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Abstract: In general, the problem of building optimal convolutional codes under a certain criteria
is hard, especially when size field restrictions are applied. In this paper, we confront the challenge
of constructing an optimal 2D convolutional code when communicating over an erasure channel.
We propose a general construction method for these codes. Specifically, we provide an optimal
construction where the decoding method presented in the bibliography is considered.
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1. Introduction

Two-dimensional (2D) convolutional codes are suited for applications where data are
organized in a two-dimensional grid, like images. The theory of 2D convolutional codes
is a generalization of the theory of one-dimensional (1D) convolutional codes but much
more involved. These codes were introduced in [1] and in [2] by Fornasini and Valcher,
respectively. In [1], the authors considered 2D convolutional codes that were constituted
of sequences indexed on Z2 with values in Fn, where F was a finite field and established
the algebraic properties of these codes. In [2], the authors studied 2D convolutional codes
constituted of compact support sequences on Z2. An important property of a code is its
distance since that measures its capacity of error correction. In [3], the authors defined
the free distance of a 2D convolutional code, established an upper bound for this distance,
and then presented some constructions of the 2D convolutional codes with an optimal
free distance. A generalization of these codes, called nD convolutional codes, were first
introduced in [4,5] and then further developed in [6–8]. However, decoding these kind
of codes is a barely explored topic, which we will address in this paper. We will consider
transmission over an erasure channel. Unlike the symmetric channel, where errors might
occur randomly, over these channels the receiver knows in the transmission which symbols
are erased and that the received symbols are correct. These channels are particularly
suitable in communication systems like real-time streaming applications or situations
where certain packets are more crucial than others. Convolutional codes are particularly
convenient for erasure channels due to their ability to consider certain parts of the received
data, thereby adapting the correction process to the erasure’s location.

There exist only two decoding algorithms for 2D convolutional codes over the erasure
channel [9,10]. In [9], the authors made use of the parity-check matrices of the code, while
the authors of [10] employed the encoders of the code.

The decoding algorithm presented in [9] considers the specific neighborhoods around
erasures that would allow one to decode these erasures using 1D convolutional codes. These

Axioms 2024, 13, 197. https://doi.org/10.3390/axioms13030197 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13030197
https://doi.org/10.3390/axioms13030197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-8168-4023
https://orcid.org/0000-0003-0423-9310
https://orcid.org/0000-0003-3362-8817
https://doi.org/10.3390/axioms13030197
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13030197?type=check_update&version=1


Axioms 2024, 13, 197 2 of 23

1D codes are projections of the 2D convolutional code, and they are obtained by considering
1D parity-check matrices and by taking into account only some of the coefficients of a parity-
check matrix that is of 2D code. However, the authors did not provide any such construction
in which the corresponding 1D projections produced optimal efficiency for this decoding
algorithm. In this paper, we discuss this problem and present several constructions of 2D
convolutional codes whose corresponding associated 1D convolutional codes are optimal
or quasi-optimal.

2. Preliminaries

In this section, we detail the main backgrounds of 1D and 2D convolutional codes that
are required to contextualize the constructions introduced in this paper. We will also recall
the decoding algorithm over an erasure channel that was presented in [9].

We denote, by F[z], the ring of polynomials in the indeterminate z and with coefficients
in a finite field F. By F[z1, z2], we denote the ring of polynomials in the two indeterminates,
z1 and z2, with coefficients in F.

2.1. 1D Convolutional Codes

Definition 1. An (n, k) convolutional code C is an F[z]-submodule of F[z]n of rank k. A matrix
G(z) ∈ F[z]n×k whose columns constitute a basis of C is called a generator matrix of C, i.e.,

C = ImF[z]G(z) = {v(z) ∈ F[z]n : v(z) = G(z)u(z) for some u(z) ∈ F[z]k}.

The vector v(z) = G(z)u(z) is the codeword corresponding to the information sequence u(z).

Given a convolutional code C, two generator matrices of this code, G(z) and Ḡ(z), are
said to be equivalent. In addition, they differ by right multiplication with a unimodular
matrix U(z) (a k× k invertible polynomial matrix with a polynomial inverse or, equivalently,
a k × k polynomial matrix with determinant in F\{0}), i.e.,

G(z) = Ḡ(z)U(z).

A convolutional code is non-catastrophic when it admits a right prime generator
matrix G(z), i.e., if G(z) = Ḡ(z)X(z) with Ḡ(z) ∈ Fq[z]n×k and X(z) ∈ Fq[z]k×k, then
X(z) must be a unimodular matrix. A polynomial matrix is said to be left prime if its
transpose is a right prime. Note that, since two generator matrices of a convolutional
code differ by a right multiplication through a unimodular matrix, if a code admits a right
prime generator matrix, then all its generator matrices are right prime and it will be called
non-catastrophic code.

The degree δ of an (n, k) convolutional code C is the maximum degree of the full-size
minors of any generator matrix. Note that the degree can be computed with any generator
matrix since two generator matrices of a code differ by the right multiplication of an
unimodular matrix, as was previously said. A matrix G(z) ∈ F[z]n×k is said to be column-
reduced if the sum of its column degrees is equal to the maximum degree of its full-size
minors. A polynomial matrix is said to be row-reduced if its transpose is column-reduced.
An (n, k) convolutional code with degree δ is said to be an (n, k, δ) convolutional code.

Another important matrix associated with some convolutional codes C is the (full row
rank (n − k)× n) parity-check matrix noted as H(z). This matrix is the generator matrix of
the dual code of C; therefore, we can generate C as its kernel as follows:

C = kerF[z]H(z)

= {v(z) ∈ F[z]n | H(z)v(z) = 0}.

The parity-check matrix plays a central role in the decoding process for block codes
and convolutional codes. Although there is always a parity-check matrix for a block code,
this is not the case for convolutional codes. In [11], it was shown that a convolutional code
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admits a parity-check matrix if and only if it is non-catastrophic. Any non-catastrophic
convolutional code admits a left prime and row-reduced parity-check matrix [12].

When transmitting information through erasure channels we may lose some parts of
the information. Convolutional codes have been proven to be good for communication
over these channels [13].

In [13], a decoding algorithm for these kinds of channels was presented, and it is
based on solving linear systems of equations. Consider that we receive the codeword
v(z) = ∑

j
i=0 vizi ∈ Fq[z], and that vi−t, . . . , vt are correct (have no erasures) but the coeffi-

cients afterward may have erasures. Let H(z) = ∑j∈N Hjzj ∈ Fq[z](n−k)×n be a parity-check
matrix of the code. We define the matrix as follows:

Hj =

 Hν · · · H0
. . . . . .

Hν · · · H0

 ∈ F(j+1)(n−k)×(ν+j+1)n
q . (1)

Then, Hj

(
vT

t−ν . . . vT
t . . . vT

t+j

)T
= 0. By reordering these equations we can obtain a

linear system of the form
Heve = b, (2)

where He and ve are the columns of Hj and the coordinates of
(

vT
t−ν . . . vT

t . . . vT
t+j

)T

that correspond with the erasures, respectively; and b = −Hcvc, where Hc and vc are
analogously defined concerning the correctly received information. Therefore, we can
correct the erasures by solving a linear system with as many unknowns as erasures in the
received codeword. Note that we have considered only part of the coefficients of v(z),
i.e., the coefficients vt−ν, . . . , vt, . . . , vt+j. We refer to this sequence as a window, and we
say that it is a window of j + ν + 1 size.

Notice that, in order to correct the erasures produced in a codeword, we need a
previous safe space where all coefficients are correctly recovered. In the construction of the
system (2), the ν vectors, vt−ν, . . . , vt−1—which were previous to vt and the first coefficient
of v̂(z) with some erasure—conformed to this safe space.

Once we have a method for correcting the erasures produced by a channel, we may
want to know the correction capability that a code can achieve. This capacity is described
in terms of the distances of the code. For convolutional codes, there exist two different
distances: the free distance and the column distance. The Hamming weight of a vector
v(z) = ∑i∈N0

vizi ∈ Fq[z]n is given by the expression

wt(v(z)) = ∑
i∈N0

wt(vi),

where wt(vi) is the number of non-zero coordinates of vi.

