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Abstract

:

For   S ⊆ V  ( G )  ,  κ G   ( S )    denotes the maximum number k of edge disjoint trees    T 1  ,  T 2  , … ,  T k    in G, such that   V  (  T i  )  ∩ V  (  T j  )  = S   for any   i , j ∈ { 1 , 2 , … , k }   and   i ≠ j  . For an integer   2 ≤ r ≤ | V ( G ) |  , the generalized r-connectivity of G is defined as    κ r    ( G )  = min {   κ G    ( S )  | S ⊆ V  ( G )     and    | S | = r }   . In fact,    κ 2   ( G )    is the traditional connectivity of G. Hence, the generalized r-connectivity is an extension of traditional connectivity. The exchanged folded hypercube   E F H ( s , t )  , in which   s ≥ 1   and   t ≥ 1   are positive integers, is a variant of the hypercube. In this paper, we find that    κ 3   ( E F H  ( s , t )  )  = s + 1   with   3 ≤ s ≤ t  .
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1. Introduction


An interconnection network is usually modeled as a simple graph   G = ( V ( G ) , E ( G ) )  , in which   V ( G )   represents the set of processors and   E ( G )   represents the set of links. For   v ∈ V ( G )  ,   N ( v )   is the neighborhood of v in G.   d ( v ) = | N ( v ) |   is the degree of v in G. The minimum degree of G is defined as   δ ( G ) = min { d ( v ) | v ∈ V ( G ) }  . For two graphs   G 1   and   G 2  ,    G 1  ≅  G 2    means that they are isomorphic. Let   S ⊆ V ( G )  . The subgraph of G, whose vertex set is S and whose edge set is the set of those edges of G that have both ends in S, is called the subgraph of G induced by S and is denoted by   G [ S ]  . We say that   G [ S ]   is an induced subgraph of G.   G − S   means the induced subgraph   G [ V ( G ) ∖ S ]  , where   V ( G ) ∖ S   represents the vertex set obtained from   V ( G )   by deleting the vertices in S. Let   V ⊆ V ( G ) ∖ { v }  . The   ( v , V )   paths is a family of internally disjoint paths whose starting vertex is v and terminal vertices are distinct in V, which is called a fan from v to V. For other terminologies and notations, please refer to [1].



Connectivity is a basic and important metric in measuring the reliability and fault tolerance of networks. A cut set S of G is a vertex set of G, such that   G − S   is disconnected or it is only one vertex.   κ ( G ) = min { | S | | S    is  a  cut  set  of    G }  , which is the connectivity of G. In [2], Whitney proposed an equivalent concept of connectivity. For each 2-subset   S = { u , w }   of vertices of G, let    κ G   ( S )    be the maximum number of internally disjoint paths from u to w in G. Then,   κ  ( G )  = min {  κ G   ( S )  | S ⊆ V  ( G )     and    | S | = 2 }  . As an extension of connectivity, Chartrand et al. [3] showed the concept of generalized k-connectivity in 1984. Let   S ⊆ V ( G )  . A tree T in G is called an S-tree if   S ⊆ V ( T )  . The trees    T 1  ,  T 2  , … ,  T r    are called internally edge disjoint S-trees if   V  (  T i  )  ∩ V  (  T j  )  = S   and   E  (  T i  )  ∩ E  (  T j  )  = ∅   for any distinct integers   i , j   with   1 ≤ i , j ≤ r  .    κ G   ( S )    refers to the maximum number of internally edge disjoint S-trees. For an integer k with   2 ≤ k ≤ | V ( G ) |  ,    κ k    ( G )  = min {   κ G    ( S )  | S ⊆ V  ( G )     and    | S | = k }    is defined as the generalized k-connectivity of G.



In a graph G, an S-tree is also called an S-Steiner tree. Steiner trees have significant applications in computer networks [4]. Internally edge disjoint S-Steiner trees have been applied to VLSI [5]. From the definition of generalized k-connectivity, we can see that the core of generalized k-connectivity is to seek the maximum number of internally edge disjoint S-Steiner trees. The generalized k-connectivity is an extension of traditional connectivity. It can more precisely measure the fault tolerance of networks. To decide whether there exist k internally edge disjoint S-Steiner trees is NP-complete for a graph [6]. The generalized 3-connectivities of augmented cubes,   ( n , k )  -bubble-sort graphs, and generalized hypercubes have been obtained in [7,8,9], respectively. The generalized 4-connectivities of hypercubes, crossed cubes, exchanged hypercubes, and hierarchical cubic networks have been obtained in [10,11,12,13], respectively. On the whole, the generalized k-connectivity is known for a small number of graphs and almost all known results are about   k = 3   or 4.



The n-dimensional hypercube is denoted by   Q n  , whose vertices are the ordered n-tuples of 0’s and 1’s. Two vertices are adjacent if and only if they differ in exactly one dimension. As variants of hypercubes   Q n  , folded hypercubes   F  Q n    and exchanged hypercubes   E H ( s , t )   were proposed in [14,15], respectively. Based on   E H ( s , t )   and   F  Q n   , Qi et al. proposed an interconnection network named exchanged folded hypercube   E F H ( s , t )   in [16]. In this work, we will prove    κ 3   ( E F H  ( s , t )  )  = s + 1   for   3 ≤ s ≤ t  .




2. Definitions and Lemmas


Exchanged hypercubes were defined by Lou et al. [15] as follows. Let   s ≥ 1   and   t ≥ 1   be positive integers. The exchanged hypercubes   E H ( s , t )   are defined as undirected graphs, whose vertex set V is


  V = {  a s  ⋯  a 1   b t  ⋯  b 1  c |  a i  ,  b j  , c ∈  { 0 , 1 }    for   i ∈  [ 1 , s ]  , j ∈  [ 1 , t ]  } .  











For   u , v ∈ V  ,   u [ 0 ]   means the c index of u.   u [ i : j ]   is the indexes of u from dimension j to dimension i.   H ( u [ i : j ] , v [ i : j ] )   represents the number of different indexes at the same dimension between   u [ i : j ]   and   v [ i : j ]  .



The edge set consists of three disjoint subsets    E H  ,  E R    and   E L  , where


   E H  =  {  ( u , v )  | u  [ s + t : 1 ]  = v  [ s + t : 1 ]  , u  [ 0 ]  ≠ v  [ 0 ]  }  ,  










   E R  =  {  ( u , v )  | u  [ s + t : t + 1 ]  =  v 2   [ s + t : t + 1 ]  , H  ( u  [ t : 1 ]  , v  [ t : 1 ]  )  = 1 , u  [ 0 ]  = v  [ 0 ]  = 1 }  ,  










   E L  =  {  ( u , v )  | u  [ t : 1 ]  = v  [ t : 1 ]  , H  ( u  [ s + t : t + 1 ]  , v  [ s + t : t + 1 ]  )  = 1 , u  [ 0 ]  = v  [ 0 ]  = 0 }  ,  











Figure 1 shows an example of   E H ( 1 , 2 )  . Based on the concept of   E H ( s , t )  , Qi et al. [16] put in a network called an exchanged folded hypercube   E F H ( s , t )  .   E F H ( s , t )   and   E H ( s , t )   have the same vertex set. The edge set of   E F H ( s , t )   consists of    E H  ,  E R  ,  E L    and   E comp  , where


   E comp  =  {  ( u , v )  | H  ( u  [ s + t : 1 ]  , v  [ s + t : 1 ]  )  = s + t , u  [ 0 ]  ≠ v  [ 0 ]  }  .  











