
Citation: Wang, L.; Li, H. Solvability

Criterion for a System Arising from

Monge–Ampère Equations with Two

Parameters. Axioms 2024, 13, 175.

https://doi.org/10.3390/

axioms13030175

Academic Editor: Delfim F. M. Torres

Received: 26 January 2024

Revised: 27 February 2024

Accepted: 4 March 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Solvability Criterion for a System Arising from Monge–Ampère
Equations with Two Parameters
Liangyu Wang and Hongyu Li *

College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao 266590, China
* Correspondence: skd992179@sdust.edu.cn

Abstract: Monge–Ampère equations have important research significance in many fields such as
geometry, convex geometry and mathematical physics. In this paper, under some superlinear and
sublinear conditions, the existence of nontrivial solutions for a system arising from Monge–Ampère
equations with two parameters is investigated based on the Guo–Krasnosel’skii fixed point theorem.
In the end, two examples are given to illustrate our theoretical results.

Keywords: fixed point theorem; Monge–Ampère equations; boundary value problem

MSC: 35J60; 34B15; 47H10

1. Introduction

In this paper, we concentrate on the existence of nontrivial solutions for the boundary
value problem: 

((u′(s))N)′ = λNrN−1 f (−u(s),−v(s)), 0 < s < 1,

((v′(s))N)′ = µNrN−1g(−u(s),−v(s)), 0 < s < 1,

u′(0) = u(1) = 0, v′(0) = v(1) = 0,

(1)

where N ≥ 1, f , g : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) are continuous, λ and µ are two
positive parameters. Problem (1) emerges when considering the existence of nontrivial
solutions for the following Dirichlet problem related to Monge–Ampère equations:

det(D2u) = λ f (−u,−v) in B,

det(D2v) = µg(−u,−v) in B,

u = v = 0 on ∂B,

where D2u = ( ∂2u
∂xi∂xj

) is the Hessian matrix of u, D2v = ( ∂2v
∂xi∂xj

) is the Hessian matrix of v,

B = {x ∈ RN : |x| < 1}.
Monge–Ampère equations play a crucial role in the exploration of mathematical

physics, engineering, biological sciences and other hot application disciplines (see [1]).
As is known, Figalli was awarded the Fields Medal in 2018 for his contribution to the
Monge–Ampère equation, e.g., see [2]. Caffarelli received the Abel Prize in 2023 for his
pioneering contributions to the understanding of the regularity theory of nonlinear partial
differential equations, including the Monge–Ampère equation, e.g., see [3]. On the basis of
their research, an increasing number of researchers have conducted some investigations
associated with Monge–Ampère equations. For example, Mohammed and Mooney studied
the singular problems of the Monge–Ampère equation, see [4,5]; Son, Wang, Aranda
and Godoy substituted the p-Laplacian operator for the Monge–Ampère operator, thus
offering a new conclusion to the corresponding singular problem, which can be found
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in [6,7]. Recently, Feng [8] considered the singular problems of p-Monge–Ampère equations.
In addition, some scholars have studied the existence of nontrivial radial convex solutions
for a single Monge–Ampère equation or systems of such equations, utilizing the theory of
topological degree, bifurcation techniques, the upper and lower solutions method, and so
on. For further details, see [2–5,8–25] and the references therein.

For example, in [18], Ma and Gao investigated the following boundary value problem:{
((u′

1(t))
n)′ = λntn−1 f (−u(t)), 0 < t < 1,

u′(0) = u(1) = 0.
(2)

Boundary value Problem (2) arose from the following Monge–Ampère equation:{
det(D2u) = λ f (−u) in B,
u = 0 on ∂B,

(3)

where D2u = ( ∂2u
∂xi∂xj

) is the Hessian matrix of u, B = {x ∈ Rn : |x| < 1}. The global
bifurcation technique was applied to ascertain the optimal intervals of parameter λ, thereby
further guaranteeing the existence of single or multiple solutions to Problem (2).

In [21], Wang established two solvability criteria for a weakly coupled system:
((u′

1(t))
N)′ = NtN−1 f (−u2(t)), 0 < t < 1,

((u′
2(t))

N)′ = NtN−1g(−u1(t)), 0 < t < 1,
u′

1(0) = u′
2(0) = 0, u1(1) = u2(1) = 0,

(4)

where N ≥ 1. System (4) arose from the following Monge–Ampère equations:
det(D2u1) = f (−u2) in B,
det(D2u2) = g(−u1) in B,
u1 = u2 = 0 on ∂B,

where B = {x ∈ RN : |x| < 1}, and D2ui is the determinant of the Hessian matrix ( ∂2ui
∂xm∂xn

)
of ui. The existence of convex radial solutions for Problem (4) was established in both the
superlinear and sublinear instances, utilizing fixed point theorems within a cone.