Definition 2. Let C be an (n, k) convolutional code, then the free distance of C is

d f ree(C) = min{wt(v(z)) : v(z) ∈ C\{0}}.

The next theorem establishes an upper bound on the free distance of a convolutional
code, and it is called the generalized Singleton bound.

Theorem 1 ([14]). Let C be an (n, k, δ) convolutional code. Then,

d f ree(C) ≤ (n − k)
(⌊

δ

k

⌋
+ 1

)
+ δ + 1.

The free distance of a convolutional code allows us to know the correction capacity for
errors and erasures once the whole codeword is received.
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An advantage of convolutional codes over block codes is that they permit us to do a
partial decoding, i.e., we can start recovering erasures even though we do not have the
complete codeword. The measurement of the capability of this kind of correction is given
by the column distances, which are defined for non-catastrophic convolutional codes [15].

Given a vector w(z) = ∑
i∈N0

wizi ∈ F[z]n and j1, j2 ∈ N0 with j1 < j2, we defined the

truncation of w(z) to the interval [j1, j2] as w[j1,j2](z) = wj1 zj1 + wj1+1zj1+1 + · · ·+ wj2 zj2 .

Definition 3. Let C be an (n, k, δ) non-catastrophic convolutional code, then the j-column distance
of C is defined by

dc
j = min{v[0,j](z) : v(z) ∈ C with v(0) ̸= 0}.

The following inequalities can be directly deduced from the previous definitions [15]:

dc
0 ≤ dc

1 ≤ · · · ≤ limj→dc
j = d f ree(C). (3)

In addition to the free distance having a bound, the column distances also have a
Singleton-like bound, which is given by the following theorem.

Theorem 2 ([15]). Let C be an (n, k, δ) non-catastrophic convolutional code. Then, for j ∈ N0,
we have

dc
j ≤ (n − k)(j + 1) + 1.

Moreover, if dc
j = (n − k)(j + 1) + 1 for some j ∈ N0, then dc

i = (n − k)(i + 1) + 1 for
i ≤ j.

As seen in (3), the column distances cannot be greater than the free distance. In fact,
there exists an integer

L =

⌊
δ

k

⌋
+

⌊
δ

n − k

⌋
for which dc

j can be equal to (n − k)(j + 1) + 1, i.e., the bound can be held for j ≤ L and
dc

j < (n − k)(j + 1) + 1, as well as for j > L [15]. An (n, k, δ) convolutional code with
dc

j = (n − k)(j + 1) + 1 for j ≤ L (or equivalently with dc
L = (n − k)(L + 1) + 1) is called a

maximum distance profile (MDP) code. Next, we detail a characterization of these codes
in terms of their generator and parity-check matrices. For that, we need the definition of a
superregular matrix.

The determinant of a square matrix A = [µi,ℓ] over a field F is given by

|A| = ∑
σ∈Sm

(−1)sgn(σ)µ1,σ(1)µ2,σ(2) · · · µm,σ(m),

where Sm is the symmetric group. We will refer to term as the addends of |A|, that is, to the
product of the form µ1,σ(1)µ2,σ(2) · · · µm,σ(m) and as a component of the factor of a term, i.e.,
the multiplicands of the form µi,µ(i) for i ∈ {1, . . . , m}. We will also say that a term is trivial
if at least one of its components is zero, that is, the term is zero. Now, let A be a square
submatrix of a matrix B; if all the terms of |A| are trivial, then we say that |A| is a trivially
zero minor of B or that it is a trivial minor of B.

Definition 4 ([16,17]). Let n, m ∈ N and B ∈ Fn×m, then B is superregular if all of its non-trivial
zero minors are non-zero.

Theorem 3 ([15]). Let C be a non-catastrophic convolutional code with a right prime and column-
reduced generator matrix G(z) = ∑

µ
i=0 Gizi ∈ Fq[z]n×k, as well as a left prime and row-reduced

parity-check matrix H(z) = ∑ν
i=0 Hizi ∈ Fq[z](n−k)×n, then the following statements are equivalent:
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1. C is an MDP code

2. G :=

 G0 · · · GL
. . .

...
G0

, where Gi = 0 for i > µ, and it also has the property that every

full-size minor that is not trivially zero is non-zero.

3. H :=

 H0
...

. . .
HL . . . H0

, where Hi = 0 for i > ν, and it also has the property that every

full-size minor that is not trivially zero is non-zero.

Lemma 1 ([13]). Let C be an (n, k, δ) MDP convolutional code. If any sliding window of length
(j0 + 1)n at most (j0 + 1)(n − k) erasures occur with j0 ∈ {0, 1, . . . , L}, then we can completely
recover the transmitted sequence.

This family of optimal codes requires a great deal of regularity in the sense of the
previous theorem, and this causes the construction of the MDP convolutional codes to
usually require big base fields. From the applied point of view, this is a concern. In last few
years, the efforts of the community have been directed to improving this situation by either
giving different constructions [18–21] or finding bounds [22,23]. Research has also led to
the development of MDP convolutional codes over finite rings [24].

When MDP codes cannot perform a correction due to the accumulation of erasures, we
have to consider some of the packets to be lost and to continue until a safe space is found
again. To solve this situation, in [13,25–27], a definition for Reverse-MDP convolutional
codes was provided. While the usual MDP convolutional codes can only carry out a
forward correction, i.e., their decoding direction is from left to right, the reverse-MDP codes
will allow a backward correction, i.e., a correction from right to left.

Proposition 1 ([26], Prop 2.9). Let C be an (n, k, δ) convolutional code with a right prime and
column-reduced generator matrix G(z). Let Ḡ(z) be the matrix obtained by replacing each entry
gij(z) of G(z) with ¯gi,j := zδj gi,j(z−1), where δj is the i-th column degree of G(z). Then, Ḡ(z) is a
right prime, and column-reduced generator matrix of an (n, k, δ) convolutional code C̄ and

v0 + z1z + · · ·+ vszs ∈ C ⇔ vs + zs−1z + · · ·+ v0zs ∈ C̄.

We call C̄ the reverse code of C. Similarly, we denote the parity-check matrix of C̄ by
H̄(z) = ∑ν

i=0 H̄izi.

Definition 5. Let C be an MDP (n, k, δ) convolutional code. We can then say that C is a reverse-
MDP convolutional code if the reverse code C̄ is also an MDP code.

In [13], it was proven that reverse-MDP codes can perform a correction from right to
left as efficiently as an MDP code does in the opposite direction. However, to perform a
backward correction, a safe space is required on the right side of the erasures. This can be
easily seen in the following example.

Example 1. Let us assume that we are communicating through an erasure channel. If so, then
we have recovered the information correctly up to an instant t and we can later receive the follow-
ing pattern:

(A)14︷ ︸︸ ︷
⋆ ⋆ · · · ⋆

(B)108︷ ︸︸ ︷
vv ⋆ ⋆vv ⋆ ⋆ · · · vv ⋆ ⋆ |

(C)122︷ ︸︸ ︷
vv · · · v |

(D)50︷ ︸︸ ︷
⋆ ⋆ · · · ⋆

(E)38︷ ︸︸ ︷
vv · · · v

(F)34︷ ︸︸ ︷
⋆ ⋆ · · · ⋆ |

(G)122︷ ︸︸ ︷
vv · · · v . . . ,
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where ⋆ indicates that the corresponding component has been erased and v means that the component
has been correctly received. If we use a (2, 1, 30) MDP convolutional code, we cannot perform a
correction due to the accumulation of erasures at the beginning of the sequence. Nevertheless, if
we consider a (2, 1, 30) reverse-MDP convolutional code and take the first 60 symbols of (C) as a
safe space, then we can correct the erasures in (B). We can repeat this method by taking the first
60 symbols in (G) and recovering the section (F), that is, we build the linear system as in (2) by
considering the following sets of symbols:

(B)108︷ ︸︸ ︷
vv ⋆ ⋆vv ⋆ ⋆ · · · vv ⋆ ⋆ |

(C)60︷ ︸︸ ︷
vv · · · v,

and
(E)34︷ ︸︸ ︷

vv · · · v
(F)34︷ ︸︸ ︷

⋆ ⋆ · · · ⋆ |
(G)60︷ ︸︸ ︷

vv · · · v .