The edges in   E comp   are called complementary edges of   E F H ( s , t )  . From the two definitions, we know that   E F H ( s , t )   can be obtained from   E H ( s , t )   by adding extra   2  s + t    edges. Figure 2 is an example of   E F H ( 1 , 2 )  . From the definition, we can see that   | V ( E F H ( s , t ) ) |  =  2  s + t + 1   . For each vertex   v ∈ V ( E F H ( s , t ) )  ,   d ( v ) = s + 2   or   t + 2  . For simplicity, we always use   E F H   instead of   E F H ( s , t )  . The following results are useful.

Lemma 1.

([16])   E F H ( t , s ) ≅ E F H ( s , t )  .







From the lemma, we always assume   s ≤ t   from now on. Then,   δ ( E F H ( s , t ) ) = s + 2  .

Lemma 2.

([1])   κ (  Q n  ) = n   for   n ≥ 2  .





Lemma 3.

([17])    κ 3   (  Q n  )  = n − 1   for   n ≥ 2  .





Lemma 4.

([18]) If there are two adjacent vertices of degree   δ ( G )   in graph G, then    κ k   ( G )  ≤ δ  ( G )  − 1   for   3 ≤ k ≤ | V ( G ) |  .





Lemma 5.

( [1]) Let G be a k-connected graph, and let u and v be a pair of distinct vertices in G. Then, there exist k internally disjoint paths in G connecting u and v.





Lemma 6.

(Fan lemma [1]) For a k-connected graph G, let   u ∈ V ( G )  , and suppose   U ⊆ V ( G ) ∖ { u }   and   | U | ≥ k  . Then, there exists a k-fan in G from u to U, that is, there exists a family of k internally disjoint   ( u , U )   paths whose terminal vertices are distinct in U.







In this work, we will prove the following result.

Theorem 1.

   κ 3   ( E F H  ( s , t )  )  = s + 1   for   3 ≤ s ≤ t  .








3. Proof of Theorem 1


We partition   E F H ( s , t )   into two subgraphs   L , R   and edges between them, in which for   u ∈ V ( L )   and   v ∈ V ( R )  ,   u [ 0 ] = 0   and   v [ 0 ] = 1  .



In   V ( L )  , each collection of   2 s   vertices u, with   u [ t : 1 ]   being identical, forms   Q s   via the edges in   E L  . We use   L i   to denote these   Q s   for   i = 1 , 2 , … ,  2 t   . Similarly, in   V ( R )  , each collection of   2 t   vertices v, with   v [ s + t : t + 1 ]   being identical, forms   Q t   via the edges in   E R  . We use   R j   to denote these   Q t   for   j = 1 , 2 , … ,  2 s   .



Each vertex   x ∈ V ( L )   has two neighbors in   V ( R )  . One is   x ′   with   x  x ′  ∈  E H   . It is called the hypercube neighbor of x. The other is   x ¯   with   x  x ¯  ∈  E comp   . It is called the complement neighbor of x.   x ′   and   x ¯   are called outside neighbors of x. Similarly, for   y ∈ V ( R )  ,   y ′   and   y ¯  , the outside neighbors of y, are called the hypercube neighbor and the complement neighbor of y, respectively.



In the following, for each vertex x in a graph, we use   x ′   and   x ¯   to denote the hypercube neighbor and the complement neighbor of x, respectively.

Lemma 7.

For   Q n   and   E F H ( s , t )  , the following results hold.




	1. 

	
Each    L i  ≅  Q s   ,    R j  ≅  Q t    and    | V   (  L i  )   | =   2 s   ,    | V   (  R j  )   | =   2 t    for   i = 1 , 2 , … ,  2 t  , j = 1 , 2 , … ,  2 s   .




	2. 

	
There are no edges between any two distinct   L i   and   L k   for   i , k ∈ { 1 , 2 , … ,  2 t  }  . Similarly, there are no edges between any two distinct   R j   and   R h   for   j , h ∈ { 1 , 2 , … ,  2 s  }  .




	3. 

	
For each vertex   x ∈ V ( L )  ,   x ′   and   x ¯   belong to distinct   V (  R j  )   and   V (  R h  )  , where   j , h ∈ { 1 , 2 , … ,  2 s  }  . Similarly, for each vertex   w ∈ V ( R )  ,   w ′   and   w ¯   belong to distinct   V (  L i  )   and   V (  L k  )  , where   i , k ∈ { 1 , 2 , … ,  2 t  }  .




	4. 

	
For two distinct vertices   x , y ∈ V (  L i  )   with   i ∈ { 1 , 2 , … ,  2 t  }  ,   x ′   and   y ′   lie in distinct   V (  R j  )   and   V (  R h  )  , where   j , h ∈ { 1 , 2 , … ,  2 s  }  ,   x ¯   and   y ¯   lie in distinct   V (  R i  )   and   V (  R k  )  , where   i , k ∈ { 1 , 2 , … ,  2 s  }  . Similar results hold for two distinct vertices   u , v ∈ V (  R k  )   for   k ∈ { 1 , 2 , … ,  2 s  }  .




	5. 

	
For two distinct vertices   x , y ∈ V (  L i  )   with   i ∈ { 1 , 2 , … ,  2 t  }  , if    x ′  ,  y ¯  ∈ V  (  R j  )    for some   j ∈ { 1 , 2 , … ,  2 s  }  , then    x ¯  ,  y ′  ∈ V  (  R k  )    for some   k ∈ { 1 , 2 , … ,  2 s  }   with   k ≠ j  . A similar result holds for two distinct vertices   u , v ∈ V (  R k  )   for   k ∈ { 1 , 2 , … ,  2 s  }  .













Proof. 