In [20], Wang and An discussed the following system of Monge–Ampère equations:
det(D2u1) = f1(−u1, · · ·,−un) in B,
· · ·
det(D2un) = fn(−u1, · · ·,−un) in B,
u(x) = 0 on ∂B,

(5)

where D2ui = ( ∂2ui
∂xi∂xj

) is the Hessian matrix of ui, B = {x ∈ RN : |x| < 1}. Obviously,
System (5) can readily be changed into the subsequent boundary value problem:

((u′
1(r))

N)′ = NrN−1 f1(−u1, · · ·,−un), 0 < r < 1,
· · ·
((u′

n(r))N)′ = NrN−1 fn(−u1, · · ·,−un), 0 < r < 1,
u′

i(0) = ui(1) = 0, i = 1, · · ·, n,

where N ≥ 1. The existence of triple nontrivial radial convex solutions was obtained
through the application of the Leggett–Williams fixed point theorem.

In [22], the author studied the following system:
((u′

1(r))
N)′ = λNrN−1 f1(−u1, · · ·,−un), 0 < r < 1,

· · ·
((u′

n(r))N)′ = λNrN−1 fn(−u1, · · ·,−un), 0 < r < 1,
u′

i(0) = ui(1) = 0, i = 1, · · ·, n,

(6)
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where N ≥ 1. System (6) arose from the following system:
det(D2u1) = λ f1(−u1, · · ·,−un) in B,
· · ·
det(D2un) = λ fn(−u1, · · ·,−un) in B,
ui = 0 on ∂B, i = 1, · · ·, n,

where D2ui = ( ∂2ui
∂xi∂xj

) is the Hessian matrix of ui, B = {x ∈ RN : |x| < 1}.
Using fixed point theorems and considering sublinear and superlinear conditions,

Wang explored the existence of two nontrivial radial solutions for System (6) with a carefully
selected parameter.

In [14], Gao and Wang considered the following boundary value problem:
((u′

1(r))
N)′ = λ1NrN−1 f1(−u1,−u2, · · ·,−un),

((u′
2(r))

N)′ = λ2NrN−1 f2(−u1,−u2, · · ·,−un),
· · ·
((u′

n(r))N)′ = λnNrN−1 fn(−u1,−u2, · · ·,−un),
u′

i(0) = ui(1) = 0, i = 1, 2, · · ·, n, 0 < r < 1,

(7)

where N ≥ 1. System (7) arose from the following system:
det(D2u1) = λ1 f1(−u1, · · ·,−un) in B,
det(D2u2) = λ2 f2(−u1, · · ·,−un) in B,
· · ·
det(D2un) = λn fn(−u1, · · ·,−un) in B,
ui = 0 on ∂B, i = 1, · · ·, n,

where D2ui = ( ∂2ui
∂xi∂xj

) is the Hessian matrix of ui, and B = {x ∈ RN : |x| < 1}. By using
the method of upper and lower solutions and the fixed point index theory, they established
the existence, nonexistence, and multiplicity of convex solutions for Problem (7).

In [12], Feng continued to consider the uniqueness and existence of nontrivial radial
convex solutions of System (3). And the author also studied the following system:

det(D2u1) = λ1 f1(−u2) in B,
det(D2u2) = λ2 f2(−u3) in B,
· · ·
det(D2un) = λn fn(−u1) in B,
u1 = u2 · · · = un = 0 on ∂B,

(8)

where λi(i = 1, 2, · · ·, n) are positive parameters. The author derived novel existence results
for nontrivial radial convex solutions of System (8) via employing the eigenvalue theory in
a cone and defining composite operators.

In addition, in recent decades, some authors have investigated the existence of non-
trivial solutions to other differential equations with parameters. For example, in [26], by
employing the Guo–Krasnosel’skii fixed point theorem, Hao et al. considered the existence
of positive solutions for a class of nonlinear fractional differential systems, specifically
nonlocal boundary value problems with parameters and a p-Laplacian operator. In [27],
Yang studied the existence of positive solutions for the Dirichlet boundary value problem
of certain nonlinear differential systems using the upper and lower solution method and
the fixed point index theory. In [28], Jiang and Zhai investigated a coupled system of
nonlinear fourth-order equations based on the Guo–Krasnosel’skii fixed point theorem and
Green’s functions.

Inspired by literatures [12,14,20–22,26–28], we consider Problem (1). In this paper,
under some different combinations of superlinearity and sublinearity of the nonlinear
terms, we use the Guo–Krasnosel’skii fixed point theorem to investigate the existence
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results of System (1) and establish some existence results of nontrivial solutions based on
various different values values of λ and µ. Here, we extend the study in literature [21],
and the main results differ from those in literatures [12,14,21].

