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Abstract: The portmanteau test is an effective tool for testing the goodness of fit of models. Motivated
by the fact that high-frequency data can improve the estimation accuracy of models, a modified port-
manteau test using high-frequency data is proposed for ARCH-type models in this paper. Simulation
results show that the empirical size and power of the modified test statistics of the model using
high-frequency data are better than those of the daily model. Three stock indices (CSI 300, SSE 50,
CSI 500) are taken as an example to illustrate the practical application of the test.
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1. Introduction

Securities trading has always been a prominent topic in the financial sector, and volatil-
ity serves as a crucial indicator for analyzing fluctuations in trading price data. Volatility
reflects the expected level of price instability in a financial asset or market, which greatly
influences investment decisions [1]. In the field of volatility modeling, the autoregressive
conditional heteroscedasticity (ARCH) model and the generalized autoregressive con-
ditional heteroscedasticity (GARCH) model are widely recognized as two fundamental
models [2]. Let yt be the log-return of day t. The ARCH model proposed by Engle (1982) [3]
is structured as follows:

yt = σtεt,

σ2
t = ω + α1y2

t−1 + α2y2
t−2 + . . . + αqy2

t−q,

where εt is an independent and identically distributed (i.i.d.) sequence, and σt represents
the volatility of yt. Additionally, it is assumed that the expectation of εt is zero, i.e., E[εt] = 0,
and the expectation of ε2

t is equal to one, i.e., E[ε2
t ] = 1. The parameters (ω, α1, α2, . . ., αq)

are the coefficients associated with the lagged squared observations (1, y2
t−1, y2

t−2, . . ., y2
t−q),

which need to be estimated. ARCH models are commonly employed in time-series model-
ing and analysis. However, when the order q of the ARCH(q) model is large, the number
of parameters that require estimation increases. This can lead to challenges in estimation,
particularly in cases with finite samples where estimation efficiency may decrease. Further-
more, it is possible for the estimated parameter values to turn out negative. To address
these limitations, Bollerslev (1986) [4] proposed the generalized autoregressive conditional
heteroscedasticity (GARCH) model. For the pure GARCH(1,1) model, the conditional
variance equation is expressed as follows:

σ2
t = ω + αy2

t−1 + βσ2
t−1. (1)
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Obviously, Formula (1) is an iterative equation. Let t = t − 1. Then

σ2
t−1 = ω + αy2

t−2 + βσ2
t−2. (2)

From (1) and (2), we obtain

σ2
t = ω + αy2

t−1 + β(ω + αy2
t−2 + βσ2

t−2)

= (1 + β)ω + αy2
t−1 + αβy2

t−2 + β2σ2
t−2.

Repeating the process above, we expand σ2
t−2, σ2

t−3, . . .. Then, we can obtain an infinite-
order ARCH model. Since the GARCH model is a generalization of the ARCH model, they
are collectively referred to as the ARCH-type models. In financial data analysis, apart from
heteroscedasticity, there are other prominent characteristics, such as the leverage effect
(Black, 1976) [5]. To address this, Geweke (1986) [6] introduced the asymmetric log-GARCH
model, while Engle et al. (1993) [7] introduced the asymmetric power GARCH model to
account for the leverage effect. Furthermore, Drost and Klassen (1997) [8] modified the
pure GARCH(1,1) model as follows:

yt = vtτεt, (3)

v2
t = 1 + γy2

t−1 + βv2
t−1. (4)

For the ARCH(q) case, the conditional variance equation is given by

v2
t = 1 + γ1y2

t−1 + γ2y2
t−2 + . . . + γqy2

t−q. (5)

When vtτ = σt, τ2 = ω, and γτ2 = α, the models (3) and (4) can be transformed into the
pure GARCH(1,1) model. Similarly, the models (3) and (5) can be transformed into the pure
ARCH(q) model. The advantage of this model is that the standardization of εt only affects
the parameter τ. By standardizing the residuals, they are made unit variance, simplifying
the estimation process and allowing the focus to be on estimating the parameters of interest
without being influenced by the scale of the residuals.