The first and second results are obvious. For two distinct vertices   x , y ∈ V (  L i  )   with   i ∈ { 1 , 2 , … ,  2 t  }  , there exists at least one index m for which x and y differ. Let   x =  a s  ⋯  a m  ⋯  a 1   b t  ⋯  b 1  0  ,   y =  a s ′  ⋯   a ¯  m  ⋯  a 1 ′   b t  ⋯  b 1  0   in same   V (  L i  )   with some   m ∈ { 1 , 2 , … , s }  . Then,    x ′  =  a s  ⋯  a m  ⋯  a 1   b t  ⋯  b 1  1  ,    x ¯  =   a ¯  s  ⋯   a ¯  m  …   a ¯  1    b ¯  t  ⋯   b ¯  1  1  ,    y ′  =  a s ′  ⋯   a ¯  m    ⋯  a 1 ′   b t  ⋯  b 1  1  .    y ¯  =    a ′  ¯  s  ⋯  a m  ⋯    a ′  ¯  1    b ¯  t  ⋯   b ¯  1  1  , where     a ¯  i  = 1 −  a i  ,    a ′  ¯  i  = 1 −  a i ′  ,   b ¯  j  = 1 −  b j    (Figure 3).



  x ′   and   x ¯   belong to distinct   V (  R j  )   and   V (  R h  )   where   j , h ∈ { 1 , 2 , … ,  2 s  }   since    a i  ≠   a ¯  i    for   i = 1 , 2 , … , s  . Similarly, we can prove that, for any vertex   w ∈ V ( R )  ,   w ′   and   w ¯   belong to distinct   V (  L i  )   and   V (  L k  )  , where   i , k ∈ { 1 , 2 , … ,  2 t  }  . Hence, the third result holds.



Since    a m  ≠   a ¯  m    for some   m ∈ { 1 , 2 , … , s }  ,   x ′   and   y ′   lie in different   V (  R j  )   and   V (  R h  )  , where   j , h ∈ { 1 , 2 , … ,  2 s  }  ,   x ¯   and   y ¯   lie in different   V (  R i  )   and   V (  R k  )  , where   i , k ∈ { 1 , 2 , … ,  2 s  }  . We can prove that similar results for any distinct vertices   u , v ∈ V (  R k  )   for   k ∈ { 1 , 2 , … ,  2 s  }  . Hence, the fourth result holds.



If    x ′  ,  y ¯  ∈ V  (  R j  )    for some   j ∈ { 1 , 2 , … ,  2 s  }  , then    a j  =    a ′  ¯  j    for   j = 1 , … , m − 1 ,    m + 1 ,    … , s  . Hence,     a ¯  j  =  a j ′    for   j = 1 , … , m − 1 , m + 1 , … , s  . This implies that    x ¯  ,  y ′  ∈ V  (  R k  )    for some   k ∈ { 1 , 2 , … ,  2 s  }   with   k ≠ j  . We can prove that a similar result for any distinct vertices   u , v ∈ V (  R k  )   for   k ∈ { 1 , 2 , … ,  2 s  }  . Hence, the fifth result holds. □





Proof of Theorem 1.

By Lemma 7, for any vertex   u ∈ V (  L 1  )  ,   d ( u ) = s + 2  . Since   δ ( E F H ( s , t ) )   = s + 2  ,    κ 3   ( E F H  ( s , t )  )  ≤ s + 1   by Lemma 4. In the following, we will prove    κ 3   ( E F H  ( s , t )  )  ≥ s + 1  . Take any three distinct vertices   x , y  , and z in   E F H   and let   S = { x , y , z }  . If we can prove that there are   s + 1   internally edge disjoint S-trees in   E F H  , we are done.

Case 1.

  x , y , z ∈ V (  L i  )   for some   i ∈ { 1 , 2 , … ,  2 t  }  .







Without loss of generality, let   x , y , z ∈ V (  L 1  )  . By Lemma 3, there exist   s − 1   internally edge disjoint S-trees    T 1  ,  T 2  , … ,  T  s − 1     in   L 1  . Without loss of generality, suppose    x ′  ∈ V  (  R 1  )  ,  y ′  ∈ V  (  R 2  )   , and    z ′  ∈ V  (  R 3  )    by Lemma 7(4).



If    {  x ¯  ,  y ¯  ,  z ¯  }  ∩  ( V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )  )  = ∅  , we can assume    x ¯  ∈ V  (  R 4  )  ,  y ¯  ∈ V  (  R 5  )  ,  z ¯  ∈ V  (  R 6  )   . By Lemma 7(4),   E F H [ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 2  )  ]   is connected. Hence, there exists a tree    T ¯  s   containing    x ′  ,  y ′   , and   z ′   in   E F H [ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 2  )  ]  . Take    T s  =   T ¯  s  ∪ x  x ′  ∪ y  y ′  ∪ z  z ′   . Since   E F H [ V  (  R 4  )  ∪ V  (  R 5  )  ∪ V  (  R 6  )  ∪ V  (  L 3  )  ]   is connected, there exists a tree    T ¯   s + 1    containing    x ¯  ,  y ¯   , and   z ¯   in   E F H [ V  (  R 4  )  ∪ V  (  R 5  )  ∪ V  (  R 6  )  ∪ V  (  L 3  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ y  y ¯  ∪ z  z ¯   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



If    {  x ¯  ,  y ¯  ,  z ¯  }  ∩  ( V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )  )  ≠ ∅  , without loss of generality, noting that    x ¯  ∉ V  (  R 1  )    by Lemma 7(3), let    x ¯  ∈ V  (  R 2  )   . By Lemma 7(5),    y ¯  ∈ V  (  R 1  )   . By Lemma 7(3)(4), we can let    z ¯  ∈ V  (  R 4  )   . Since   E F H [ V  (  R 1  )  ∪ V  (  R 3  )  ∪ V  (  L 2  )  ]   is connected, there exists a tree    T ¯  s   containing    x ′  ,  y ¯   , and   z ′   in   E F H [ V  (  R 1  )  ∪ V  (  R 3  )  ∪ V  (  L 2  )  ]  . Take    T s  =   T ¯  s  ∪ x  x ′  ∪ y  y ¯  ∪ z  z ′   . Since   E F H [ V  (  R 2  )  ∪ V  (  R 4  )  ∪ V  (  L 3  )  ]   is connected, there exists a tree    T ¯   s + 1    containing    x ¯  ,  y ′   , and   z ¯   in   E F H [ V  (  R 2  )  ∪ V  (  R 4  )  ∪ V  (  L 3  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ y  y ′  ∪ z  z ¯   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



By symmetry and   t ≥ s  , if   x , y , z ∈ V (  R j  )   for some   j ∈ { 1 , 2 , … ,  2 s  }  , we can also obtain    κ 3   ( E F H )  ≥ s + 1  .



Case 2.

  x , y ∈ V (  L i  )   for some   i ∈ { 1 , 2 , … ,  2 t  }  .   z ∈ V (  L j  )   for some   j ∈ { 1 , 2 , … ,  2 t  }   and   i ≠ j   or   z ∈ V (  R k  )   for some   k ∈ { 1 , 2 , … ,  2 s  }  .