2. Preliminaries

In this section, we list some basic preliminaries to be used in Section 3. For further
background knowledge of cone, we refer readers to papers [21,29] for more details.

Lemma 1 (see [29]). Let E be a Banach space, and P ⊂ E be a cone. Assume that Ω1 and Ω2
are bounded open sets in E, θ ∈ Ω1, Ω1 ⊂ Ω2; operator A : P ∩ (Ω2\Ω1) → P is completely
continuous. If the following conditions are satisfied,

(i)∥Ax∥ ≤ ∥x∥, ∀x ∈ P ∩ ∂Ω1, ∥Ax∥ ≥ ∥x∥, ∀x ∈ P ∩ ∂Ω2, or

(ii)∥Ax∥ ≥ ∥x∥, ∀x ∈ P ∩ ∂Ω1, ∥Ax∥ ≤ ∥x∥, ∀x ∈ P ∩ ∂Ω2,

then operator A has at least one fixed point in P ∩ (Ω̄2\Ω1).

In order to solve System (1), we offer a simple transformation, x(s) = −u(s), y(s) = −v(s),
in System (1); then, System (1) can be changed to the following system:

((−x′(s))N)′ = λNsN−1 f (x(s), y(s)), 0 < s < 1,

((−y′(s))N)′ = µNsN−1g(x(s), y(s)), 0 < s < 1,

x′(0) = x(1) = 0, y′(0) = y(1) = 0.

(9)

In the following, we treat the existence of positive solutions of System (9).

We let E = C[0, 1]× C[0, 1] with norm ∥(x, y)∥E = ∥x∥+ ∥y∥, where ∥x∥ = max
s∈[0,1]

|x(s)|

and ∥y∥ = max
s∈[0,1]

|y(s)|.

We define

P = {(x, y) ∈ E : x(s) ≥ 0, y(s) ≥ 0, ∀s ∈ [0, 1], min
s∈[ 1

4 , 3
4 ]
(x(s) + y(s)) ≥ 1

4
∥(x, y)∥E}.

Then, P is a cone of E.
According to literature [21], now, we denote operators A1, A2 and A by

A1(x, y)(s) =
∫ 1

s
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du, s ∈ [0, 1],

A2(x, y)(s) =
∫ 1

s
(
∫ u

0
µNτN−1g(x(τ), y(τ))dτ)

1
N du, s ∈ [0, 1].

and A(x, y) = (A1(x, y), A2(x, y)), (x, y) ∈ E. Thus, it is easy to see that the fixed points of
operator A correspond to solutions of System (9).

Similar to the proof of Lemma 2.3 in literature [21], we can easily obtain the lemma
as follows.

Lemma 2. A : P → P is completely continuous.

3. Main Results

We denote

f0 = lim sup
x+y→0+

f (x, y)
(x + y)N , g0 = lim sup

x+y→0+

g(x, y)
(x + y)N ,
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f∞ = lim inf
x+y→∞

f (x, y)
(x + y)N , g∞ = lim inf

x+y→∞

g(x, y)
(x + y)N ,

f̂0 = lim inf
x+y→0+

f (x, y)
(x + y)N , ĝ0 = lim inf

x+y→0+

g(x, y)
(x + y)N ,

f̂∞ = lim sup
x+y→∞

f (x, y)
(x + y)N , ĝ∞ = lim sup

x+y→∞

g(x, y)
(x + y)N .

F =
∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du, G =

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du.

For f0, g0, f∞, g∞ ∈ (0, ∞), we define the symbols below:

M1 =
2N

GN f∞
, M2 =

1
2N FN f0

,

M3 =
2N

GN g∞
, M4 =

1
2N FN g0

.

Theorem 1. (1) Assume that f0, g0, f∞, g∞ ∈ (0, ∞), M1 < M2, M3 < M4; then, for λ ∈ (M1, M2)
and µ ∈ (M3, M4), System (9) has at least one positive solution.

(2) Assume that f0 = 0, g0, f∞, g∞ ∈ (0, ∞), M3 < M4; then, for λ ∈ (M1, ∞) and
µ ∈ (M3, M4), System (9) has at least one positive solution.

(3) Assume that f0, f∞, g∞ ∈ (0, ∞), g0 = 0, M1 < M2; then, for λ ∈ (M1, M2) and
µ ∈ (M3, ∞), System (9) has at least one positive solution.

(4) Assume that f0 = g0 = 0, f∞, g∞ ∈ (0, ∞); then, for λ ∈ (M1, ∞) and µ ∈ (M3, ∞),
System (9) has at least one positive solution.

