(=3)
j=—(n=0)/2  M=—(n-5)/2
304—41,21-2 9 4
_ j+14+n+1 _ 1\[+2M+n+1 _1\—j+H-M-n-1
2172 (= +1)(-1) +1)(-1)
e Qa2 B (s b Lt b b f i+ B F)
r(Z2141)) ‘3 (=2j+1-n-1)) 273 2l it =5t 27 (63)
I14+1)x2 I1+1 I, 3. 5 1 3.1 3._22
(o) Geapbwn)2 B+ s+ B+ b -+ 3+ i+ + 2’_{1)>

i -1 1 1. 11 11 1,22
(r(%(zm))(;(zzMn1))2F3< +z/§/l+ifi—M—%+§f§+M+%+§/—%)
(I+1)x? 1+1 I I 1 3.7.5 1 31 3.2

16r(;(2l+5))(;(1—2M—n+1))2F3(2+1/z+2/l+zfz—M—§+z/z+M+g+z/—’Z))

.,

where we have displayed just the first of four sums over j and M since they all lead to the
same summation theorem.

On the other hand, for p = 1 in the direct integration method, the only thing that
changes is the power of the cos?(8) = u? = y factor in

2 (0 5)

/cosz(e)],% (k- a0, —3 )0
= 27r/ cos (G)Iﬁ(ktxocos(ﬂ),—%)d(cos(G))
27r/ Flu du—47r/f du—27t/f W2y (64)

and in the four versionsof & = {j + M+n+1, j+ M+1, j+M+1, j+ M—n+1} +p
(only the first of which is needed for the one of three terms we displayed in (63)), in
the following
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X

+ X + X

L+ 5 L 3 L 3.
716F(%(2L+5))Z( (L— v+l))2F3( +1,2+2,L+§ ;5 %'i‘j,j'i‘%—’—j/%)

/an”‘_l(a — y)ﬁ_1 pFe(ay, ...,
T (a)L()a*tF1

I'(a+B)
[R(x) >0AR(B) >0Aa>0]

ap,bi,..., by; —wy)dy

p+1Fq+1(a1,...,lZp,lX,’bl,..., bq,lX—Fﬁ}—QW) (65)

that simply raises a by one for each of the four terms; with @ = 1 and § = 1 unchanged.
Then the above and (63) give

p—1

i i ”2“” 2F(y+1) (v+1)(2p+y+v+1)zz< M- V>
0 i2L—222—4L(1+(_1)L+y+1)(1+(_1)L+v+1)(_1)L7‘2—‘7%71
=0 2L +1

L L-1 L, 1L. 1L
(r(%aul))(;@un)zpﬁ*(z +2 b+ 3
(L+1)

L+1

L 5L _ K3 L HK,y3.
WZ(%(L—y+1))2F3(7+1 +3L+3 2_2+2/2+2+2/i>>

L L-1 L 1 L. 1L 1L 1.
<F(%(2L+1))(§(Lvl))2F3(z+zfer+zfz5+zfz+5+zri>

(L+1) (66)

Fi VRV 2T (3 )T (v + 1) (2p + 1+ v+ 1)z2 (#Y)
00 i2L722274L(1 + (_1)L+y+l) (1 + (_1)L+v+1)(_1)L—g—g—1
L;O 2L +1

(rL+10:B(5+LbL+LE-4+LE+5+41)
%(L+1)F(L+2)22F3(%+1%—i—%;L—i—%,%—%—l—%,%—i—%—l—%;ﬁ))
(rL+1:5(5+Lbr+L5-5+L5+5+43)
%(L+1)P(L+2)zzﬁg(%+1,%+%;L+g,% s+35+5+33)).

For p = 1, and the variable set to the arbitrary value z = 0.17, the right-hand side
requires four nonzero terms in the sum to get seven-digit accuracy for y + v < 10, as seen
in Table 2.

Table 2. The left and right sides of (66) when the variable is set to the arbitrary value z = 0.17 and we
include four nonzero terms in the sum, shown through the digit with which the two sides disagree.

Left-Hand Side of (66)

Right-Hand Side of (66)

u v z

1.052175485266236 1.052175485266234 0 0 0.17
1.01448216 1.01448208 4 4 0.17
1.0307786670736816 1.03077866707368164 1 1 0.17
1.01234929 1.01234927 5 5 0.17

When y = v = 0, the order of the hypergeometric functions is reduced since the

parameters a; and b; are equal on the left-hand side. On the right-hand side, a; = by in the
first hypergeometric function in the summed pair within the products and a; = by in the
second. This results in the following special case:
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B(Lp+iLLp+}z)
2b3\ 3,7+ 3 P+2ZP_>1 2
oo (71)L71 i2L722274L 1+(71)L+]

= 1m@2p+1)pm1 X5 2L+1( ) z

x (M((;L(;)Jr@)(ﬁll)zllzz( +15+3,L+35;2

+ e CIACA R AR ) )
= 1m@2p+1)p 1 L = i 2222::1 (1+(-1)1)?