This example shows that reverse-MDP convolutional codes can perform better than
MDP convolutional codes when transmitting over an erasure channel since we can exploit
its backward capability correction. However, this type of approach depends on the fact that
over the communication there exists a long enough sequence of symbols that have been
correctly received to play the role of a safe space for any of the decoding directions. The
following codes are aimed at solving the situation in which a safe space cannot be found.

Definition 6 ([13]). Let H(z) = ∑ν
i=0 Hizi ∈ Fq[z](n−k)×n be a parity-check matrix of an (n, k, δ)

convolutional code C and L := ⌊ δ
n−k ⌋+ ⌊ δ

k ⌋, then we obtain the matrix

H :=

 Hν . . . H0
. . . . . .

Hν . . . H0

 ∈ F(L+1)(n−k)×(ν+L+1)n,

which is called a partial parity-check matrix of C. Moreover, C is said to be a complete-MDP
convolutional code if, for any of its parity-check matrices H(z), every full-size minor of H that is
non-trivially zero is non-zero.

Complete-MDP convolutional codes have an extra feature on top of being able to
perform a correction as a MDP or as reverse-MDP convolutional codes. If, in the process of
decoding the code, we cannot accomplish the correction due to the accumulation of too
many erasures, it can compute a new safe space to continue with the process as soon as a
correctable sequence of symbols is found.

Theorem 4 ([13], Theorem 6.6). Given a code sequence from a complete-MDP convolutional code.
If, in a window of size (ν + L + 1)n, there are not more than (L + 1)(n − k) erasures, and if they
are distributed in such a way that between position 1 and sn and between positions (ν + L + 1)n
and (ν + L + 1)n − s(n − k), for s = 1, 2, . . . , L + 1, i.e., there are no more than s(n − k) erasures,
then the full correction of all symbols in this interval will be possible. In particular, a new safe space
can be computed.

For more constructions, examples, and further content on complete-MDP convolu-
tional codes, we refer the reader to [12,13,17].

Example 2. Again, let us assume that we are using an erasure channel. In this case, we are not
able to recover some of the previous symbols and we thus receive the following pattern:
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· · · ⋆ ⋆|
(A)14︷ ︸︸ ︷

⋆ ⋆ · · · ⋆
(B)21︷ ︸︸ ︷

vv · · · v
(C)12︷ ︸︸ ︷

⋆ ⋆ · · · ⋆
(D)28︷ ︸︸ ︷

vv · · · v |
(E)19︷ ︸︸ ︷

vv · · · v
(F)13︷ ︸︸ ︷

⋆ ⋆ · · · ⋆
(G)30︷ ︸︸ ︷

vv · · · v
(H)13︷ ︸︸ ︷

⋆ ⋆ · · · ⋆

|
(I)30︷ ︸︸ ︷

vv · · · v
(J)6︷ ︸︸ ︷

⋆ ⋆ · · · ⋆
(K)17︷ ︸︸ ︷

vv · · · v
(L)22︷ ︸︸ ︷

⋆ ⋆ · · · ⋆ | ⋆ ⋆ · · · .

Note that, if we use a (3, 2, 16) MDP or reverse-MDP convolutional code, we require a safe
space of 48 symbols to correct the erasures in any of the directions, which we cannot find.

Nevertheless, if we use a (3, 2, 16) complete-MDP convolutional code, we still have one more
feature to use. We can compute a new safe space by using Theorem 4, that is, find a window of size
(L + 1 + ν)n = (24 + 1 + 16)3 = 123 where not more than 25 erasures occur. In the received
pattern of erasures we can find the following sequence:

(B)21︷ ︸︸ ︷
vv · · · v

(C)12︷ ︸︸ ︷
⋆ ⋆ · · · ⋆

(D)28︷ ︸︸ ︷
vv · · · v |

(E)19︷ ︸︸ ︷
vv · · · v

(F)13︷ ︸︸ ︷
⋆ ⋆ · · · ⋆

(G)30︷ ︸︸ ︷
vv · · · v .

When erasures are recovered, we have a new safe space and we can perform the usual correction.

In [13], an algorithm to recover the information over an erasure channel by performing
correction in both directions, i.e., forward and backward, is given.

We provide Algorithm 1, which is a new version of the abovementioned algorithms
and includes the case for which the code can decode by using the complete-MDP property.
We will maintain the notation given in [13], that is, the value 0 means that a symbol
or a sequence of symbols has not been received and that 1 is correctly recovered. The
function findzeros(v) returns a vector with the positions of the zeros in v, as well as
forward(C, j, v), backward(C̄, j, v), and complete(C, v), which are the forward, backward,
and complete recovering functions, respectively. Note that these functions use the parity-
check matrices of C and C̄ to recover the erasures that appear in v within a window of size
(j + 1)n (when necessary).

2.2. 2D Convolutional Codes

Definition 7 ([1]). A 2D finite support convolutional code C of rate k/n is a free F[z1, z2]-
submodule of F[z1, z2]

n with rank k.

As for the 1D case, a full column rank polynomial matrix Ĝ(z1, z2), whose columns
form a basis for the code, is such that we can express it as follows:

C = ImF[z1,z2]
Ĝ(z1, z2)

=
{

v̂(z1, z2) ∈ F[z1, z2]
n | v̂(z1, z2) = Ĝ(z1, z2)û(z1, z2) with û(z1, z2) ∈ F[z1, z2]

k
}

,

which is called a generator matrix of C.
A polynomial matrix G(z1, z2) ∈ F[z1, z2]

n×k is said to be right factor prime if
G(z1, z2) = Ḡ(z1, z2)X(z1, z2), then for some X(z1, z2) ∈ F[z1, z2]

k×k and Ḡ(z1, z2) ∈
F[z1, z2]

n×k, X(z1, z2) is unimodular (i.e., X(z1, z2) has a polynomial inverse). Again, simi-
larly to the 1D case, if the code admits a right factor prime generator matrix, then it can be
defined by using its full rank polynomial parity-check matrix Ĥ(z1, z2) ∈ F[z1, z2]

(n−k)×n

as follows:

C = KerF[z1,z2]
Ĥ(z1, z2) =

{
v̂(z1, z2) ∈ F[z1, z2]

n |Ĥ(z1, z2)v̂(z1, z2) = 0
}

.
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Algorithm 1 Decoding algorithm for complete-MDP codes

Input: [v0, . . . , vℓ] the received sequence.
Output: [v0, . . . , vℓ] the corrected sequence.

1: i = 0
2: while i ≤ ℓ do
3: f orwardsucces = 0
4: backwardsucces = 0
5: completesucces = 0
6: if vi = 0 then
7: if [vi−νn, . . . , vi−1] = 1 then
8: j = L
9: while f orwardsucces = 0 and j ≥ 0 do

10: if length(findzeros([vi, . . . , vi+(j+1)n−1]))≤ (j + 1)(n − k) then
11: [vi−νn, . . . , vi+(j+1)n−1] :=forward(C, j, [[vi−νn, . . . , vi+(j+1)n−1]])
12: f orwardsucces = 1
13: i = i + (j + 1)n − 1
14: j = j − 1
15: if f orwardsucces ̸= 1 then
16: Aux=findzeros([vi, . . . , vi+(L+1)n−1])
17: k = i + Aux[length(Aux)] − 1
18: while backwardsucces = 0 and k ≤ ℓ do
19: if [vk, . . . , vk+νn−1] = 1 then
20: j = L
21: while backwardsucces = 0 and j ≥ 0 do
22: if length(findzeros([vk−(j+1)n, . . . , vk−1]))≤ (j + 1)(n − k) then
23: [vk−(j+1)n, . . . , vk+νn−1] :=backward(C̄, j, [vk−(j+1)n, . . . , vk+νn−1])
24: backwardsucces = 1
25: i = k + νn − 1
26: j = j − 1
27: k = k + 1
28: if backwardsucces ̸= 1 then
29: h = i
30: while completesucces = 0 and h ≤ ℓ do
31: E1 := {length(findzeros([vh, . . . , vh+(j+1)n−1])) for j = 0, . . . , L}
32: E2 := {length(findzeros([vh+(ν+L+1)n−(j+1)(n−k), . . . , vh+(ν+L+1)n])) for j =

0, . . . , L}
33: if E1[j] ≤ (j + 1)(n − k) and E2[j] ≤ (j + 1)(n − k) for all j = 0, . . . , L then
34: [vh, . . . , vh+(ν+L+1)n−1] :=complete(C, [vh, . . . , vh+(ν+L+1)n−1])
35: completesucces = 1
36: i = i + (ν + L + 1)n
37: h = h + 1
38: i = i + 1

Since we are going to deal with a situation in which the elements of the codewords are
distributed in the plane N2, we will consider the order given by

(a, b) ≺ (c, d) if and only if a + b < c + d,

or a + b = c + d and b < d.