(5) Assume that f0, g0 ∈ (0, ∞), f∞ = ∞ or f0, g0 ∈ (0, ∞), g∞ = ∞; then, for λ ∈ (0, M2)
and µ ∈ (0, M4), System (9) has at least one positive solution.

(6) Assume that f0 = 0, g0 ∈ (0, ∞), g∞ = ∞ or f0 = 0, g0 ∈ (0, ∞), f∞ = ∞; then, for
λ ∈ (0, ∞) and µ ∈ (0, M4), System (9) has at least one positive solution.

(7) Assume that f0 ∈ (0, ∞), g0 = 0, g∞ = ∞ or f0 ∈ (0, ∞), g0 = 0, f∞ = ∞; then, for
λ ∈ (0, M2) and µ ∈ (0, ∞), System (9) has at least one positive solution.

(8) Assume that f0 = g0 = 0, g∞ = ∞ or f0 = g0 = 0, f∞ = ∞; then, for λ ∈ (0, ∞) and
µ ∈ (0, ∞), System (9) has at least one positive solution.

Proof. Due to the similarity in the proofs of the above cases, we demonstrate Case (1) and
Case (6).

(1) For each λ ∈ (M1, M2) and µ ∈ (M3, M4), there exists ε > 0 such that

2N

GN( f∞ − ε)
≤ λ ≤ 1

2N FN( f0 + ε)
,

2N

GN(g∞ − ε)
≤ µ ≤ 1

2N FN(g0 + ε)
.

It follows from the definitions of f0 and g0 that there exists r1 > 0 such that

f (x, y) < ( f0 + ε)(x + y)N , 0 ≤ x + y ≤ r1,

g(x, y) < (g0 + ε)(x + y)N , 0 ≤ x + y ≤ r1.

Further, we choose the set Ω1 = {(x, y) ∈ E : ∥(x, y)∥E < r1}; then, for any (x, y) ∈
P ∩ ∂Ω1, we obtain

0 ≤ x(s) + y(s) ≤ ∥x∥+ ∥y∥ = ∥(x, y)∥E = r1, ∀s ∈ [0, 1],
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by simple calculation, we have

A1(x, y)(s) =
∫ 1

s
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1( f0 + ε)(x(τ) + y(τ))Ndτ)

1
N du

≤ ( f0 + ε)
1
N

∫ 1

0
(
∫ u

0
λNτN−1(∥x∥+ ∥y∥)Ndτ)

1
N du

= ( f0 + ε)
1
N λ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ∥(x, y)∥E

≤ ∥(x, y)∥E
2

.

Next, we show that

∥A1(x, y)∥ ≤ 1
2
∥(x, y)∥E, ∀ (x, y) ∈ P ∩ ∂Ω1. (10)

By applying the same method, we deduce

A2(x, y)(s) =
∫ 1

s
(
∫ u

0
µNτN−1g(x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
µNτN−1g(x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
µNτN−1(g0 + ε)(x(τ) + y(τ))Ndτ)

1
N du

≤ (g0 + ε)
1
N

∫ 1

0
(
∫ u

0
µNτN−1(∥x∥+ ∥y∥)Ndτ)

1
N du

= (g0 + ε)
1
N µ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ∥(x, y)∥E

≤ ∥(x, y)∥E
2

.

Next, we show that

∥A2(x, y)∥ ≤ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω1. (11)

Thus, by (10) and (11), we have

∥A(x, y)∥E = ∥A1(x, y)∥+ ∥A2(x, y)∥ ≤ ∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω1. (12)

On the other hand, considering the definitions of f∞ and g∞, it is easy to see that there
exists r̄2 > 0 such that

f (x, y) ≥ ( f∞ − ε)(x + y)N , x + y ≥ r̄2,

g(x, y) ≥ (g∞ − ε)(x + y)N , x + y ≥ r̄2.

Further, we choose r2 = max{2r1, 4r̄2} and denote Ω2 = {(x, y) ∈ E : ∥(x, y)∥E < r2};
then, for any (x, y) ∈ P ∩ ∂Ω2, we obtain

min
s∈[ 1

4 , 3
4 ]
(x(s) + y(s)) ≥ 1

4
∥(x, y)∥E =

1
4

r2 ≥ r̄2,
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in the following, we deduce

A1(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1 f (x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1( f∞ − ε)(x(τ) + y(τ))Ndτ)
1
N du

≥ ( f∞ − ε)
1
N

∫ 3
4

1
4

(
∫ u

1
4

λNτN−1(
1
4
∥(x, y)∥E)

Ndτ)
1
N du

=
1
4
( f∞ − ε)

1
N λ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ∥(x, y)∥E

≥ ∥(x, y)∥E
2

.