With the advancement of information technology, obtaining intraday high-frequency
data has become effortless, and such data often contain valuable information. Recognizing
this, Visser (2011) [9] introduced high-frequency data into models (3) and (4), leading to
improved efficiency in model parameters estimation. Subsequently, numerous researchers
have extensively explored the enhancement of classical models by utilizing high-frequency
data. Huang et al. (2015) [10] incorporated high-frequency data into the GJR model (named
by the proponents Glosten, Jagannathan and Runkel) [11] and examined a range of robust
M-estimators [12]. Wang et al. (2017) [13] employed composite quantile regression to
examine the GARCH model using high-frequency data. Other notable studies include
Fan et al. (2017) [14], Deng et al. (2020) [15], and Liang et al. (2021) [16].

In addition to model parameter estimation, model testing plays a crucial role in time-
series modeling and analysis as researchers seek to assess the adequacy of the established
models. Portmanteau tests have been widely used for this purpose. The earliest work in
this area can be traced back to Box and Pierce (1970) [17], who demonstrated the utility of
square-residual autocorrelations for model testing. Since then, several researchers have
applied this test to time-series models, including Granger et al. (1978) [18] and Mcleod
and Li (1983) [19]. For instance, Engle and Bollerslev (1986) [20] and Pantula (1988) [21]
proposed the test to examine the presence of ARCH in the error term. However, Li and
Mak (1994) [22] showed that the variance of the residual autocorrelation function is not
idempotent when using ARCH-type models. To overcome this issue, they developed a
modified statistic that incorporated the variance of the residual autocorrelation function.
They also proved that when the parameter estimates follow asymptotic normality, the test
statistic follows a chi-square distribution. After the emergence of the quasi-maximum
exponential likelihood estimation (QMELE) method [23], Li and Li (2005) [24] generalized
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the test statistic proposed by Li and Mak [22] using a new estimation method. They also
proposed a similar test statistic for the autocorrelation function with absolute residuals
|εt|. Carbon and Francq (2011) [25] extended the test of Li and Mak [22] to the asymmetric
power GARCH model. Furthermore, Chen and Zhu (2015) [26] constructed a rank-based
portmanteau test based on Li and Mak’s [22] statistic. They modified the autocorrelation
function of the residuals εt to the autocorrelation function of the rank-based residuals
sgn(ε2

t − 1), making the new test applicable to heavy-tailed data. Even today, scholars
like Li and Zhang (2022) [27] continue to show great interest in studying the extension of
these tests.

Motivated by the works of Li and Mak (1994) [22] and Visser (2011) [9], this paper intro-
duces a modified portmanteau test for diagnosing ARCH-type models using high-frequency
data. The paper also discusses the general procedure for constructing portmanteau test
statistics for ARCH-type models based on high-frequency data. It is demonstrated that
under weaker conditions such as having a finite residual fourth-order moment and other
regularity conditions, the proposed portmanteau test follows a chi-square distribution.

This paper is structured as follows. Section 2 discusses the estimation for ARCH-type
models. Section 3 covers the construction of the portmanteau test statistics and provides
the corresponding asymptotic distribution. Section 4 presents the simulation process and
the related results. Section 5 includes three real data examples along with the analysis
of the corresponding results. Finally, the assumptions, proofs, and additional results are
deferred to the Appendix B.

2. Estimation Using High-Frequency Data

To introduce high-frequency data, the structure of the log-returns equation has been
enhanced. The observed intraday log-return process Yt(u) for day t is associated with the
standardized intraday trading time variable u, which ranges from 0 to 1. According to Visser
(2011) [9], the modified model is a scaling GARCH(1,1) model, which is expressed as:

Yt(u) = vtτεt(u), 0 ≤ u ≤ 1, (6)

v2
t = 1 + γy2

t−1 + βv2
t−1, (7)

where {εt(u)} represents a standardized process. The assumption is made that for any
k ̸= l, εk(·) and ε l(·) are independent of each other and share the same distribution. When
u is set to 1, the following relationships hold:

Yt(1) = yt, εt(1) = εt, Eεt(1)2 = 1.

Hence, when u is set to 1, models (6) and (7) are transformed into models (3) and (4), which
combine the scaling model with the pure GARCH model.