Without loss of generality, we let   x , y ∈ V (  L 1  )  . By Lemmas 2 and 5, there exist s internally disjoint paths    P 1  ,  P 2  , … ,  P s    from x to y in   L 1  . Let    x i  ∈ V  (  P i  )   , such that   x  x i  ∈ E  (  P i  )    for   i = 1 , 2 , … , s  . In the following, we will show that for any two distinct vertices   x i   and   x j   with   i , j ∈ { 1 , 2 , … , s }  ,    x ′  ,  x i ′  ,  x j ′  ,  x ¯  ,   x ¯  i  ,   x ¯  j    lie in distinct   V (  R k  )   for   k ∈ { 1 , 2 , … ,  2 s  }  . Without loss of generality, let   x =  a s  ⋯  a 2   a 1   b t  ⋯  b 1  0  ,    x i  =  a s  ⋯  a 2    a ¯  1   b t  ⋯  b 1  0  , and    x j  =  a s  ⋯   a ¯  2   a 1   b t  ⋯  b 1  0  . Then,    x ′  =  a s  ⋯  a 2   a 1   b t  ⋯  b 1  1  ,    x ¯  =   a ¯  s  ⋯   a ¯  2    a ¯  1    b ¯  t  ⋯   b ¯  1  1  ,    x i ′  =  a s  ⋯  a 2    a ¯  1   b t  ⋯  b 1  1  ,     x ¯  i  =   a ¯  s  ⋯   a ¯  2   a 1    b ¯  t  ⋯   b ¯  1  1  ,    x j ′  =  a s  ⋯   a ¯  2   a 1   b t    ⋯  b 1  1  ,     x ¯  j  =   a ¯  s  ⋯  a 2    a ¯  1    b ¯  t  ⋯   b ¯  1  1  . By   s ≥ 3   and the definition of   R k  , we can show that    x ′  ,  x i ′  ,  x j ′  ,  x ¯  ,   x ¯  i  ,   x ¯  j    lie in different   V (  R k  )   for   k ∈ { 1 , 2 , … ,  2 s  }  , where   i , j ∈ { 1 , 2 , … , s }   and   i ≠ j  . This implies that    x ′  ,  x 1 ′  ,  x 2 ′  , … ,  x s ′  ,  x ¯  ,   x ¯  1  ,   x ¯  2  , … ,   x ¯  s    lie in distinct   V (  R k  )   for   k ∈ { 1 , 2 , … ,  2 s  }  .



Subcase 2.1.

  z ∈ V (  R k  )   for some   k ∈ { 1 , 2 , … ,  2 s  }  .





Let   z ∈ V (  R 1  )  . We know that    {  x ′  ,  x 1 ′  ,  x 2 ′  , … ,  x s ′  }  ∩ V  (  R 1  )  = ∅   or    {  x ¯  ,   x ¯  1  ,   x ¯  2  , … ,   x ¯  s  }  ∩ V  (  R 1  )  = ∅  . Without loss of generality, let    {  x ¯  ,   x ¯  1  ,   x ¯  2  , … ,   x ¯  s  }  ∩ V  (  R 1  )  = ∅  . Suppose    x ¯  ∈ V  (  R 4  )    and     x ¯  i  ∈ V  (  R  i + 4   )    for   i = 1 , 2 , … , s  .



Subcase 2.1.1.

  y =  x i    for some   i ∈ { 1 , 2 , … , s }  .





Without loss of generality, let   y =  x s   . Then,    y ′  ∉ V  (  R  i + 4   )    for   i = 0 , 1 , 2 , … , s   by the above discussion. We can let    y ′  ∈ V  (  R 1  )    or    y ′  ∈ V  (  R 2  )   .



First, we consider    y ′  ∈ V  (  R 2  )    (Figure 4). By Lemma 7(3),    z ′  ∉ V  (  L 1  )    or    z ¯  ∉ V  (  L 1  )   . Without loss of generality, let    z ¯  ∉ V  (  L 1  )   . Suppose    z ¯  ∈ V  (  L 2  )   . Take s vertices    z 1  ,  z 2  , … ,  z s    in   V (  R 1  )  , such that     z ¯  i  ∈ V  (  L  i + 4   )    for   i = 1 , 2 , … , s  . Let   Z = {  z 1  ,  z 2  , … ,  z s  }  . By Lemma 6, there exist s internally disjoint paths    M 1  ,  M 2  , … ,  M s    from z to Z in   R 1  . Let   M i   be the path from z to   z i   for   i = 1 , 2 , … , s  . Since   E F H [ V  (  L  i + 4   )  ∪ V  (  R  i + 4   )  ]   is connected, there exists a tree    T ¯  i   containing    x ¯  i   and    z ¯  i   in   E F H [ V  (  L  i + 4   )  ∪ V  (  R  i + 4   )  ]   for   i = 1 , 2 , … , s  . Take    T i  =   T ¯  i  ∪  P i  ∪  M i  ∪  x i    x ¯  i  ∪  z i    z ¯  i    for   i = 1 , 2 , … , s  . Since   E F H [ V  (  L 2  )  ∪ V  (  R 2  )  ∪ V  (  R 4  )  ]   is connected, there exists a tree    T ¯   s + 1    containing    z ¯  ,  y ′   , and   x ¯   in   E F H [ V  (  L 2  )  ∪ V  (  R 2  )  ∪ V  (  R 4  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ z  z ¯  ∪ y  y ′   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



Now, we consider    y ′  ∈ V  (  R 1  )   .



If    y ′  = z  , then    z ¯  ∉ V  (  L 1  )   . Let    z ¯  ∈ V  (  L 2  )   . Taking    T 1  ,  T 2  , … ,  T s    to be the same as above, since   E F H [ V  (  L 2  )  ∪ V  (  R 4  )  ]   is connected, there exists a tree    T ¯   s + 1    containing   z ¯   and   x ¯   in   E F H [ V  (  L 2  )  ∪ V  (  R 4  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ y z  z ¯   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



Let    y ′  ≠ z   (Figure 5). By Lemma 7(4),    z ′  ∉ V  (  L 1  )   . Suppose    z ′  ∈ V  (  L 2  )   . Take   s − 1   vertices    z 1  ,  z 2  , … ,  z  s − 1     in   V (  R 1  )  , such that     z ¯  i  ∈ V  (  L  i + 4   )    for   i = 1 , 2 , … , s − 1  . Let   Z = {  z 1  ,  z 2  , … ,  z  s − 1   ,  y ′  }  . By Lemma 6, there exist s internally disjoint paths    M 1  ,  M 2  , … ,  M s    from z to Z in   R 1  . Let   M i   be the path from z to   z i   for   i = 1 , 2 , … , s − 1   and   M s   be the path from z to   y ′  . Since   E F H [ V  (  L  i + 4   )  ∪ V  (  R  i + 4   )  ]   is connected, there exists a tree    T ¯  i   containing    x ¯  i   and    z ¯  i   in   E F H [ V  (  L  i + 4   )  ∪ V  (  R  i + 4   )  ]   for   i = 1 , 2 , … , s − 1  . Take    T i  =   T ¯  i  ∪  P i  ∪  M i  ∪  x i    x ¯  i  ∪  z i    z ¯  i    for   i = 1 , 2 , … , s − 1  . Noting that   y =  x s   , then    y ¯  ∈ V  (  R  s + 4   )   . Since   E F H [ V  (  L 2  )  ∪ V  (  R  s + 4   )  ∪ V  (  R 4  )  ]   is connected, there exists a tree    T ¯  s   containing    z ′  ,  y ¯    and   x ¯   in   E F H [ V  (  L 2  )  ∪ V  (  R  s + 4   )  ∪ V  (  R 4  )  ]  . Take    T s  =   T ¯  s  ∪ z  z ′  ∪ y  y ¯  ∪ x  x ¯    and    T  s + 1   =  P s  ∪ y  y ′  ∪  M s   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



Subcase 2.1.2.

  y ≠  x i    for each   i = 1 , 2 , … , s  .