The codeword v̂(z1, z2) = ∑0≤a+b≤γ v(a, b)za
1zb

2 ∈ F[z1, z2]
n and the matrix

Ĥ(z1, z2) = ∑0≤i+j≤ν H(i, j)zi
1zj

2 ∈ F[z1, z2]
(n−k)×n are represented with its coefficients in order,

respectively, as follows:

v̂(z1, z2) = v(0, 0) + v(1, 0)z1 + v(0, 1)z2 + · · ·+ v(γ, 0)zγ
1 + · · ·+ v(0, γ)zγ

2
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and

Ĥ(z1, z2) = H(0, 0) + H(1, 0)z1 + H(0, 1)z2 + · · ·+ H(δ, 0)zν
1 + · · ·+ H(0, δ)zν

2.

Note that this depiction allows us to see the kernel representation in a more detailed
manner as

∑
0≤a+b≤γ

[
∑

0≤i+j≤ν

H(i, j)v(a − i, b − j)

]
za

1zb
2 = 0,

where v(l, k) = 0 if l + k > γ + ν or l + k < 0. It is also possible to denote this product
using constant matrices

Hv = 0, (4)

where
v =

[
v(0, 0)T v(1, 0)T v(0, 1)T v(2, 0)T v(1, 1)T · · · v(0, γ)T

]T

is a vector in F
(γ+1)(γ+2)

2 n, and H is a (γ+ν+1)(γ+ν+2)
2 (n − k)× (γ+1)(γ+2)

2 n matrix over F. An

example of this matrix correspondent to a parity-check matrix Ĥ(z1, z2) = ∑0≤i+j≤3 H(i, j)zi
1zj

2
is presented in Figure 1. Is easy to see that it does not follow the same pattern of con-
struction as the partial parity-check matrix in the 1D case. Note that all the matrix co-
efficients H(i, j) of Ĥ(z1, z2) appeared in all the columns following the previously estab-
lished order ≺ with the particularity that, for t = 0, 1, 2, . . . in the block columns with
indices t(t+1)

2 + 1, t(t+1)
2 + 2, . . . , t(t+1)

2 + t + 1, the coefficients H(i, j) with i + j = d
for d = 0, 1, 2, . . . , δ − 1 were separated from the matrices H(i, j) with i + j = d + 1 by t
zero blocks.


H(0, 0)
H(1, 0) H(0, 0)
H(0, 1) O H(0, 0)
H(2, 0) H(1, 0) O H(0, 0)
H(1, 1) H(0, 1) H(1, 0) O H(0, 0)
H(0, 2) O H(0, 1) O O H(0, 0)
H(3, 0) H(2, 0) O H(1, 0) O O H(0, 0)
H(2, 1) H(1, 1) H(2, 0) H(0, 1) H(1, 0) O O H(0, 0)
H(1, 2) H(0, 2) H(1, 1) O H(0, 1) H(1, 0) O O H(0, 0)
H(0, 3) O H(0, 2) O O H(0, 1) O O O H(0, 0)

H(3, 0) O H(2, 0) O O H(1, 0) O O O
. . .

H(2, 1) H(3, 0) H(1, 1) H(2, 0) O H(0, 1) H(1, 0) O O
. . .

H(1, 2) H(2, 1) H(0, 2) H(1, 1) H(2, 0) O H(0, 1) H(1, 0) O
. . .

H(0, 3) H(1, 2) O H(0, 2) H(1, 1) O O H(0, 1) H(1, 0)
. . .

H(0, 3) O O H(0, 2) O O O H(0, 1)
. . .

H(3, 0) O O H(2, 0) O O O
. . .

H(2, 1) H(3, 0) O H(1, 1) H(2, 0) O O
. . .

H(1, 2) H(2, 1) H(3, 0) H(0, 2) H(1, 1) H(2, 0) O
. . .

H(0, 3) H(1, 2) H(2, 1) O H(0, 2) H(1, 1) H(2, 0)
. . .

H(0, 3) H(1, 2) O O H(0, 2) H(1, 1)
. . .

H(0, 3) O O O H(0, 2)
. . .

H(3, 0) O O O
. . .

H(2, 1) H(3, 0) O O
. . .

H(1, 2) H(2, 1) H(3, 0) O
. . .

H(0, 3) H(1, 2) H(2, 1) H(3, 0)
. . .

H(0, 3) H(1, 2) H(2, 1)
. . .

H(0, 3) H(1, 2)
. . .

H(0, 3)
. . .
. . .


Figure 1. Matrix H.
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Consider now that v̂(z1, z2) ∈ F[z1, z2] has been transmitted over an erasure chan-
nel. We define the support of v̂(z1, z2) = ∑(a,b)∈N2

0
v(a, b)za

1zb
2 as the set of indices of the

coefficients of v̂(z1, z2) that are non-zero, i. e.,

supp(v̂(z1, z2)) = {(a, b) ∈ N2
0 : v(a, b) ̸= 0}.

Let E(v̂(z1, z2)) be the set of indices of the support of v̂(z1, z2) in which there are
erasures in the corresponding coefficients of v̂(z1, z2) and Ē(v̂(z1, z2)) = supp(v̂(z1, z2))\
E(v̂(z1, z2)), i.e., the set of indices of the support of v̂(z1, z2) correspond to the coefficients
that were correctly received. For the sake of simplicity, and if the context allows it, we
will denote E(v̂(z1, z2)) as E . In Figure 2 an example of erasures distributed in the plane
is presented.

Since we have the kernel representation (4) of the code in a block fashion, we can
consider the equivalent linear system HEvE = −HĒvĒ , where HE and HĒ denote the
submatrices of H where block columns are indexed by E and Ē , respectively. Correspond-
ingly, vE and vĒ refer to the subvectors of v, whose block rows are indexed by E and Ē ,
respectively. In order to recover the erasures, we solved the linear system HEvE = −HĒvĒ
by considering the erased components of vE as the unknowns. Note that HĒvĒ is known.

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

Figure 2. Erasures (red dots) distributed in N2.

As pointed out in [9], this system is massive even when the parameters of the code are
small. The authors in this paper developed an algorithm to deal with this situation in being
able to recover the information more efficiently. They proposed to decode it by a set of lines,
that is, to choose a set of erasures in a line E l (i.e., horizontal (E h), vertical (E v), or diagonal
(E d)), as well as to define a neighborhood for this set of erasures and then use all the correct
information within these related coefficients to construct and solve a linear system.

Next, we describe such a method for the correction of erasures in horizontal lines,
wherein the method for vertical and diagonal will be analogous. Let us consider a subset of
E , E h

s , where its subindices lie in an horizontal line with the vertical coordinate s, that is,

E h
s = {(r, s) r ∈ N0} ∩ E . (5)

With this in mind we can “rewrite” (4) as

HEh vEh = −HĒ h vĒh , (6)

where—similar to the above—HEh and HĒh indicate the submatrices of H that are indexed
by E h and Ē h = supp(v̂(z1, z2)) \ E h block-wise, respectively, as well as where vEh and vĒ h

are defined analogously. (Note that vĒh may contain erasures.)