In order to estimate the parameters, the scaling model utilizes a volatility proxy. This
proxy reduces high-dimensional information to a single dimension. Furthermore, when
the conditional mean is zero, the volatility proxy serves as an unbiased estimate of the
conditional variance. Specifically, the volatility proxy H(·) is a statistic derived from
intraday data and satisfies the following property of positive homogeneity:

H(ρYt(u)) = ρH(Yt(u)) > 0, ρ ≤ 0.

When t is fixed, vt becomes a constant. By applying the homogeneity property of H(·), it
can be observed that

H(Yt(u)) = H(vtτεt(u)) = vtτH(εt(u)).



Axioms 2024, 13, 141 4 of 20

For convenience, let Ht ≜ H(Yt(u)), µH ≜
√

E(H2(εt(u))), τH ≜ µHτ, and ε∗t ≜ H(εt(u))/µH.
Then, the volatility proxy GARCH model has the following structure:

Ht = vtτHε∗t , (8)

v2
t = 1 + γy2

t−1 + βv2
t−1, (9)

where {ε∗t } is also an i.i.d. sequence that satisfies Eε∗2
t = 1. (τH , γ, β)′ is the parameter of

the models (8) and (9) that needs to be estimated. For simplicity, models (8) and (9) are
referred to as the VP-GARCH(1,1) model.

In the case of ARCH(q), the return equation aligns with Formula (8), while the condi-
tional variance equation is expressed as:

v2
t = 1 + γ1y2

t−1 + γ2y2
t−2 + . . . + γqy2

t−q. (10)

Similarly, the parameter vector (τH , γ1, γ2, . . ., γq)′ represents the parameters of models (8)
and (10), which require estimation. The models (8) and (10) are referred to as the VP-
ARCH(q) model.

The Gaussian quasi-maximum likelihood estimation (QMLE) [9] is employed to es-
timate the parameters of models (8) and (9) and models (8) and (10). The QMLE of θ is
defined as:

θ̃ = arg min
θ∈Θ

Ln(θ), Ln(θ) =
1
2

n

∑
t=1

(
log(v2

t τ2
H) +

H2
t

v2
t τ2

H

)
. (11)

To differentiate between them, the parameter vector estimate using low-frequency data is
denoted as θ̂, while the parameter vector estimate using high-frequency data is denoted as
θ̃. The asymptotic normality of the parameter estimates for models (8) and (9) has been
proven by Visser [9]. This conclusion can also be applied to models (8) and (10). Therefore,
the following asymptotic normality can be obtained:

√
n(θ̃− θ0)

d−→ N(0, var(ε∗2
t )G−1),

G = E

(
1

σ4
H,t

∂σ2
H,t

∂θ

∂σ2
H,t

∂θ
′

)
, σH,t = vtτH .

In particular, when τH is known, let η = (γ, β)′ be the parameter vector for models (8) and
(9), and let η = (γ1, . . ., γq)′ denote the parameter vector for models (8) and (10). Then

G = cov
(

1
v2

t

∂v2
t

∂η
,

1
v2

t

∂v2
t

∂η′

)
.

3. Portmanteau Test
3.1. Traditional Portmanteau Test

The portmanteau test is employed to evaluate the adequacy of the model’s fit. This
statistical test is constructed based on the squared residual autocorrelation function. In cases
where the volatility model is inadequate, a certain level of correlation between the squared
residual terms exists.

In this paper, the null hypothesis is that the squared residual autocorrelation functions
are irrelevant, indicating that the hypothesized model is adequate. The sample squared
residual autocorrelation function r̂k is calculated as follows:

r̂k =
∑n

t=k+1(y
2
t /σ̂2

t − 1)(y2
t−k/σ̂2

t−k − 1)

∑n
t=1 (y

2
t /σ̂2

t − 1)2 , k = 1, 2, 3, . . .
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According to the central limit theorem, it can be proven that r̂k follows an asymptotic
normal distribution under the null hypothesis. To obtain the test statistic, a finite vector of
autocorrelation functions r̂M = (r̂1, r̂2, . . ., r̂m)

′
is considered, where m is the maximum lag

order of r̂k. Let D denote the asymptotic variance of rM. The portmanteau test statistic Q2

can be formulated as:
Q2 = nr̂

′
MD̂−1r̂M. (12)

Under Assumptions A3 and A4, 1
n ∑n

t=1 (y
2
t /σ̂2

t − 1)2 converges to constant E(ε2
t − 1)2

in probability. Here, E(ε2
t − 1)2 can be estimated by Ĉ0, where

Ĉ0 =
1
n

n

∑
t=1

y4
t

σ̂4
t
− 1.