By Lemma 7(4), we can show    y ¯  ∉ V  (  R  i + 4   )    for   i = 0 , 1 , … , s  . Without loss of generality, let    y ¯  ∈ V  (  R 1  )  ∪ V  (  R 2  )   .



First, we let    y ¯  ∈ V  (  R 2  )   . By Lemma 7(3),    z ′  ∉ V  (  L 1  )    or    z ¯  ∉ V  (  L 1  )   . Without loss of generality, let    z ¯  ∉ V  (  L 1  )   . Suppose    z ¯  ∈ V  (  L 2  )   . Take s vertices    z 1  ,  z 2  , … ,  z s    in   V (  R 1  )  , such that     z ¯  i  ∈ V  (  L  i + 4   )    for   i = 1 , 2 , … , s  . Let   Z = {  z 1  ,  z 2  , … ,  z s  }  . By Lemma 6, there exist s internally disjoint paths    M 1  ,  M 2  , … ,  M s    from z to Z in   R 1  . Let   M i   be the path from z to   z i   for   i = 1 , 2 , … , s  . Since   E F H [ V  (  L  i + 4   )  ∪ V  (  R  i + 4   )  ]   is connected, there exists a tree    T ¯  i   containing    x ¯  i   and    z ¯  i   in   E F H [ V  (  L  i + 4   )  ∪ V  (  R  i + 4   )  ]   for   i = 1 , 2 , … , s  . Take    T i  =   T ¯  i  ∪  P i  ∪  M i  ∪  x i    x ¯  i  ∪  z i    z ¯  i    for   i = 1 , 2 , … , s  . Since   E F H [ V  (  L 2  )  ∪ V  (  R 2  )  ∪ V  (  R 4  )  ]   is connected, there exists a tree    T ¯   s + 1    containing    z ¯  ,  y ¯    and   x ¯   in   E F H [ V  (  L 2  )  ∪ V  (  R 2  )  ∪ V  (  R 4  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ z  z ¯  ∪ y  y ¯   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



Now, we let    y ¯  ∈ V  (  R 1  )   .



If    y ¯  = z  , then    z ′  ∉ V  (  L 1  )   . We can let    z ′  ∈ V  (  L 2  )   . Taking    T 1  ,  T 2  , … ,  T s    to be the same as above, since   E F H [ V  (  L 2  )  ∪ V  (  R 4  )  ]   is connected, there exists a tree    T ¯   s + 1    containing   x ¯   and   z ′   in   E F H [ V  (  L 2  )  ∪ V  (  R 4  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ y z  z ′   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



If    y ¯  ≠ z  . By Lemma 7(3), suppose     y ¯  ′  ∈ V  (  L 2  )   , where    y ¯  ′   is the hypercube neighbor of   y ¯  . By Lemma 7(4),    z ¯  ∉ V  (  L 1  )   . Without loss of generality, let    z ¯  ∈ V  (  L 2  )  ∪ V  (  L 3  )   . Take   s − 1   vertices    z 1  ,  z 2  , … ,  z  s − 1     in   V (  R 1  )  , such that     z ¯  i  ∈ V  (  L  i + 4   )    for   i = 1 , 2 , … , s − 1  . Let   Z = {  z 1  ,  z 2  , … ,  z  s − 1   ,  y ¯  }  . By Lemma 6, there exist s internally disjoint paths    M 1  ,  M 2  , … ,  M s    from z to Z in   R 1  . Let   M i   be the path from z to   z i   for   i = 1 , 2 , … , s − 1   and   M s   be the path from z to   y ¯  . Since   E F H [ V  (  L  i + 4   )  ∪ V  (  R  i + 4   )  ]   is connected, there exists a tree    T ¯  i   containing    x ¯  i   and    z ¯  i   in   E F H [ V  (  L  i + 4   )  ∪ V  (  R  i + 4   )  ]   for   i = 1 , 2 , … , s − 1  . Take    T i  =   T ¯  i  ∪  P i  ∪  M i  ∪  x i    x ¯  i  ∪  z i    z ¯  i    for   i = 1 , 2 , … , s − 1  . If    z ¯  ∈ V  (  L 3  )    (Figure 6), noting that     x ¯  s  ∈ V  (  R  s + 4   )   , since   E F H [ V  (  L 3  )  ∪ V  (  R  s + 4   )  ]   is connected, there exists a tree    T ¯  s   containing   z ¯   and    x ¯  s   in   E F H [ V  (  L 3  )  ∪ V  (  R  s + 4   )  ]  . Take    T s  =   T ¯  s  ∪  P s  ∪  x s    x ¯  s  ∪ z  z ¯   . Since   E F H [ V  (  L 2  )  ∪ V  (  R 4  )  ]   is connected, there exists a tree    T ¯   s + 1    containing   x ¯   and    y ¯  ′   in   E F H [ V  (  L 2  )  ∪ V  (  R 4  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ y  y ¯    y ¯  ′  ∪  M s   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. If    z ¯  ∈ V  (  L 2  )    (Figure 7), since    y ¯  ≠ z  , then     y ¯  ′  ≠  z ¯    by Lemma 7(3). Since    L 2  ≅  Q s   , we can partition   L 2   into   L 21   and   L 22  , such that    L 21  ≅  Q  s − 1   ,  L 22  ≅  Q  s − 1     and     y ¯  ′  ∈ V  (  L 21  )  ,  z ¯  ∈ V  (  L 22  )   . In   L 21  , there exists a spanning tree   T 21   containing    y ¯  ′  . Since    | V   (  T 21  )   | = | V   (  L 21  )   | =   2  s − 1   ≥ s + 1   for   s ≥ 3  , there exists a vertex   u ∈ V (  L 21  )  , such that    u ′  ∉ V  (  R 1  )  ∪ V  (  R  i + 4   )    for   i = 1 , … , s   by Lemma 7(4). Let    u ′  ∈ V  (  R 2  )  ∪ V  (  R 4  )   . Similarly, there exists a spanning tree   T 22   containing   z ¯   in   L 22  . Since    | V   (  T 22  )   | = | V   (  L 22  )   | =   2  s − 1   ≥ s + 1   for   s ≥ 3  , there exists a vertex   v ∈ V (  L 22  )  , such that    v ′  ∉ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R  i + 4   )    for   i = 0 , 1 , … , s − 1   by Lemma 7(4). Let    v ′  ∈ V  (  R 3  )  ∪ V  (  R  s + 4   )   . Since   E F H [ V  (  R 2  )  ∪ V  (  R 4  )  ∪ V  (  L 3  )  ]   is connected, there exists a tree    T ¯  s   containing   u ′   and   x ¯  . Take    T s  =   T ¯  s  ∪ x  x ¯  ∪  T 21  ∪ u  u ′  ∪ y  y ¯    y ¯  ′  ∪  M s   . Since   E F H [ V  (  R 3  )  ∪ V  (  R  s + 4   )  ∪ V  (  L 4  )  ]   is connected, there exists a tree    T ¯   s + 1    containing   v ′   and    x ¯  s  . Take    T  s + 1   =   T ¯   s + 1   ∪ v  v ′  ∪  T 22  ∪ z  z ¯  ∪  P s  ∪  x s    x ¯  s   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