Now, we know that

∥A1(x, y)∥ ≥ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω2. (13)

In a similar manner, for any (x, y) ∈ P ∩ ∂Ω2, we obtain

A2(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
µNτN−1g(x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

µNτN−1g(x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

µNτN−1(g∞ − ε)(x(τ) + y(τ))Ndτ)
1
N du

≥ (g∞ − ε)
1
N

∫ 3
4

1
4

(
∫ u

1
4

µNτN−1(
1
4
∥(x, y)∥E)

Ndτ)
1
N du

=
1
4
(g∞ − ε)

1
N µ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ∥(x, y)∥E

≥ ∥(x, y)∥E
2

.

Now, we know that

∥A2(x, y)∥ ≥ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω2. (14)

Consequently, by means of (13) and (14), we show that

∥A(x, y)∥E = ∥A1(x, y)∥+ ∥A2(x, y)∥ ≥ ∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω2. (15)

Obviously, it follows from (12), (15) and Lemma 1 that A has at least one fixed point
(x, y) ∈ P ∩ (Ω2\Ω1) such that r1 ≤ ∥(x, y)∥E ≤ r2. Thus, System (9) has at least one
positive solution. The proof of Case (1) is completed.

(6) We assume f0 = 0, g0 ∈ (0, ∞), g∞ = ∞; then, for each λ ∈ (0, ∞) and µ ∈ (0, M4),
there exists ε > 0 such that

0 < λ <
1

2N FNε
,

4Nε

GN < µ <
1

2N FN(g0 + ε)
.
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Notice that the definitions of f0 and g0, and there exists r3 > 0 such that

f (x, y) < ε(x + y)N , 0 ≤ x + y ≤ r3,

g(x, y) < (g0 + ε)(x + y)N , 0 ≤ x + y ≤ r3.

Further, we choose the set Ω3 = {(x, y) ∈ E : ∥(x, y)∥E < r3}; then, for any (x, y) ∈
P ∩ ∂Ω3, we have

A1(x, y)(s) =
∫ 1

s
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1ε(x(τ) + y(τ))Ndτ)

1
N du

≤ ε
1
N

∫ 1

0
(
∫ u

0
λNτN−1(∥x∥+ ∥y∥)Ndτ)

1
N du

= ε
1
N λ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ∥(x, y)∥E

<
∥(x, y)∥E

2
.

(16)

Therefore,

∥A1(x, y)∥ ≤ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω3.

Similarly, we have

∥A2(x, y)∥ ≤ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω3;

clearly,
∥A(x, y)∥E ≤ ∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω3. (17)

On the other hand, since g∞ = ∞, we know that there exists r̄4 > 0 such that

g(x, y) ≥ 1
ε
(x + y)N , x, y ≥ 0, x + y ≥ r̄4.

Further, we choose r4 = max{2r3, 4r̄4} and denote Ω4 = {(x, y) ∈ E : ∥(x, y)∥E < r4};
then, for any (x, y) ∈ P ∩ ∂Ω4, we have mins∈[ 1

4 , 3
4 ]
(x(s) + y(s)) ≥ 1

4∥(x, y)∥E = 1
4 r4 ≥ r̄4,

Now, we deduce that

A2(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
µNτN−1g(x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

µNτN−1g(x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

µNτN−1 1
ε
(x(τ) + y(τ))Ndτ)

1
N du

≥ (
1
ε
)

1
N

∫ 3
4

1
4

(
∫ u

1
4

µNτN−1(
1
4
∥(x, y)∥E)

Ndτ)
1
N du

=
1
4
(

1
ε
)

1
N µ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ∥(x, y)∥E

> ∥(x, y)∥E.
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Then, it is easy to see that

∥A(x, y)∥E ≥ ∥A2(x, y)∥ ≥ ∥(x, y)∥E, (x, y) ∈ P ∩ ∂Ω4. (18)

Hence, it follows from (17), (18) and Lemma 1 that A has at least one fixed point
(x, y) ∈ P ∩ (Ω4\Ω3) such that r3 ≤ ∥(x, y)∥E ≤ r4, namely (x, y) is a positive solution for
System (9), so the proof is completed.

For f̂0, ĝ0, f̂∞, ĝ∞ ∈ (0, ∞), we define the symbols below:

Q1 =
2N

GN f̂0
, Q2 =

1

2N FN f̂∞
,

Q3 =
2N

GN ĝ0
, Q4 =

1
2N FN ĝ∞

.

Theorem 2. (1) Assume that f̂0, ĝ0, f̂∞, ĝ∞ ∈ (0, ∞), Q1 < Q2, Q3 < Q4; then, for λ ∈ (Q1, Q2)
and µ ∈ (Q3, Q4), System (9) has at least one positive solution.