Therefore, only the asymptotic distribution of Ĉk needs to be considered, where

Ĉk =
n

∑
t=k+1

(
y2

t
σ̂2

t
− 1)(

y2
t−k

σ̂2
t−k

− 1), k = 1, 2, . . ., m. (13)

So, Formula (12) can be changed into

Q2 = nĈ
′
MV̂−1ĈM

d−→ χ2(m),

where ĈM = (Ĉ1, Ĉ2, . . ., Ĉm)
′
, and V is the asymptotic variance of CM.

The statistic Q2 asymptotically follows a chi-square distribution with m degrees of
freedom. By setting the significance level at 0.05, if the calculated result exceeds the 95%
quantile χ2

0.95(m), the null hypothesis will be rejected. Conversely, if the calculated result is
below the quantile, the null hypothesis will not be rejected, indicating that the model can
be considered adequate.

3.2. Portmanteau Test Using High-Frequency Data

From Equation (13), we can observe that the estimate Ĉk is dependent on the estimate
of σ̂2

t . The estimator σ̂2
t is a function of θ. Given that the estimator θ̃ is obtained using

high-frequency data, the volatility estimator σ̃2
t (θ̃) can be easily obtained. Additionally,

the statistic C̃k(θ̃) can be calculated as follows:

C̃k(θ̃) =
n

∑
t=k+1

(
y2

t

σ̃2
t (θ̃)

− 1)(
y2

t−k

σ̃2
t−k(θ̃)

− 1), k = 1, 2, . . .. (14)

Similarly,

C̃0 =
1
n

n

∑
t=1

y4
t

σ̃4
t
− 1.

Furthermore, the asymptotic distribution of the estimator θ̃ differs from that of the estimator
θ̂, which is a difference that further impacts the asymptotic variance of C̃k. Let Ṽ1 denote
the modified variance estimator. The following theorem can then be derived.

Theorem 1. If Assumptions A1–A5 are satisfied, then under the null,

Q̃2 = nC̃
′
MṼ−1

1 C̃M
d−→ χ2(m),
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where C̃M = (C̃1, C̃2, . . ., C̃m)
′
, Ṽ1 = C̃2

0 IM + C̃HX̃G̃−1X̃
′ − 2C̃H,0X̃G̃−1X̃

′
H ,

C̃H =
1
n

n

∑
t=1

H4
t

σ̃4
H,t

− 1, C̃H,0 =
1
n

n

∑
t=1

{( H2
t

σ̃2
H,t

− 1)(
y2

t
σ̃2

t
− 1)},

X̃ = (X̃1, X̃2, . . ., X̃m)
′
, X̃H = (X̃H,1, X̃H,2, . . ., X̃H,m)

′
,

X̃k = − 1
n

n

∑
t=k+1

(
1
σ̃2

t

∂σ2
t

∂θ
)(

y2
t−k

σ̃2
t−k

− 1), k = 1, 2, . . ., m,

X̃H,k = − 1
n

n

∑
t=1

(
1

σ̃2
H,t

∂σ2
H,t

∂θ
)(

y2
t−k

σ̃2
t−k

− 1), k = 1, 2, . . ., m.

The proof of Theorem 1 is presented in Appendix A.2.

Indeed, the presence of the parameter τH poses challenges in obtaining the QMLE
θ̃ in practical applications. However, these challenges can be overcome if an appropriate
volatility proxy H(·) is identified. When the volatility proxy H(·) satisfies EH2(εt(u)) = 1,
indicating µH = 1, then τ = τH . Assuming µH = 1, we can establish the following lemma.