By symmetry and   t ≥ s  , if   x , y ∈ V  (  R i  )  , z ∈ V  (  L j  )    for some   i ∈ { 1 , 2 , … ,  2 s  }   and some   j ∈ { 1 , 2 , … ,  2 t  }  , we can also obtain    κ 3   ( E F H )  ≥ s + 1  .



Subcase 2.2.

  z ∈ V (  L j  )   for some   j ∈ { 2 , … ,  2 t  }  .





Without loss of generality, we let   z ∈ V (  L 2  )   (Figure 8), and suppose    x ¯  ∈ V  (  R 3  )  ,   x ¯  i  ∈ V  (  R  i + 3   )  ,  x ′  ∈ V  (  R  s + 4   )  ,  x i ′  ∈ V  (  R  s + i + 4   )    for   i = 1 , 2 , … , s  . Then,    z ′  ∉ V  (  R  i + 3   )    or    z ¯  ∉ V  (  R  i + 3   )    or    z ′  ∉ V  (  R  s + i + 4   )    or    z ¯  ∉ V  (  R  s + i + 4   )    for   i = 0 , 1 , … , s  . Without loss of generality, let    z ¯  ∉ V  (  R  i + 3   )    for   i = 0 , 1 , … , s  . Suppose    z ¯  ∈ V  (  R 2  )   . If   y =  x i    for some   i ∈ { 1 , 2 , … , s }  , then    y ¯  =   x ¯  i    for some   i ∈ { 1 , 2 , … , s }  . Then,    y ′  ∉ V  (  R  i + 3   )    for   i = 0 , 1 , … , s  . If   y ≠  x i    for each   i = 1 , 2 , … , s  , then    y ¯  ∉ V  (  R  i + 3   )    for   i = 0 , 1 , … , s   by Lemma 7(4). Without loss of generality, let    y ¯  ∉ V  (  R  i + 3   )    for   i = 0 , 1 , … , s  . Suppose    y ¯  ∈ V  (  R 1  )  ∪ V  (  R 2  )   . Choose s vertices    z 1  ,  z 2  , … ,  z s    in   V (  L 2  )  , such that     z ¯  i  ∈ V  (  R  i + 3   )    for   i = 1 , 2 , … , s  . Denote   Z = {  z 1  ,  z 2  , … ,  z s  }  . By Lemma 6, there exist s internally disjoint paths    M 1  ,  M 2  , … ,  M s    from z to Z in   L 2  . Let   M i   be the path from z to   z i   for   i = 1 , 2 , … , s  . Since   R  i + 3    is connected, there exists a tree    T ¯  i   containing    x ¯  i   and    z ¯  i   in   R  i + 3    for   i = 1 , 2 , … , s  . Take    T i  =   T ¯  i  ∪  P i  ∪  M i  ∪  x i    x ¯  i  ∪  z i    z ¯  i    for   i = 1 , 2 , … , s  . Since   E F H [ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 3  )  ]   is connected, there exists a tree    T ¯   s + 1    containing    x ¯  ,  y ¯    and   z ¯   in   E F H [ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 3  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ y  y ¯  ∪ z  z ¯   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



By symmetry and   t ≥ s  , if   x , y ∈ V  (  R i  )  , z ∈ V  (  R j  )    for some   i , j ∈ { 1 , 2 , … ,  2 s  }   and   i ≠ j  , we can also obtain    κ 3   ( E F H )  ≥ s + 1  .



Case 3.

  x ∈ V  (  L i  )  , y ∈ V  (  L j  )   , and   z ∈ V (  R k  )   for some   i , j ∈ { 1 , 2 , … ,  2 t  }   with   i ≠ j   and some   k ∈ { 1 , 2 , … ,  2 s  }  .





Without loss of generality, let   x ∈ V  (  L 1  )  , y ∈ V  (  L 2  )  , z ∈ V  (  R 1  )   .



Subcase 3.1.

   z ′  ,  z ¯  ∈ V  (  L 1  )  ∪ V  (  L 2  )   .





By Lemma 7(3), without loss of generality, let    z ¯  ∈ V  (  L 1  )   ,    z ′  ∈ V  (  L 2  )   .



We first consider    z ¯  = x   or    z ′  = y  . Without loss of generality, let    z ¯  = x  . By Lemma 7(3), we can let    x ′  ∈ V  (  R 2  )    and    y ′  ∉ V  (  R 1  )    or    y ¯  ∉ V  (  R 1  )   . Suppose    y ¯  ∉ V  (  R 1  )   . Then, put    y ¯  ∈ V  (  R 2  )  ∪ V  (  R 3  )   . Choose    x 1  ,  x 2  , … ,  x s    in   V  (  L 1  )  ∖  { x }   , such that     x ¯  i  ∈ V  (  R  i + 3   )    for   i = 1 , 2 , … , s  . Denote   X = {  x 1  ,  x 2  , … ,  x s  }  . Choose    y 1  ,  y 2  , … ,  y s    in   V  (  L 2  )  ∖  { y }   , such that     y ¯  i  ∈ V  (  R  i + 3   )    for   i = 1 , 2 , … , s  . Denote   Y = {  y 1  ,  y 2  , … ,  y s  }  . Choose    z 1  ,  z 2  , … ,  z s    in   V  (  R 1  )  ∖  { z }   , such that     z ¯  i  ∈ V  (  L  i + 3   )    for   i = 1 , 2 , … , s  . Denote   Z = {  z 1  ,  z 2  , … ,  z s  }  . By Lemma 6, there exist s paths    P 1  ,  P 2  , … ,  P s    from x to X in   L 1  , s paths    N 1  ,  N 2  , … ,  N s    from y to Y in   L 2  , s paths    M 1  ,  M 2  , … ,  M s    from z to Z in   R 1  . Let    P i  ,  N i  ,  M i    be the paths from x to   x i  , from y to   y i  , and from z to   z i  , respectively, for   i = 1 , 2 , … , s  . Since   E F H [ V  (  L  i + 3   )  ∪ V  (  R  i + 3   )  ]   is connected, there exists a tree    T ¯  i   containing     x ¯  i  ,   y ¯  i   , and    z ¯  i   in   E F H [ V  (  L  i + 3   )  ∪ V  (  R  i + 3   )  ]   for   i = 1 , 2 , … , s  . Take    T i  =   T ¯  i  ∪  P i  ∪  N i  ∪  M i  ∪  x i    x ¯  i  ∪  y i    y ¯  i  ∪  z i    z ¯  i    for   i = 1 , 2 , … , s  . Since   E F H [ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 3  )  ]   is connected, there exists a tree    T ¯   s + 1    containing    x ′  ,  y ¯    in   E F H [ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 3  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ y  y ¯  ∪ x  x ′  ∪ x z  . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