(2) Assume that f̂0, ĝ0, f̂∞ ∈ (0, ∞), ĝ∞ = 0, and Q1 < Q2; then, for each λ ∈ (Q1, Q2) and
µ ∈ (Q3, ∞), System (9) has at least one positive solution.

(3) Assume that f̂0, ĝ0, ĝ∞ ∈ (0, ∞), f̂∞ = 0, and Q3 < Q4; then, for each λ ∈ (Q1, ∞) and
µ ∈ (Q3, Q4), System (9) has at least one positive solution.

(4) Assume that f̂0, ĝ0 ∈ (0, ∞), f̂∞ = ĝ∞ = 0; then, for each λ ∈ (Q1, ∞) and µ ∈ (Q3, ∞),
System (9) has at least one positive solution.

(5) Assume that f̂∞, ĝ∞ ∈ (0, ∞), f̂0 = ∞ or f̂∞, ĝ∞ ∈ (0, ∞), ĝ0 = ∞; then, for each
λ ∈ (0, Q2) and µ ∈ (0, Q4), System (9) has at least one positive solution.

(6) Assume that f̂0 = ∞, f̂∞ ∈ (0, ∞), ĝ∞ = 0 or f̂∞ ∈ (0, ∞), ĝ∞ = 0, ĝ0 = ∞; then, for
each λ ∈ (0, Q2) and µ ∈ (0, ∞), System (9) has at least one positive solution.

(7) Assume that f̂0 = ∞, ĝ∞ ∈ (0, ∞), f̂∞ = 0 or ĝ∞ ∈ (0, ∞), ĝ0 = ∞, f̂∞ = 0; then, for
each λ ∈ (0, ∞) and µ ∈ (0, Q4), System (9) has at least one positive solution.

(8) Assume that f̂∞ = ĝ∞ = 0, f̂0 = ∞ or f̂∞ = ĝ∞ = 0, ĝ0 = ∞; then, for each λ ∈ (0, ∞)
and µ ∈ (0, ∞), System (9) has at least one positive solution.

Proof. Due to the similarity in the proofs of the above cases, we demonstrate Case (1) and
Case (6).

(1) For each λ ∈ (Q1, Q2) and µ ∈ (Q3, Q4), there exists ε > 0 such that

2N

GN( f̂0 − ε)
≤ λ ≤ 1

2N FN( f̂∞ + ε)
,

2N

GN(ĝ0 − ε)
≤ µ ≤ 1

2N FN(ĝ∞ + ε)
.

It follows from the definitions of f̂0 and ĝ0 that there exists r1 > 0 such that

f (x, y) ≥ ( f̂0 − ε)(x + y)N , x, y ≥ 0, x + y ≤ r1,

g(x, y) ≥ (ĝ0 − ε)(x + y)N , x, y ≥ 0, x + y ≤ r1.

Further, we define the set Ω1 = {(x, y) ∈ E : ∥(x, y)∥E < r1}; then, for any (x, y) ∈ P∩ ∂Ω1,
we obtain
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A1(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1 f (x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1( f̂0 − ε)(x(τ) + y(τ))Ndτ)
1
N du

≥ ( f̂0 − ε)
1
N

∫ 3
4

1
4

(
∫ u

1
4

λNτN−1(
1
4
∥(x, y)∥E)

Ndτ)
1
N du

=
1
4
( f̂0 − ε)

1
N λ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ∥(x, y)∥E

≥ ∥(x, y)∥E
2

.

Next, we show that

∥A1(x, y)∥ ≥ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω1. (19)

In a similar manner, for any (x, y) ∈ P ∩ ∂Ω1, we deduce

A2(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
µNτN−1g(x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

µNτN−1g(x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

µNτN−1(ĝ0 − ε)(x(τ) + y(τ))Ndτ)
1
N du

≥ (ĝ0 − ε)
1
N

∫ 3
4

1
4

(
∫ u

1
4

µNτN−1(
1
4
∥(x, y)∥E)

Ndτ)
1
N du

=
1
4
(ĝ0 − ε)

1
N µ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ∥(x, y)∥E

≥ ∥(x, y)∥E
2

.

Next, we show that

∥A2(x, y)∥ ≥ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω1. (20)

Thus, from (19) and (20) we deduce

∥A(x, y)∥E = ∥A1(x, y)∥+ ∥A2(x, y)∥ ≥ ∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω1. (21)

We let f ∗(u) = max
0≤x+y≤u

f (x, y), g∗(u) = max
0≤x+y≤u

g(x, y); then, we have

f (x, y) ≤ f ∗(u), x, y ≥ 0, x + y ≤ u,

g(x, y) ≤ g∗(u), x, y ≥ 0, x + y ≤ u.