X <(L16+rl()m+)2>Z1F< +1L+g,é+%%)

: Ml (e b kig))

When y = v = 1, the order of the hypergeometric functions is also reduced since the
parameters ap and b are equal on the left-hand side. On the right-hand side, a, = by in the
first hypergeometric function in the summed pair within the products and a; = b; in the
second, giving the special case,

2F3(3,p+ 32,3, p+32),
(71)L—2i2L—222—4L(1+(71)L+2)2 L1

= —Z(@2p+3)p-1Li-0 20F1 z
L L— L 1.
X 1”(%(27L+1))(L 2)1P2(§‘|‘§ +1, L+2/4)
2
(L+1) L+1
+ 16F(%(2L+5))Z( 5 )1P2( SR TRS T ) (68)
(—1)L-22L-292~ 4L L+2
= —Z@2p+3)p-1 L0 2L+1 ZL !
0(L+1) & (L , 1. 1L, 4.
X (r(li) 112 7+2,L+§,7+1,§)
2
(L+NT(L+2) & (L, 3. 5 L )
+ WZ] 2(2+2,L+2,2+2,2)) .

As with p = 0, we can simplify the left-hand side of (66) somewhat by letting 1 —
a—v—1landv — b —1so that
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3F4(%+%,%,%+p;a,a—b+1,b,ﬂ+p+1-z »
r
= il 02032 3 T(B)T (a — b+ 1) (a +2p)
o 2L—292-4L b+L)(_1) 550+t +L-1 a—b+L+1
) & D2AL (1 4 (~1)PHL) (<) 2T (14 (<) )ZH
= 2L+1
L L-1 L 1 L b L b
x (r(§(2L+1))(Lzb)2P3(2+2’2’_2 i+ +2’L+2’4>
(L+1) L+1 L L 3._b L b L 5.
+ 16F(%(2L+5))(%( b+L+2))ZZF3(2+1,2+2/—2+2+2l2+2+1,L+2/i>)
L L-1 L 1 L. b L 1 b L 1 1.
X (r( (2L+1))( (—atbiL— 1)>2F3<§+§'§'%_i+§+§'_%+i+§+§f];+§'§) )
69
(L+1) L+1 L L 3. b L 3 b L 3 5.
e - a+h+L+1))ZzF3(7 1,2+2,g—2+2+2,—g+2+2+2,L+2,g)>
= il 120323 T (b) T ( —b+1)(a+2p)p-
o i2L722274L<1+(_1)b+L)( 1)b%”+1—§;’+L—1(1+(_1>a7b+L+1)
% Z ZLfl
= 2L+1
X (r(L+1)zF3(%+%%;L+%,1T*b+%+%,‘%l+%+%;i)
+ EL+1(L+2) 2B (3 +15+5L+5 2+ + 352 + 5+ 3:5))
x (re+1B(5+3 h+3 5+ 5+ 5t + 5+ 5§)
+ L+ DL+ 2 B (5 + 15+ 5L+ 3 50 54350+ 5+ 357))
In this form, we musthavea =1,3,5,7--- andb =1, 2, 3, ,a. O

x*Py(x)Py(x)

4 (2(1')2 -

One could continue on in this fashion for p = 2 and beyond. However, we would
have a product of triplets for p = 2 since

3) Py _o(x) + (2(1/)3 F5(1)2 41— z) Pria(x) + (4(1/)3 +6(I')? - 1) Py (x)

(21’+1)(4(l/)2+411_3) Pi(x) (70)

and the number of terms increases with p. The process of finding the ,F3 products of sums
would, thus, be straight-forward though increasingly complicated as p increases.

5. Conclusions

We have found that the angular integration of transition amplitudes for radiative
attachment, arising from the Strong Field Approximation (SFA), provides a means to
express certain 3F; hypergeometric functions as infinite sums over pair products of »F3
functions. For special values of the parameters, the order is reduced to ;F; functions
expressed as infinite sums over pair products of 1 F, functions.

The SFA transition amplitudes include products of generalized Bessel functions that
each comprise an infinite sum of products of two conventional Bessel functions, one of
which contains angular dependence. That one of each pair is expanded in a series of
Spherical Harmonics times »F; functions, whose angular integral reduces the product
to a single infinite series. On the other hand, one can express the product of these two
conventional Bessel functions as a (different) ,F; function, whose angular integral is a 3Fy
function. Equating the results of these two methods gives the the desired relationship.

We have also stepped somewhat away from the physical application of this relationship
by including a multiplicative factor of cos? § to generate a second sort of 3F; hypergeometric
function expressed as an infinite sum over pair products of a sum of two F3 functions.
If one were to entirely divorce this procedure from transition amplitudes and replace the
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Bessel functions with other conventional functions that can each be expanded in a series
of Spherical Harmonics, and whose product is some ,F; function, one might be able to
generate additional relations of this general type.
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