Definition 8. Let Wt be a horizontal window of length t + 1. i.e.,

Wt = {(r, s), (r + 1, s), . . . , (r + t, s)},
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for some r ∈ N0. We then define the following neighborhood of Wt as

Ων(Wt) = {(a, b) | r − ν ≤ a ≤ r + t + ν, s − ν ≤ b ≤ s,
a + b ≥ r + s − ν, r ≥ ν, s ≥ ν} .

Example 3. Let W3 = {(3, 4), (4, 4), (5, 4), (6, 4)}, which is represented in Figure 3 as big red
dots. In addition, Ω2(W3) is depicted in Figure 3.

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

Figure 3. Ω2(W3), neighborhood of W3.

Note that the neighborhood is constituted of an aligned set of triangles. The main
role of the above defined neighbors in the decoding process is described in the next set of
results from [9].

Lemma 2 ([9]). Let C = KerF[z1,z2]
Ĥ(z1, z2) with Ĥ(z1, z2) = ∑0≤i+j≤ν H(i, j)zi

1zj
2. Suppose

that v̂(z1, z2) ∈ C is a transmitted codeword, then E is the support of its coefficients with erasures
and E h ⊆ E is the support of the coefficients with erasures that are distributed on a horizontal line
in N2

0 in a window W of length t + 1 such that E h ⊂ W. Consider H and v as in (4), as well as
HW and vW as in (6). Then, define the vector vΩ by selecting the coefficients v(c, d) of v with
(c, d) ∈ Ων(W)\W. Define HΩν

as a submatrix of H accordingly. Then, it holds that

HWvW = −HΩν
vΩν

, (7)

where

HW =



H(0, 0)
H(1, 0) H(0, 0)
H(2, 0) H(1, 0) H(0, 0)

...
...

...
. . .

H(ν, 0) H(ν − 1, 0) H(ν − 2, 0)
H(ν, 0) H(ν − 1, 0) . . . . . . H(0, 0)

. . . . . . . . .
. . . . . . H(0, 0)

. . .
...

H(ν, 0) H(ν − 1, 0)
H(ν, 0)



, (8)

is an (n − k)(t + 1 + ν − j)× n(t + 1) matrix.
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It is easy to see that the structure of the matrix in (8) is the same as the partial parity-
check matrix of a 1D convolutional code. By taking into account this similarity we define the
1D convolutional code Ch, which is associated with a 2D convolutional code C as follows:

Ch = KerF[z]Ĥ
(h)(z), (9)

where
Ĥ(h)(z) = H(0, 0) + H(1, 0)z + · · ·+ H(ν, 0)zν (10)

with column distances dc
j (ℓ), ℓ ≥ 0.

Lemma 3 ([9]). Let C = KerF[z1,z2]
Ĥ(z1, z2) with Ĥ(z1, z2) = ∑0≤i+j≤ν H(i, j)zi

1zj
2. Suppose

that v̂(z1, z2) ∈ C is a transmitted codeword, E is the support of its coefficients with erasures, and
E h ⊆ E is the support of the coefficients with its erasures distributed on a horizontal line in N2

0 in a
window W of length t + 1 such that E h ⊂ W. If Ων(Wt) contains only indices in E h (and not in
E\(E h)), we have

HWvW = aj0 , (11)

where aj0 = −HΩν
vΩν

is known and HW is as in (8). Moreover, consider the 1D convolutional
code Ch with a parity check as defined in (10) and with a column distance dℓ, ℓ ≥ 0. If there exists
ℓ0 such that at most there are dc

ℓ0
− 1 erasures that occur in any (ℓ0 + 1)n consecutive components

of vW , then we can completely recover the vector vW .

The requirement for ΩW to contain just the erasures in E h plays the role of the safe
space for the 1D convolutional codes.

Example 4. Let C be a 2D convolutional code with a parity-check matrix as follows:

Ĥ(z1, z2) = H(0, 0) + H(1, 0)z1 + H(0, 1)z2 + H(2, 0)z2 + H(1, 1)z1z2 + H(0, 2)z2
2.

We define the 1D convolutional codes Ch = KerF[z]Ĥ(0), where

Ĥ(0) = H(0, 0) + H(1, 0)z + H(2, 0)z2.

Let us assume that we receive the pattern of erasures that are shown in Figure 4 (red dots), and
let us consider the erasures on the first line (big red dots), i.e.,

E h
3 = {v(3, 3), v(4, 3), v(5, 3)}

and set W = E h
3 . To correct E h

3 , we use the code C by Lemma 3. To do so, we build a system as
in (3), where

H0
Eh =



H(0, 0)
H(1, 0) H(0, 0)
H(2, 0) H(1, 0) H(0, 0)

H(2, 0) H(1, 0) H(0, 0)
H(2, 0) H(1, 0)

H(2, 0)

; vE h =


v(3, 4)
v(4, 4)
v(5, 4)
v(6, 4)


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and

a0 = −



H(0, 2) H(1, 1) H(2, 0) 0 H(0, 1) H(1, 0)
H(0, 2) H(1, 1) H(2, 0) 0 H(0, 1)

H(0, 2) H(1, 1) 0 H(0, 1)
H(0, 2) H(1, 1) 0 H(0, 1)

H(0, 2) H(1, 1) 0 H(0, 1)
H(0, 2) H(1, 1)





v(3, 2)
v(2, 3)
v(1, 4)
v(4, 2)
v(3, 3)
v(2, 4)
v(5, 2)
v(4, 3)
v(6, 2)
v(5, 3)
v(7, 2)
v(6, 3)
v(8, 2)
v(7, 3)



In Lemma 3, it is said that one can conduct a partial correction in line by using the
column distances of the used convolutional code. In Example 5, we can see how this partial
recovery is performed.

Example 5. Let C be a (3, 1, 2) 2D convolutional code with a parity-check matrix
H(z1, z2) = H(0, 0) + H(1, 0)z1 + H(0, 1)z2 + H(2, 0)z2

1 + H(1, 1)z1z2 + H(0, 2)z2
2. Let us

assume that we receive the pattern of erasures that are shown in Figure 4 (red dots). As mentioned
above, we will try to recover the horizontal lines from below to above; therefore, we will try to recover
the erasures on the first line (big red dots), i.e., E h = {v(3, 3), v(4, 3), v(5, 3)}. Since we have some
erasures on the top line, we will consider the code Ch associated with the neighbor Ω2(E h) (i.e., the
whole gray area).

1 2 3 4 5 6 7 8 9

1
2
3
4
5

Coeff. # Erasure
v(3, 3) 3
v(4, 3) 2
v(5, 3) 1

Figure 4. Erasures (red dots) distributed in N2.

We assumed that the 1D convolutional code C0 has the column distances d0 = 2, d1 = 4,
d2 = 5, and d3 = 6. Note that the total amount of erasures holds that 6 ≤ d3 − 1 = 6; therefore,
we have to consider a window of a (L + 1)n = (3 + 1)3 = 12 size (the big red dots and black dot).
By following the proof of Lemma 3 in [9], we picked the first (L + 1)(n − k) = 32 equations from
the system H̃0

Eh ṽEh = ã0 and obtained the following system:
H(0, 0)
H(1, 0) H(0, 0)
H(2, 0) H(1, 0) H(0, 0)

H(2, 0) H(1, 0) H(0, 0)




v(3, 3)
v(4, 3)
v(5, 3)
v(6, 3)

 = ã0.

As proven in [13], once we solved this system we were able to successfully recover the erasures in
v(3, 3). We then shifted the window and repeated the process until the recovery was fully completed.

As we mentioned at the beginning of this section, analogous methods can be described
by taking lines of erasures in a vertical or diagonal fashion. In [9], it was said that, to
decode a set of erasures in the grid N2, one can carry out the horizontal decoding as was
explicitly conducted above in the “from below to above” direction until is not possible
to correct anymore. Afterward, execute the algorithm by taking the vertical lines of the
erasures and correcting them in the “from left to right” direction until no more corrections
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can be made. Finally, we followed the same procedure with diagonal lines of erasures, and
we then repeated this cycle until any of them were able to recover further information.