Lemma 1. If Assumptions A1–A6 are satisfied, then under the null,

Q̃2 = nC̃
′
MṼ2

−1
C̃M

d−→ χ2(m),

where Ṽ2 = C̃2
0 IM + (C̃H − 2C̃H,0)X̃G̃−1X̃

′
.

The proof of Lemma 1 is also provided in Appendix A.2.

4. Simulation

In this section, the finite-sample performance of the proposed method is examined
through Monte Carlo simulations [28]. All data generation, results calculation, and figures
plotting in this section are accomplished by running the R program.

In practical applications, the log-return series Yt(u) can be calculated based on the
stock price. However, in the simulation, prior to simulating the generation of Yt(u), it
is necessary to generate the high-frequency residual sequences. Following Visser [9],
the high-frequency residual sequences εt(u) can be generated using the stationary Ornstein–
Uhlenbeck process [29]:

dΓt(u) = −δ(Γt(u)− µΓ)du + σΓdB(2)
t (u),

dεt(u) = exp(Γt(u))dB(1)
t (u), u ∈ [0, 1],

where dB(1)
t and dB(2)

t are unrelated Brownian motions [30]. The initial value of εt(0) is
set to 0, and Γt(0) is generated from a stable distribution N(µΓ, σ2

Γ/2δ). To simulate the
Chinese stock exchange market, the interval [0, 1] is divided into 240 small equal intervals,
representing every minute of intraday trading. The values of µΓ, σΓ, and δ are set to

δ =
1
2

, σΓ =
1
4

, µΓ = − 1
16

.

This ensures that the expected value of ε2
t (1) is equal to 1 [9]. The calculation of Yt(u) is

based on the given parameter vector θ using Equations (6), (7) and (10). For ARCH(2),
set η = (0.6, 0.3)′ and η = (0.4, 0.25)′. For VP-GARCH(1,1), set η = (0.1, 0.6)′ and
η = (0.25, 0.5)′. The corresponding equation is as follows:

v2
t = 1 + 0.6y2

t−1 + 0.3y2
t−2, (15)
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v2
t = 1 + 0.4y2

t−1 + 0.25y2
t−2, (16)

v2
t = 1 + 0.1y2

t−1 + 0.6v2
t−1, (17)

v2
t = 1 + 0.25y2

t−1 + 0.5v2
t−1. (18)

Eventually, volatility proxy is selected as the realized volatility (RV). Three sampling
frequencies are considered: 5 min, 15 min, and 30 min, which are denoted as RV5, RV15,
and RV30, respectively. Taking RV15 as an example, the formula is

Ht = RV15t = (
16

∑
t=1

[Yt(u15i)− Yt(u15(i−1))])
1/2.

Similarly, for the high-frequency residual εt(u), the formula is

H(εt(u)) = (
16

∑
t=1

[εt(u15i)− εt(u15(i−1))])
1/2.

To evaluate the performance of the models, let n denote the sample size and four sample
sizes are considered: 200, 300, 400, and 500. For each model, 1000 independent replications
are generated. Then, the root mean squared error (RMSE) of parameter estimates can be
calculated. The formula is as follows:

RMSE(η̂) =

√√√√ 1
1000

1000

∑
i=1

(η̂i − η)2,

where η̂i is the parameter estimate for the i-th time and η is the true value of the parameter.
The RMSE results are presented in Table 1.

Table 1. RMSE of parameter estimates under four volatility proxy models.

n = 200 n = 300 n = 400 n = 500

γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2

model (15)

|yt| 0.1755 0.1282 0.1418 0.1088 0.1280 0.0941 0.1097 0.0819
RV30 0.0788 0.0585 0.0656 0.0489 0.0563 0.0408 0.0490 0.0370
RV15 0.0663 0.0497 0.0551 0.0410 0.0471 0.0346 0.0414 0.0319
RV5 0.0573 0.0410 0.0480 0.0355 0.0412 0.0346 0.0353 0.0268

model (16)

|yt| 0.1439 0.1197 0.1184 0.0994 0.1064 0.0847 0.0919 0.0801
RV30 0.0676 0.0568 0.555 0.0462 0.0465 0.0378 0.0424 0.0344
RV15 0.0568 0.0469 0.0480 0.0386 0.0385 0.0325 0.0367 0.0293
RV5 0.0486 0.0392 0.0416 0.0327 0.0330 0.0278 0.0316 0.0253