Now, we consider    z ¯  ≠ x   and    z ′  ≠ y   (Figure 9). Since    L 1  ≅  Q s    and    L 2  ≅  Q s   , we can partition   L 1   into   L 11   and   L 12  , such that    L 11  ≅  Q  s − 1    ,    L 12  ≅  Q  s − 1     and    z ¯  ∈ V  (  L 11  )   ,   x ∈ V (  L 12  )  . Similarly, we partition   L 2   into   L 21   and   L 22  , such that    L 21  ≅  Q  s − 1    ,    L 22  ≅  Q  s − 1     and    z ′  ∈ V  (  L 21  )  , y ∈ V  (  L 22  )   . By Lemma 7(4), we can let    x ¯  ∈ V  (  R 2  )    and    y ′  ∈ V  (  R 2  )  ∪ V  (  R 3  )   . Choose    x 1  ,  x 2  , … ,  x  s − 1     in   V  (  L 12  )  ∖  { x }    such that     x ¯  i  ∉ V  (  R 1  )  ∪  V  (  R 2  )  ∪ V  (  R 3  )    for   i = 1 , 2 , … , s − 1  . This can be performed since    2  s − 1   − 1 ≥ 3   with   s ≥ 3  . Let     x ¯  i  ∈ V  (  R  i + 3   )    for   i = 1 , 2 , … , s − 1  . Denote   X = {  x 1  ,  x 2  , … ,  x  s − 1   }  . Choose    y 1  ,  y 2  , … ,  y  s − 1     in   V  (  L 22  )  ∖  { y }   , such that    y i ′  ∉ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )    for   i = 1 , 2 , … , s − 1  . Without loss of generality, for simplicity of description, we can let    y 1 ′  ∈ V  (  R 4  )    and    y i ′  ∈ V  (  R  s + i + 1   )    for   i = 2 , … , s − 1  . Note that     x ¯  1  ∈ V  (  R 4  )    and     x ¯  i  ∈ V  (  R  i + 3   )    for   i = 2 , … , s − 1  . Denote   Y = {  y 1  ,  y 2  , … ,  y  s − 1   }  . Choose    z 1  ,  z 2  , … ,  z s  ∈ V  (  R 1  )  ∖  { z }    such that     z ¯  i  ∈ V  (  L  i + 3   )    for   i = 1 , 2 , … , s  . Denote   Z = {  z 1  ,  z 2  , … ,  z s  }  . By Lemma 6 and   κ  (  L 12  )  = κ  (  L 22  )  = s − 1 , κ  (  R 1  )  = s  , there exist   s − 1   paths    P 1  ,  P 2  , … ,  P  s − 1     from x to X in   L 12  ,   s − 1   paths    N 1  ,  N 2  , … ,  N  s − 1     from y to Y in   L 22  , s paths    M 1  ,  M 2  , … ,  M s    from z to Z in   R 1  . Let    P i  ,  N i  ,  M i    be the paths from x to   x i  , from y to   y i  , and from z to   z i  , respectively, for   i = 1 , 2 , … , s − 1   and   M s   be the path from z to   z s  . Since   E F H [ V  (  R 4  )  ∪ V  (  L 4  )  ]   is connected, there exists a tree    T ¯  1   containing     x ¯  1  ,  y 1 ′    and    z ¯  1   in   E F H [ V  (  R 4  )  ∪ V  (  L 4  )  ]  . Take    T 1  =   T ¯  1  ∪  P 1  ∪  N 1  ∪  M 1  ∪  x 1    x ¯  1  ∪  y 1   y 1 ′  ∪  z 1    z ¯  1   . Since   E F H [ V  (  R  i + 3   )  ∪ V  (  R  s + i + 1   )  ∪ V  (  L  i + 3   )  ]   is connected for   i = 2 , 3 , … , s − 1  , there exists a tree    T ¯  i   containing     x ¯  i  ,  y i ′    and    z ¯  i   in   E F H [ V  (  R  i + 3   )  ∪ V  (  R  s + i + 1   )  ∪ V  (  L  i + 3   )  ]   for   i = 2 , 3 , … , s − 1  . Take    T i  =   T ¯  i  ∪  P i  ∪  N i  ∪  M i  ∪  x i    x ¯  i  ∪  y i   y i ′  ∪  z i    z ¯  i    for   i = 2 , 3 , … , s − 1  . Since   E F H [ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L  s + 3   )  ]   is connected, there exists a tree    T ¯  s   containing    x ¯  ,  y ′    and    z ¯  s   in   E F H [ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L  s + 3   )  ]  . Take    T s  =   T ¯  s  ∪  M s  ∪ x  x ¯  ∪ y  y ′  ∪  z s    z ¯  s   . Let u be the neighbor of x in   V (  L 11  )   and v be the neighbor of y in   V (  L 21  )  . Suppose that   T 11   is a spanning tree of   L 11   and   T 21   is a spanning tree of   L 21  . Take    T s  =  T 11  ∪  T 21  ∪ u x ∪ v y ∪ z  z ¯  ∪ z  z ′   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



Subcase 3.2.

   z ′  ∉ V  (  L 1  )  ∪ V  (  L 2  )    or    z ¯  ∉ V  (  L 1  )  ∪ V  (  L 2  )   .