Similar to the proof of [26], we have

lim sup
u→+∞

f ∗(u)
uN ≤ f̂∞, lim sup

u→+∞

g∗(u)
uN ≤ ĝ∞.
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According to the above inequality, there exists r̄2 > 0 such that

f ∗(u)
uN ≤ lim sup

u→+∞

f ∗(u)
uN + ε ≤ f̂∞ + ε, u ≥ r̄2,

g∗(u)
uN ≤ lim sup

u→+∞

g∗(u)
uN + ε ≤ ĝ∞ + ε, u ≥ r̄2;

consequently, we have

f ∗(u) ≤ ( f̂∞ + ε)uN , g∗(u) ≤ (ĝ∞ + ε)uN , u ≥ r̄2.

Further, we define r2 = max{2r1, r̄2} and denote Ω2 = {(x, y) ∈ E : ∥(x, y)∥E < r2};
then, for any (x, y) ∈ P ∩ ∂Ω2, we obtain

f (x(s) + y(s)) ≤ f ∗(∥(x, y)∥E), g(x(s) + y(s)) ≤ g∗(∥(x, y)∥E),

by simple calculation, we have

A1(x, y)(s) ≤
∫ 1

0
(
∫ u

0
λNτN−1 f ∗(∥(x, y)∥E)dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1( f̂∞ + ε)(∥(x, y)∥E)

Ndτ)
1
N du

= ( f̂∞ + ε)
1
N λ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ∥(x, y)∥E

≤ ∥(x, y)∥E
2

.

Now, we know that

∥A1(x, y)∥ ≤ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω2. (22)

In a similar manner, for any (x, y) ∈ P ∩ ∂Ω2, we have

A2(x, y)(s) ≤
∫ 1

0
(
∫ u

0
µNτN−1g∗(∥(x, y)∥E)dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
µNτN−1(ĝ∞ + ε)(∥(x, y)∥E)

Ndτ)
1
N du

= (ĝ∞ + ε)
1
N µ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ∥(x, y)∥E

≤ ∥(x, y)∥E
2

.

Now, we know that

∥A2(x, y)∥ ≤ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω2. (23)

Clearly, by means of (22) and (23), we deduce that

∥A(x, y)∥E = ∥A1(x, y)∥+ ∥A2(x, y)∥ ≤ ∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω2. (24)

Consequently, by using (21), (24) and Lemma 1, we conclude that A has at least one
fixed point (x, y) ∈ P ∩ (Ω2\Ω1) such that r1 ≤ ∥(x, y)∥ ≤ r2.
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(6) We assume f̂0 = ∞, f̂∞ ∈ (0, ∞), ĝ∞ = 0; then, for any λ ∈ (0, Q2) and µ ∈ (0, ∞),
there exists ε > 0 such that

4Nε

GN < λ <
1

2N FN( f̂∞ + ε)
, 0 < µ <

1
2N FNε

.

Since f̂0 = ∞, there exists r3 > 0 such that

f (x, y) ≥ 1
ε
(x + y)N , x, y ≥ 0, 0 ≤ x + y ≤ r3.

Further, we define the set Ω3 = {(x, y) ∈ E : ∥(x, y)∥E < r3}; then, for any (x, y) ∈ P∩ ∂Ω3,
we have

A1(x, y)(
1
4
) ≥

∫ 3
4

1
4

(
∫ u

1
4

λNτN−1 f (x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1 1
ε
(x(τ) + y(τ))Ndτ)

1
N du

≥ (
1
ε
)

1
N

∫ 3
4

1
4

(
∫ u

1
4

λNτN−1(
1
4
∥(x, y)∥E)

Ndτ)
1
N du

=
1
4
(

1
ε
)

1
N λ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ∥(x, y)∥E

≥ ∥(x, y)∥E.

Obviously,
∥A(x, y)∥E ≥ ∥A1(x, y)∥ ≥ ∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω3. (25)

We let f ∗(u) = max
0≤x+y≤u

f (x, y), g∗(u) = max
0≤x+y≤u

g(x, y). Similar to the proof of [26],

we have

lim sup
u→+∞

f ∗(u)
uN ≤ f̂∞, lim sup

u→+∞

g∗(u)
uN = 0.

Moreover, for above ε > 0, it is easy to see that there exists r̄4 > 0 such that

f ∗(u)
uN ≤ lim sup

u→+∞

f ∗(u)
uN + ε ≤ f̂∞ + ε, u ≥ r̄4,

g∗(u)
uN ≤ lim sup

u→+∞

g∗(u)
uN + ε = ε, u ≥ r̄4;

consequently, we obtain

f ∗(u) ≤ ( f̂∞ + ε)uN , g∗(u) ≤ εuN , u ≥ r̄4.