3. Construction of 2D Convolutional Codes from 1D Convolutional Codes

In this section, we propose a construction of 2D convolutional codes from a 1D
convolutional code.

Let Ĉ be an (n, k) non-catastrophic 1D convolutional code with a parity-check matrix
Ĥ(z) = ∑2ν

i=0 Hizi ∈ Fq[z](n−k)×n. Consider the 2D convolutional code C, which is defined
by the parity-check matrix

H(z1, z2) =
ν

∑
i=0

2i

∑
j=i

Hjz
2i−j
1 zj−i

2

= H0 + H1z1 + H2z2 + H2z2
1 + H3z1z2

+ H4z2
2 + · · ·+ Hνzν

1 + · · ·+ H2νzν
2. (12)

We consider the 1D convolutional codes associated with C (named horizontal, vertical,
and diagonal), which are constructed by its line positions as follows:

• Horizontal: Ch = KerHh(z);
• Vertical: Cv = KerHv(z);
• Diagonal: Cd = KerHd(z),

where the matrices Hh, Hv, and Hd ∈ Fq[z](n−k)×n are defined by

Hh(z) =
ν

∑
i=0

Hizi

= H0 + H1z + H2z2 + · · ·+ Hνzν.

Hv(z) =
ν

∑
i=0

H2izi

= H0 + H2z + H4z2 + · · ·+ H2νzν.

Hd(z) =
ν

∑
i=0

Hν+izi

= Hν + Hν+1z + Hν+2z2 + · · ·+ H2νzν.

Naturally, at this point, one wants to know if the optimal properties of Ĉ are inherited
by the line associated codes Ch, Cv, and Cd. In particular, we were interested in the
complete-MDP property. In general, these codes did not inherit this property as the next
examples show.

Example 6. In [28], Almeida and Lieb presented a description of all (2, 1, 2) complete-MDP
convolutional codes over the smallest possible fields. Let Ĉ be the one of these (2, 1, 2) convolutional
code over F13, which is defined by the parity-check matrix Ĥ(z) = Ho + H1z + H2z2, where
H2 = [1, 1], H1 = [2, 9] and H0 = [8, 8], which is a complete-MDP (as stated in Theorem 13 [28]).
Note that the partial parity-check matrices for the vertical, horizontal, and diagonal associated
codes are

Hv =
(

H2 H0
H2 H0

H2 H0

)
Hh =

(
H1 H0

H1 H0
H1 H0

)
Hd =

(
H2 H1

H2 H1
H2 H1

)
,

respectively, and the parameters of these codes are (2, 1, 1). For Hv, the non-trivial zero minor,
which is zero, can be obtained by considering columns 1, 5, and 6:
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∣∣∣∣∣∣
1 0 0
0 8 8
0 1 1

∣∣∣∣∣∣,
which means that Cv is not a complete-MDP. With a similar reasoning, we see that Ch and Cd

are also not complete-MDPs. As such, in this case, no associated code maintained the complete-
MDP property.

Next, we considered a 1D complete-MDP, which is defined in [17], as follows:

Lemma 4 ([17]). For a, b ∈ N, with b < a, let

X =


1 0

1
. . .
. . . . . .

0 1 1

 ∈ Za×a

and let X̂ := (Xb)
j1,...,jr
i1,...,ir be constructed out of rows 1 ≤ i1 ≤ · · · ir ≤ a and columns 1 ≤ j1 ≤

· · · ≤ jr ≤ a of

Xb =



1 0

(b
1)

. . .
...

. . . . . .

( b
b−1)

. . . . . .

1
. . . . . . . . .
. . . . . . . . . . . .

0 1 ( b
b−1) · · · (b

1) 1


.

Then, we have det(X̂) ≥ 0 and det(X̂) > 0 ⇔ jl ∈ {il − b, ..., il} for l = 1, ..., r.

Theorem 5 ([17]). With the notation from the preceding lemma, choose X ∈ F(ν+L+1)n×(ν+L+1)n,
i.e., a := (ν + L + 1)n, as well as b := νn + k.

For j = 0, ..., L, set Ij = {(ν + j)n + k + 1, ..., (ν + j + 1)n} and I = ∪L
j=0 Ij. Then, those

rows of Xb, whose indices lie in I, form the partial parity-check matrix of an (n, k, δ) complete-

MDP convolutional code if the characteristic of the field is greater than ( νn+k
⌊1/2(νn+k)⌋)

(n−k)(L+1)·
((n − k)(L + 1))1/2(n−k)(L+1).

Let Ĉ be the 1D complete-MDP convolutional code defined in Theorem 5 with the
degree 2δ. In the construction, it was assumed that 2δ = 2ν(n − k). The associated line
codes defined from Ĉ had the parameters (n, k, δ).

The next theorem shows that the associated vertical 1D convolutional code was also a
complete-MDP.

Theorem 6. Let C be a 2D convolutional code that was constructed as in (12) by using a (n, k, 2δ)
1D complete-MDP convolutional code Ĉ, as shown in Theorem 5 with the parity-check matrix
H(z) = ∑2ν

i=0 Hizi, where 2ν = 2δ
n−k . Then, the associated line code Cv with the parity-check matrix

Hv(z) =
ν

∑
i=0

H2izi

is an (n, k, δ) 1D complete-MDP convolutional code.
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Proof. The proof follows since every full-size minor of Hv that is not trivially zero is
a non-trivial minor of Xb, which is a super-regular matrix by Lemma 4. In fact, Lieb
showed Theorem 5 [17]. This proof involves demonstrating that the conditions of the
indices of the columns in the partial parity-check matrix H, which describes non-trivial
zero full-size minors, are equivalent to the conditions outlined in Lemma 4. Moreover,
both sets of conditions were found to be mutually equivalent to jl ∈ {l + kx, . . . , l + kx +
νn + k}, where x ∈ {0, . . . , L} is chosen such that l ∈ {x(n − k) + 1, . . . , (x + 1)(n − k)}.
Now, to prove the theorem, it is sufficient to observe that the columns of Hv still satisfy
jl ∈ {l + 2kx, . . . , l + 2kx + 2νn + k}\{(x + 1)n + 1, . . . (x + 2)n}, where x ∈ {0, . . . , L/2}
is chosen such that l ∈ {2x(n − k) + 1, . . . , (2x + 1)(n − k)}. It is worth remembering that
Hv is obtained from H by removing all the block-rows (of size n − k) and block-columns (of
size n) with odd indices.

Although the horizontal and diagonal associated line codes do not maintain the opti-
mality as is the case in the vertical one, these codes still satisfy a weaker optimality property.

Theorem 7. Let C be a 2D convolutional code, constructed as in (12), by using a (n, k, 2δ) 1D
complete-MDP convolutional code Ĉ, as represented in Theorem 5 with the parity-check matrix
H(z) = ∑2ν

i=0 Hizi, where 2ν = 2δ
n−k . Then, the horizontal Ch and the reverse diagonal Cd

associated line codes are expressed with the parity-check matrices

Hh(z) =
ν

∑
i=0

Hizi

= H0 + H1z + H2z2 + · · ·+ Hνzν.

Hd(z) =
ν

∑
i=0

H2ν−izi

= Hν + Hν+1z + Hν+2z2 + · · ·+ H2νzν.

respectively, which are (n, k, δ) 1D convolutional codes with the column distance dc
ν = (n− k)(ν+1)+1.

Proof. By ([15], Prop 2.1), we need to show that the matrices

Hh :=

 H0
...

. . .
Hν . . . H0

Hd :=

 H2ν
...

. . .
Hν . . . H2ν


have the property that every full-size minor that is non-trivially zero is non-zero. Note that
Hd can be viewed as the submatrix of the partial parity-check matrix of Ĉ, H by considering
it as the first (ν+ 1)(n− k) rows and (ν+ 1)n columns. In this context, considering that H is
superregular, we can deduce that, within Hd, every non-trivial full-size minor is non-zero.