γ1 β1 γ1 β1 γ1 β1 γ1 β1

model (17)

|yt| 0.0773 0.0777 0.0651 0.0656 0.0552 0.0559 0.0485 0.0499
RV30 0.0372 0.0367 0.0304 0.0306 0.0267 0.0257 0.0228 0.0221
RV15 0.0306 0.0302 0.0259 0.0257 0.0226 0.0217 0.0193 0.0188
RV5 0.0268 0.0263 0.0226 0.0219 0.0197 0.0191 0.0165 0.0157

model (18)

|yt| 0.1240 0.0941 0.0935 0.0750 0.0856 0.0670 0.0730 0.0573
RV30 0.0529 0.0411 0.0426 0.0342 0.0373 0.0300 0.0324 0.0254
RV15 0.0447 0.0342 0.0354 0.0282 0.0313 0.0252 0.0268 0.0219
RV5 0.0370 0.0287 0.0305 0.0243 0.0263 0.0210 0.0232 0.0187

The |yt| in Table 1 represents the daily model, where Ht =|yt| is calculated using daily
closing prices. Table 1 clearly shows that the estimation results obtained from the intraday
models, using high-frequency data, outperform those of the daily model.
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Additionally, it is necessary to examine the distribution of the statistic and compare its
performance with the daily model. Therefore, Table 2 presents the empirical size values for
this purpose.

Table 2. Empirical size of four volatility proxies under four models.

n = 200 n = 300 n = 400 n = 500

model (15)

|yt| 0.039 0.033 0.037 0.031
RV30 0.070 0.064 0.059 0.058
RV15 0.071 0.064 0.052 0.057
RV5 0.075 0.059 0.056 0.059

model (16)

|yt| 0.030 0.029 0.033 0.019
RV30 0.075 0.047 0.052 0.044
RV15 0.075 0.055 0.054 0.049
RV5 0.075 0.054 0.057 0.050

model (17)

|yt| 0.024 0.035 0.028 0.030
RV30 0.068 0.062 0.046 0.047
RV15 0.061 0.071 0.054 0.054
RV5 0.064 0.070 0.048 0.058

model (18)

|yt| 0.037 0.024 0.035 0.027
RV30 0.066 0.059 0.060 0.047
RV15 0.064 0.064 0.062 0.050
RV5 0.072 0.062 0.060 0.052

We set m = 6 and calculate the empirical size by determining the proportions of
rejections based on the 95th percentile of χ2(6). The results are presented in Table 2. It is
evident that as the sample size increases, the results of the intraday models are closer to
0.05 compared to those of the daily model. It suggests that introducing high-frequency
data can enhance the accuracy of the model.

Regarding the power, we define the alternative hypotheses for ARCH(2) and GARCH(1,1)
as follows:

H1 : v2
t = 1 + γ1y2

t−1 + γ2y2
t−2 + γ3y2

t−3,

H1 : v2
t = 1 + γ

′
1y2

t−1 + γ
′
2y2

t−2 + β1v2
t−1,

where γ1 and γ2 are obtained from models (15) and models (16), respectively, while γ
′
1 and

β1 are obtained from models (17) and models (18), respectively, which are all fixed values.
Next, we introduce γ3 and γ

′
2 as variables to examine the impact on the power.

Figure 1 displays the power results of the ARCH(2) model, while Figure 2 presents
the power results of the GARCH(1,1) model. The results for models (16) and (18) can
be found in Appendix B (Figures A1 and A2). From these figures, it is evident that the
power curves of the intraday models exhibit clear distinctions from that of the daily model,
although this effect diminishes as the sample size increases. Additionally, upon comparing
the power of the four models, we observe that the ARCH model demonstrates a more
pronounced power.
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Figure 1. Power for models (15), where γ3 takes 0.1, 0.2, 0.3, and 0.4. (a) The variation of power of
different volatility proxies as the parameter γ3 changes when the sample size is 200. (b) The variation
of power of different volatility proxies as the parameter γ3 changes when the sample size is 300. (c)
The variation of power of different volatility proxies as the parameter γ3 changes when the sample
size is 400. (d) The variation of power of different volatility proxies as the parameter γ3 changes
when the sample size is 500.
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Figure 2. Power for models (17), where γ′
2 takes 0.1, 0.2, . . . , 0.5. (a) The variation of power of different