Further, we define r4 = max{2r3, r̄4} and denote Ω4 = {(x, y) ∈ E : ∥(x, y)∥E < r4};
then, for any (x, y) ∈ P ∩ ∂Ω4, we have

f (x(s) + y(s)) ≤ f ∗(∥(x, y)∥E), g(x(s) + y(s)) ≤ g∗(∥(x, y)∥E),
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Now, we deduce that

A1(x, y)(s) ≤
∫ 1

0
(
∫ u

0
λNτN−1 f ∗(∥(x, y)∥E)dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1( f̂∞ + ε)(∥(x, y)∥E)

Ndτ)
1
N du

= ( f̂∞ + ε)
1
N λ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ∥(x, y)∥E

≤ ∥(x, y)∥E
2

.

Therefore,

∥A1(x, y)∥ ≤ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω4. (26)

Likewise, for any (x, y) ∈ P ∩ ∂Ω4, we have

A2(x, y)(s) ≤
∫ 1

0
(
∫ u

0
µNτN−1g∗(∥(x, y)∥E)dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
µNτN−1ε(∥(x, y)∥E)

Ndτ)
1
N du

= ε
1
N µ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ∥(x, y)∥E

≤ ∥(x, y)∥E
2

.

That is,

∥A2(x, y)∥ ≤ 1
2
∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω4. (27)

Obviously, from (26) and (27), we deduce

∥A(x, y)∥E = ∥A1(x, y)∥+ ∥A2(x, y)∥ ≤ ∥(x, y)∥E, ∀(x, y) ∈ P ∩ ∂Ω4. (28)

Hence, by using (25), (28) and Lemma 1, we conclude that A has at least one fixed point
(x, y) ∈ P ∩ (Ω4\Ω3) such that r3 ≤ ∥(x, y)∥E ≤ r4, namely (x, y) is a positive solution for
System (9).

4. Applications

Example 1. We consider the following boundary value problem:
((−x′(s))3)′ = 3λs2 f (x(s), y(s)), 0 < s < 1,

((−y′(s))3)′ = 3µs2g(x(s), y(s)), 0 < s < 1,

x′(0) = x(1) = 0, y′(0) = y(1) = 0,

(29)

We take f (x, y) = (x + y)N+2, g(x, y) = (x + y)N + (x + y)Nex+y, where N = 3. By simple
calculation, we obtain M4 ≈ 0.0625, and

f0 = lim sup
x+y→0+

f (x, y)
(x + y)N = lim sup

x+y→0+
(x + y)2 = 0,

g0 = lim sup
x+y→0+

g(x, y)
(x + y)N = lim sup

x+y→0+
(1 + ex+y) = 2,

f∞ = lim inf
x+y→∞

f (x, y)
(x + y)N = lim inf

x+y→∞
(x + y)2 = ∞.
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Then, for each λ ∈ (0, ∞) and µ ∈ (0, 0.0625), by Theorem 1 (6), we determine that
System (29) has at least one positive solution.

Example 2. We consider the following boundary value problem:
((−x′(s))3)′ = 3λs2 f (x(s), y(s)), 0 < s < 1,

((−y′(s))3)′ = 3µs2g(x(s), y(s)), 0 < s < 1,

x′(0) = x(1) = 0, y′(0) = y(1) = 0,

(30)

We take f (x, y) = (x+y)N

tan (x+y)N , g(x, y) = 1
x+y , where N = 3. By simple calculation, we obtain

Q2 ≈ 0.1962, and

f̂0 = lim inf
x+y→0+

f (x, y)
(x + y)N = lim inf

x+y→0+

1
arctan(x + y)N = ∞,

ĝ∞ = lim sup
x+y→∞

g(x, y)
(x + y)N = lim sup

x+y→∞

1
(x + y)N+1 = 0,

f̂∞ = lim sup
x+y→∞

f (x, y)
(x + y)N = lim sup

x+y→∞

1

arctan(x + y)N =
2
π

.

Then, for each λ ∈ (0, 0.1962) and µ ∈ (0, ∞), by Theorem 2 (6), we determine that
System (30) has at least one positive solution.

5. Conclusions

The system of Monge–Ampère equations is significant in various fields of study,
including geometry, mathematical physics, materials science, and others. In this paper,
by considering some combinations of superlinearity and sublinearlity of functions f and
g, we use the Guo–Krasnosel’skii fixed point theorem to study the existence of nontrivial
solutions for a system of Monge–Ampère equations with two parameters and establish
diverse existence outcomes for nontrivial solutions based on various values of λ and µ
which enrich the theories for the system of Monge–Ampère equations. The research in
this paper is different from reference [21]. When λ = µ = 1 in System (1), System (1) can
be reduced to System (4) of reference [21]; then, it can be simply seen that System (4) is a
special case of this paper, so this paper can be said to be a generalization of reference [21].
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