For Hh, note that it is exactly the submatrix of H that considers the first (ν + 1)(n − k)
rows and the columns with indices in the set {2νn + 1, . . . , (3ν + 1)n + 1}, as well as
the conditions over the columns of the nontrivial minors that imply the condition of
Lemma 4.

While it is demonstrated in this section that the associated line 1D convolutional codes
do not necessarily inherit the complete-MDP property of the 1D convolutional code Ĉ, there
exist codes in which this phenomenon occurs. The next section presents a construction of
a 2D convolutional code from a complete-MDP 1D convolutional code, whose associated
line of 1D convolutional codes are also complete-MDPs. These types of codes are the ones
that perform better with the decoding procedure that we are considering, which we will
also see later in Section 5.
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4. An Optimal Construction

In this section, we present the construction of an optimal 2D convolutional code in the
sense that all its associated line codes hold the complete-MDP property. In this case, we
will use a complete-MDP 1D convolutional code that was introduced in [17].

Theorem 8 ([17]). Let n, k, δ ∈ N with k < n and (n − k)|δ, and let α be a primitive element of a
finite field FpN with N > (L + 1)2(ν+2)n−k−1. Then, H(z) = ∑ν

i=0 Hizi with

Hi =


α2in · · · α2(i+1)n−1

...
...

α2(i+1)n−k−1 · · · α2(i+2)n−k−2


for i = 0, . . . , ν = δ

n−k is the parity-check matrix of an (n, k, δ) complete-MDP convolutional code.

In order to prove the optimality of our constructions, we will need the next result,
which states that the matrices considered in Theorem 8 are superregular.

Proposition 2 ([16]). Let α be a primitive element of a finite field F = FpN , and let B = [bi ℓ] be a
matrix over F with the following properties:

1. If bi ℓ ̸= 0, then bi ℓ = αβi ℓ for a positive integer βi ℓ;
2. If bi ℓ = 0, then bi′ ℓ = 0 for any i′ > i, or bi ℓ′ = 0 for any ℓ′ < ℓ;
3. If ℓ < ℓ′, bi ℓ ̸= 0, and bi ℓ′ ̸= 0, then 2βi ℓ ≤ βi ℓ′ ;
4. If i < i′, bi ℓ ̸= 0, and bi′ ℓ ̸= 0, then 2βi ℓ ≤ βi′ ℓ.

Suppose N is greater than any exponent of α appearing as a non-trivial term of any minor of
B, then B is superregular.

It is worth mentioning that if we have two matrices A and B that are equivalent
(i.e., that we can obtain A from B by using row and column linear transformations), and if
one of them holds the hypothesis of the theorem, then both of them are superregular.

Theorem 9. Let C be a 2D convolutional code, which was constructed as in (12) by using a
(n, k, 2δ) 1D complete-MDP convolutional code Ĉ, as expressed in Theorem 8, with the parity-check
matrix H(z) = ∑2ν

i=0 Hizi, where ν = δ
n−k . Then, the associated line codes, Ch, Cv, and Cd are

(n, k, δ) 1D complete-MDP convolutional codes.

Proof. Recall that the associated line 1D convolutional codes Ch, Cv, and Cd have the
parity-check matrices

Hh(z) =
ν

∑
i=0

Hizi

= H0 + H1z + H2z2 + · · ·+ Hνzν.

Hv(z) =
ν

∑
i=0

H2izi

= H0 + H2z + H4z2 + · · ·+ H2νzν.

Hd(z) =
ν

∑
i=0

Hν+izi

= Hν + Hν+1z + Hν+2z2 + · · ·+ H2νzν.
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To see that Ch, Cv, and Cd are 1D complete-MDP codes, we need to prove that the
non-trivial zero full-size minors of the matrices

Hh =


Hν Hν−1 . . . H0

Hν H1 H0
. . . . . . . . .

Hν . . . H1 H0

 ∈ F(L′+1)(n−k)×(ν+L′+1)n,

Hv =


H2ν H2ν−2 . . . H0

H2ν H2 H0
. . . . . . . . .

H2ν . . . H2 H0

 ∈ F(L′+1)(n−k)×(ν+L′+1)n,

Hd =


H2ν Hν−1 . . . Hν

H2ν Hν+1 Hν

. . . . . . . . .
H2ν . . . Hν+1 Hν

 ∈ F(L′+1)(n−k)×(ν+L′+1)n. (13)

are non-zero, where L′ = L
2 . To this end, we will see that they satisfy the conditions of

Proposition 2, i.e., that they are superregular.
First, since Ĉ is a complete-MDP code, we have

H =


H2ν Hν−1 . . . H0

H2ν H1 H0
. . . . . . . . .

H2ν . . . H1 H0

,

which has the property that all its full-size minors that are not trivially zero are non-zero.
Note that we can see Hv as a submatrix of H when removing all the block-rows and block-
columns with odd indices. Now, is easy to see that if all of the non-trivial zero full-size
minors of Hv are not trivially minors of H, then they are non-zero.

Finally, through following the same argument as in the proof of Theorem 8 in [17], if
we permute the columns of Hh and Hd in such a way that they have reverse order, then
we have

H0 . . . Hν−1 Hν

... ... ...
H0 Hν−1 Hν

H0 H1 . . . Hν

 and


Hν . . . H2ν−1 H2ν

... ... ...
Hν H2ν−1 H2ν

Hν Hν+1 . . . H2ν

,

which keeps the same terms for the non-trivial zero full-size minors. It is easy to see
that these matrices fulfill the conditions of Proposition 2, thus making them super
regular matrices.

Example 7. Consider the (3, 1, 4) 1D convolutional code C ′ over FpN , which was constructed as in

Theorem 8, having the parity-check matrix H(z) = H0 + H1z+ H2z2 with H0 =

[
α α2 α4

α2 α4 α8

]
,

H1 =

[
α8 α16 α32

α16 α32 α64

]
, and H2 =

[
α64 α128 α256

α128 α256 α512

]
. Note that in order to obtain a

complete-MDP code, N > 7168. The 2D convolutional code obtained by following the proposed
construction was a (3, 1, 1) 2D convolutional code with the parity-check matrix

H(z1, z2) = H0 + H1z1 + H2z2,
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and its line associated codes had the following parity-check matrices:

Hh(z) = H0 + H1z ; Hv(z) = H0 + H2z ; Hd(z) = H1 + H2z.

Note that for C ′ and L = 6, its line associated codes are therefore L′ = 3. Now, it is clear
that Hv is a submatrix of H when looking at (14); on the other hand, Hh and Hd cannot be seen as
submatrices of H.

H =



H2 H1 H0
H2 H1 H0

H2 H1 H0
H2 H1 H0

H2 H1 H0
H2 H1 H0

H2 H1 H0


; Hv =


H2 H0

H2 H0
H2 H0

H2 H0

. (14)

5. Decoding Algorithm

In this section, we provide a decoding algorithm for the 2D convolutional codes whose
associated line 1D convolutional codes were complete-MDPs. We will use Algorithm 1,
which was introduced in the previous section, to perform the corrections over the lines (i.e.,
horizontal, vertical, and diagonal).

First, we present the construction of a sort algorithm to obtain the lines for which we
will perform the correction of erasures. This procedure will provide the set of coefficients
of the received codeword v(z1, z2) for the line decoding that was presented in the previous
section depending on the orientation of the line we need to correct. The mergesort(E)
function will sort the set E ∈ N2 by using the above order ≺.

This algorithm chooses the first horizontal line that has some erasure (i.e., the line E h
s

where s is the minimum integer such that E h
s ̸= ∅), as well as the first vertical line that

has some erasure or the last diagonal lien with erasures. By doing this, we can correct the
lines as explained above. Algorithm 2 depicts the procedure explained in [9] and above in
a pseudo-code fashion.

In the proposed routine, we start by extracting the coordinates with erasures E , and
we later use Algorithm 3 to obtain the sequence of vectors to be corrected by Algorithm 1.
In this case, Algorithm 1 can perform analogously but by building the linear systems as in
Lemma 3. After performing the decoding, depending on the amount of erasures that are
recovered, it changes orientation or returns back to horizontal decoding. When it cannot
correct more erasures in any orientation ( f ail = 3), it stops.