volatility proxies as the parameter γ′
2 changes when the sample size is 200. (b) The variation of

power of different volatility proxies as the parameter γ′
2 changes when the sample size is 300. (c) The

variation of power of different volatility proxies as the parameter γ′
2 changes when the sample size is

400. (d) The variation of power of different volatility proxies as the parameter γ′
2 changes when the

sample size is 500.
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5. Application

In our analysis, we focus on three stock indices: the CSI 300, SSE 50, and CSI 500.
The data cover the period from 2 January 2004 to 6 June 2019. After deleting missing data,
we obtained a dataset consisting of 2610 consecutive days (8 April 2005 to 31 December
2015) for the CSI 300 index, 2856 consecutive days (2 January 2004 to 13 October 2015) for
the SSE 50 index, and 2124 consecutive days (15 January 2007 to 13 October 2015) for the
CSI 500 index. The calculations and figures presented in this section are generated using
the R programming language.

To compute the high-frequency log-return Yt(u) [9], the following formula is em-
ployed:

Yt(u) = [log Pt(u)− log Pt−1(u)]× 100, u ∈ [0, 1],

where Pt(u) denotes the trading price within 240 min of day t, and Yt(1) = yt denotes
the closing price of day t. The log-return Yt(1) values for the three indices are depicted in
Figure 3.
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Figure 3. Log-return of three indices: (a) The figure of CSI 300, (b) the figure of SSE 50 and (c) the
figure of CSI 500. The vertical ordinate of all figures is log-return, and the horizontal ordinate is
time t.

From Figure 3, it is evident that all three samples exhibit significant heteroscedasticity
and fluctuate around 0. Therefore, it is worth considering the use of pure ARCH or
GARCH models.

However, an estimation challenge arises in the process, specifically in estimating the
parameter µH . To overcome this, we assume µH = 1, which leads to τH = τ. Noting that
ω = τ2, we can obtain an estimator for τ2 in the daily model. It implies that estimating
intraday models will depend on daily models.

We intend to fit the data with the ARCH(2) model first, and the portmanteau test
statistics using low-frequency are shown in Table 3.

Table 3. The results of statistic Q2 of ARCH(2).

CSI 300 SSE 50 CSI 500

Q2(yt) 92.5215 104.0227 76.4603
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Choose m = 6. Obviously, the results of all three samples are significantly larger than
χ2

0.95(6) = 12.5916, leading to the rejection of the null hypothesis. Therefore, the ARCH(2)
model is deemed inadequate. To identify a more suitable model, we examine the residuals
of these models and observe the log-return figures. Notably, the log-return of the CSI
500 exhibits relatively less fluctuation over a period, indicating the potential need for a
higher-order ARCH model. Hence, we consider the GARCH(1,1) model. The parameter
estimates are presented in Table 4.

Table 4. The estimators of parameters of GARCH(1,1).

τ2/τ2
H α β

CSI 300

|yt|

0.0069

0.0553 0.9447
RV30 0.1775 0.8678
RV15 0.1718 0.8659
RV5 0.1860 0.8646

SSE 50

|yt|

0.0254

0.0563 0.9372
RV30 0.1723 0.8592
RV15 0.1733 0.8653
RV5 0.1889 0.8570

CSI 500

|yt|

0.0223

0.0532 0.9416
RV30 0.1704 0.8477
RV15 0.1773 0.8479
RV5 0.1748 0.8556

Before calculating the test statistic, it is necessary to consider the hypothesis of µH = 1.
This hypothesis implies that E(H2(εt)) = 1. To validate the hypothesis, an estimate for
E(H2(εt)) = 1 can be calculated using the following expression:

ˆE(H2(εt)) = E(
H2

t
v̂2

t τ̂2
).

The calculation results are reported in Table 5.