Without loss of generality, let    z ′  ∉ V  (  L 1  )  ∪ V  (  L 2  )   . Suppose    z ′  ∈ V  (  L 3  )   . By Lemma 7(3),    x ′  ∉ V  (  R 1  )    or    x ¯  ∉ V  (  R 1  )   ,    y ′  ∉ V  (  R 1  )    or    y ¯  ∉ V  (  R 1  )   . Without loss of generality, we can let    x ¯  ∈ V  (  R 2  )   ,    y ′  ∈ V  (  R 2  )  ∪ V  (  R 3  )   . Choose    x 1  ,  x 2  , … ,  x s  ∈ V  (  L 1  )  ∖  { x }   , such that     x ¯  i  ∉ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )    for   i = 1 , 2 , … , s  . Suppose     x ¯  i  ∈ V  (  R  i + 3   )    for   i = 1 , 2 , … , s  . Denote   X = {  x 1  ,  x 2  , … ,  x s  }  . Choose    y 1  ,  y 2  , … ,  y s  ∈ V  (  L 2  )   , such that     y ¯  i  ∈ V  (  R  i + 3   )    for   i = 1 , 2 , … , s  . Denote   Y = {  y 1  ,  y 2  , … ,  y s  }  . Choose    z 1  ,  z 2  , … ,  z s  ∈ V  (  R 1  )  ∖  { z }   , such that    z i ′  ∈ V  (  L  i + 3   )    for   i = 1 , 2 , … , s  . Denote   Z = {  z 1  ,  z 2  , … ,  z s  }  . By Lemma 6, there exist s paths    P 1  ,  P 2  , … ,  P s    from x to X in   L 1  , s paths    N 1  ,  N 2  , … ,  N s    from y to Y in   L 2  , s paths    M 1  ,  M 2  , … ,  M s    from z to Z in   R 1  . Let    P i  ,  N i  ,  M i    be the paths from x to   x i  , from y to   y i  , and from z to   z i  , respectively, for   i = 1 , 2 , … , s  . Note that if   y =  y i    for some   i ∈ { 1 , 2 , … , s }  , we regard   N i   as the vertex y. Since   E F H [ V  (  L  i + 3   )  ∪ V  (  R  i + 3   )  ]   is connected, there exists a tree    T ¯  i   containing     x ¯  i  ,   y ¯  i    and   z i ′   in   E F H [ V  (  L  i + 3   )  ∪ V  (  R  i + 3   )  ]   for   i = 1 , 2 , … , s  . Take    T i  =   T ¯  i  ∪  P i  ∪  N i  ∪  M i  ∪  x i    x ¯  i  ∪  y i    y ¯  i  ∪  z i   z i ′    for   i = 1 , 2 , … , s  . Since   E F H [ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 3  )  ]   is connected, there exists a tree    T ¯   s + 1    containing    z ′  ,  x ¯  ,  y ′    in   E F H [ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 3  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ y  y ′  ∪ z  z ′   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



By symmetry and   t ≥ s  , if   x ∈ V  (  R i  )  , y ∈ V  (  R j  )  , z ∈ V  (  L k  )    for some   i , j ∈ { 1 , 2 , … ,  2 s  }   with   i ≠ j   and some   k ∈ { 1 , 2 , … ,  2 t  }  , we can also obtain    κ 3   ( E F H )  ≥ s + 1  .



Case 4.

  x ∈ V  (  L i  )  , y ∈ V  (  L j  )   , and   z ∈ V (  L k  )   for some   i , j , k ∈ { 1 , 2 , … ,  2 t  }   with   i ≠ j ≠ k  .





Let   x ∈ V  (  L 1  )  , y ∈ V  (  L 2  )   , and   z ∈ V (  L 3  )   (Figure 10). Without loss of generality, suppose    x ¯  ,  y ¯  ,  z ¯  ∈ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )   . Choose    x i  ∈ V  (  L 1  )  ∖  { x }  ,  y i  ∈ V  (  L 2  )  ∖  { y }  ,  z i  ∈ V  (  L 3  )  ∖  { z }   , such that     x ¯  i  ,   y ¯  i  ,   z ¯  i  ∈ V  (  R  i + 3   )    for   i = 1 , 2 , … , s  . Let   X = {  x 1  ,  x 2  , … ,  x s  }  ,   Y = {  y 1  ,  y 2  , … ,  y s  }   and   Z = {  z 1  ,  z 2  , … ,  z s  }  . By Lemma 6, there exist s paths    P 1  ,  P 2  , … ,  P s    from x to X in   L 1  , s paths    N 1  ,  N 2  , … ,  N s    from y to Y in   L 2  , s paths    M 1  ,  M 2  , … ,  M s    from z to Z in   L 3  . Let    P i  ,  N i  ,  M i    be the paths from x to   x i  , from y to   y i  , and from z to   z i  , respectively, for   i = 1 , 2 , … , s  . Since   E F H [ V  (  R  i + 3   )  ]   is connected, there exists a tree    T ¯  i   containing     x ¯  i  ,   y ¯  i    and    z ¯  i   in   E F H [ V  (  R  i + 3   )  ]   for   i = 1 , 2 , … , s  . Take    T i  =   T ¯  i  ∪  P i  ∪  N i  ∪  M i  ∪  x i    x ¯  i  ∪  y i    y ¯  i  ∪  z i    z ¯  i    for   i = 1 , 2 , … , s  . Since   E F H [ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 4  )  ]   is connected, there exists a tree    T ¯   s + 1    containing    x ¯  ,  y ¯    and   z ¯   in   E F H [ V  (  R 1  )  ∪ V  (  R 2  )  ∪ V  (  R 3  )  ∪ V  (  L 4  )  ]  . Take    T  s + 1   =   T ¯   s + 1   ∪ x  x ¯  ∪ y  y ¯  ∪ z  z ¯   . Then,    T 1  ,  T 2  , … ,  T  s + 1     are   s + 1   internally edge disjoint S-trees. Thus,    κ 3   ( E F H )  ≥ s + 1  .



By symmetry and   t ≥ s  , if   x ∈ V  (  R i  )  , y ∈ V  (  R j  )  , z ∈ V  (  R k  )    for some   i , j , k ∈ { 1 , 2 , … ,  2 s  }   with   i ≠ j ≠ k  , we can also obtain    κ 3   ( E F H )  ≥ s + 1  .



We have completed the proof. □






4. Conclusions


The exchanged folded hypercube is a variant of the hypercube and denoted by   E F H ( s , t )  . It has many attractive properties to design interconnection networks. The generalized k-connectivity is an extension of the traditional connectivity. In this paper, we computed the generalized 3-connectivity of the exchanged folded hypercube. The study of the generalized k-connectivity of the exchanged folded hypercube for   k ≥ 4   is a meaningful and challenging problem.
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Figure 1.   E H ( 1 , 2 )  . 






Figure 1.   E H ( 1 , 2 )  .



[image: Axioms 13 00194 g001]







[image: Axioms 13 00194 g002] 





Figure 2.   E F H ( 1 , 2 )  . 
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Figure 3. A partitioned sketch of   E F H ( s , t )  . 
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Figure 4. The illustration of Subcase 2.1.1 (I). 
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Figure 5. The illustration of Subcase 2.1.1 (II). 






Figure 5. The illustration of Subcase 2.1.1 (II).
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Figure 6. The illustration of Subcase 2.1.2 (I). 
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Figure 7. The illustration of Subcase 2.1.2 (II). 
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Figure 8. The illustration of Subcase 2.2. 
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Figure 9. The illustration of Subcase 3.1. 
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Figure 10. The illustration of Case 4. 
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