Very recently, in [10], an alternative decoding algorithm for 2D convolutional codes
was presented. The proposed method also follows the idea of decoding in two directions:
horizontal and vertical. Although the main guideline is similar, the performance and the
algebraic properties used are very different. Let G(z1, z2) be the generator matrix of a 2D
convolutional code, which can be expressed as follows:

G(z1, z2) =
µ1

∑
i=0

G(2)
i (z2)zi

1,

where µ1 = degz1
(G(z1, z2)) , and G(2)

i (z2) = ∑i Gijzi
2. Then, we can encode the message

u(z1, z2) =
m2

∑
j=0

u(2)
j (z2)z

j
1

to the codeword

v(z1, z2) =
m2+µ2

∑
j=0

v(2)j (z2)z
j
1
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with
v(2)j (z2) = ∑

l+k=j
G(2)

l (z2)u
(2)
k (z2).

Note that, for this description, the coefficients of v(2)j (z2) form the j-th horizontal line,

and the analogously coefficient v(1)j (z1) determine the j-th vertical line.

Algorithm 2 Decoding 2D convolutional codes

Input: v(z1, z2), received codeword
Output: v(z1, z2), corrected codeword

1: f ail = 0
2: med = 0
3: ori = 0
4: E = {v(a, b) | v(a, b) ∈ v(z1, z2) and v(a, b) = 0}
5: while f ail < 3 do
6: if med = 0 then {Decides orientation depending on med}
7: ori = h
8: ext = (0, L)
9: else if med = 1 then

10: ori = v
11: ext = (L, 0)
12: else if med = 2 then
13: ori = d
14: ext = (L,−L)
15: E ori = Algorithm2(E , ori)
16: emin = min≺ (a, b) ∈ E ori

17: emax = max≺ (a, b) ∈ E ori

18: [v0, . . . , vℓ] := [v(emin), . . . , v(emax + ext)]
19: [v0, . . . , vℓ] := Algorithm1(Cj0 , [v0, . . . , vℓ])
20: Rori = {(a, b) | vi = v(a, b) and vi = 1}{correct coordinates}
21: E = E \ Rori

22: if length(Rori) = ℓ+ 1 then {All corrected}
23: f ail = 0
24: med = 0
25: else if length(Rori) > ℓ+ 1 − length(E ori) then {Some corrected}
26: f ail = 0
27: med = med + 1
28: else if length(Rori) = ℓ+ 1 − length(E ori) then {None corrected}
29: f ail = f ail + 1
30: med = med + 1

Algorithm 3 Choosing the set of coefficients E i to be corrected

Input: v(z1, z2), E and an orientation h, v or d
Output: E i with i ∈ {h, v, d}.

1: if i=h then
2: ch = min(a,b)∈E{b} {We pick the index of the first row}
3: E h := mergesort({(a, b) | (a, b) ∈ E and b = ch})
4: else if i=v then
5: cv = min(a,b)∈E{a} {We pick the index of the first row}
6: E v := mergesort({(a, b) | (a, b) ∈ E and a = cv})
7: else if i=d then
8: cd = max(a,b)∈E{a + b} {We pick the index of the last diagonal}
9: E d := mergesort({(a, b) | (a, b) ∈ E and a + b = cd})
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There are two main differences with respect to the algorithm described in this paper,
the first of which is the decoding performance in a given line. While Algorithm 1 tries
forward, backward, and complete-MDP (if possible) decoding for a given line, the method
from [10] performs partial corrections that may leave gaps of erasures, whereby when it
later it tries to fill those gaps it is always in the forward direction. This last-mentioned
process of “filling the gaps” was performed by correcting one point at a time; however, this
may make this algorithm less efficient in terms of time.

The second difference was the requirement of a neighborhood. Whereas our algorithm
needs a safe neighborhood to perform a correction, this new approach does not require it.
This allows it to have more plasticity, that is, it can correct a line when the adjacent ones
still have erasures. This feature makes this new approach more flexible against different
erasure patterns.

Example 8. Let us consider Example 3 in [10]. In Figure 5, the pattern of erasures (∗) considered
in that example is shown. We will use this example to understand how different the behavior of the
algorithms is. We assumed that we received a codeword (with erasures) v̂(z1, z2) = ∑0≤i,j≤6 v̂ijzi

1zj
2,

where ∗ denotes an erasure and vij =

(
vij,1
vij,2

)
for i, j = 1, . . . , 6. By applying the algorithm

in [10], the order of decoding was as follows: First—by horizontal decoding—v01, v03, and v04
were recovered. Then—by vertical decoding—v20, v30, v11, v31, v12, and v32 were recovered. By
horizontal decoding, we then obtained the rest of v13, v14, v23, v24, v33, and v36 . . . .

If our decoding method is employed, it can be observed that we also can take back the information
but in the following different order:

1. We started with horizontal decoding and found v01, v03, and v04.
2. Since we could not decode the second line due to an excessive accumulation of erasures, we

changed to vertical decoding. Here, we could compute v20, v30, v11, v31, v12, and v32.
3. Again, we could not continue due to the amount of erasures; as such, we moved to diagonal

decoding, and—through this approach—we recovered v46.
4. Finally, we switched to horizontal decoding. Through this approach, we could decode the rest

of the erasures one line at a time.

i = 6 v60,1 v61,1 v62,1 ∗ ∗ v65,1 v66,1
v60,2 v61,2 v62,2 ∗ ∗ v65,2 v66,2

i = 5 v50,1 v51,1 v52,1 ∗ ∗ v55,1 v56,1
v50,2 v51,2 v52,2 ∗ ∗ v55,2 v56,2

i = 4 v40,1 v41,1 v42,1 ∗ ∗ v45,1 v46,1
v40,2 v41,2 v42,2 ∗ ∗ v45,2 v46,2

i = 3 ∗ ∗ ∗ ∗ v34,1 v35,1 ∗
∗ ∗ ∗ ∗ v34,2 v35,2 ∗

i = 2 ∗ v21,1 v22,1 ∗ ∗ v25,1 v26,1
∗ v21,2 v22,1 ∗ ∗ v25,2 v26,2

i = 1 v10,1 ∗ ∗ ∗ ∗ v15,1 v16,1
v10,2 ∗ ∗ ∗ ∗ v15,2 v16,2

i = 0 v00,1 ∗ v02,1 ∗ v04,1 v05,1 v06,1
v00,2 ∗ v02,2 ∗ ∗ v05,2 v06,2

v̂i,j j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Figure 5. Pattern of the erasures proposed in [10], Example 3.

In this particular example, in which neither the partial decoding of [10] nor the
complete-MDP property of our algorithm were used, it is easy to see that both of them
produced similar behavior. When the more complex pattern of erasures happens and these
features are needed, then the performance for these two algorithms may differ. With this in
mind, we conjectured that whenever a correction is possible from both routines, then the
efficiency differs whether this “special feature” is needed for each of the cases. That is, if
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one algorithm needs its own special property and the other does not, then the second one
will be more efficient when establishing the time computation. To decide which of these
algorithms works more efficiently and under which circumstances, a deeper and more
complex analysis is required that is beyond the aim of this paper.

6. Conclusions and Further Research

Throughout this paper, we introduced a general construction of 2D convolutional
codes by using 1D convolutional codes. By following this scheme, we proposed two
constructions based on 1D complete-MDP convolutional codes from which one is optimal
for the decoding procedure defined in [9]. We also described and complemented the
decoding algorithm proposed in [9] by providing its pseudo-code, as well as by adding the
possibility of performing the decoding by using the complete-MDP property.

Further research is possible in different directions. Through proposing a general
construction of 2D convolutional codes based on 1D convolutional codes, we have a
starting point to see if an n dimensional (n-D) convolutional code can be constructed by
using n − 1 dimensional convolutional codes. In the same direction, we could address
the problem of decoding such n-D codes by using lower dimensional decoding methods.
Moreover, constructions of decoding algorithms for 2D convolutional codes over an erasure
channel is still an interesting topic for future research since there currently exist only two of
these algorithms in the literature.
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