Table 5. The estimators of E(H2(εt)) of GARCH(1,1).

RV30 RV15 RV5

CSI 300 1.0007 1.0004 0.9996
SSE 50 1.0024 1.0026 1.0000
CSI 500 1.0042 1.0033 1.0018

The results of Table 5 show that the estimators of E(H2(εt)) are almost close to 1. It
suggests that an appropriate volatility measure has been identified. With this in mind,
it is straightforward to proceed with the calculation of the portmanteau test statistics.
The specific results are shown in Table 6.

Table 6. The results of statistic Q2 of GARCH(1,1).

Q2(yt) Q2(RV30) Q2(RV15) Q2(RV5)

CSI 300 3.9670 22.6534 20.1195 19.7573
SSE 50 6.7440 25.4250 20.3720 22.1240
CSI 500 11.3254 9.5863 10.0561 8.4238

At a 5% significance level, the critical value for the rejection region is χ2
0.95(6) = 12.5916.

It is important to note that the null hypothesis of our test is that the model fitting is adequate,
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while the alternative hypothesis suggests inadequate model fitting. In the portmanteau
test, a higher value of the test statistic indicates a greater likelihood of rejecting the null
hypothesis, implying inadequate model fitting.

From Table 6, it can be observed that for the daily model, all of the portmanteau
test statistics for the three stock indices fall within the accepted region. However, for the
intraday model, except for the CSI 500 index, the test statistics for the other two indices fall
within the rejection region.

Furthermore, an interesting phenomenon emerges. When the intraday models reject
the null hypothesis, the values of the portmanteau test statistic differ significantly from
those of the daily model. On the other hand, when the intraday models accept the null
hypothesis, the difference between the two is not significant. Specifically, if the intraday
model fitting is adequate, then the daily model fitting may be inadequate. Conversely,
if the daily model fitting is inadequate, the intraday model fitting will also be inadequate.
It suggests that the daily model could serve as a boundary model. In practical terms, when
the daily model is inadequate, there is no need to consider the intraday model further.

The fact that the intraday models reject the null hypothesis while the daily model
accepts it is a noteworthy issue that warrants further study. To facilitate this analysis,
the estimated volatility curves and residual scatter plots are shown in Figures 4 and 5.
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Figure 4. The estimated volatility curves of CSI 300, where the black curve is the real data curve,
the blue curve is the estimated volatility curve of RV15, and the red curve is the estimated volatility
curve of the model using low-frenquency data.

Since the results of different high-frequency volatility proxies (RV30, RV15, RV5) are
similar and their curves overlap, the model with E(Ĥ(ε2

t )) closer to 1 is selected. Figure 4
illustrates that the estimated volatility curve derived from high-frequency data exhibits
greater fluctuations, indicating its ability to capture more information. A similar pattern
can be observed for the SSE 50 index, as shown in the Appendix B (Figure A3).

As can be seen from Figure 5, the residuals of the low-frequency model are mainly
concentrated within the range of [−3, 3], whereas the residuals of the high-frequency
model are primarily concentrated within the range of [−2.5, 2.5]. However, the results also
indicate a certain degree of heteroscedasticity. A similar result can be observed for the SSE
50 index, as shown in Appendix B (Figure A4).
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Figure 5. The residual plots of CSI 300, where (a) is of the model using low-frequency data and (b) is
of RV15.

6. Discussion

In this study, we aimed to propose a portmanteau test suitable for ARCH models based
on high-frequency data. Based on the asymptotic properties of the QMLE for ARCH-type
models with high-frequency data, we developed a new portmanteau test.

Firstly, we constructed the modified portmanteau test statistic in this paper using
the vector of residual autocorrelation functions and its variance obtained from the QMLE
based on high-frequency information. Through the application of the law of large numbers,
central limit theorem and Taylor expansion, we proved that this statistic follows a chi-square
distribution. The specific form of this statistic was provided for cases where the high-
frequency redundant parameters are both known and unknown, as outlined in Theorem 1
and Lemma 1.

Secondly, the simulation results regarding the size of the test provide evidence that
the modified test statistic asymptotically follows a chi-square distribution when the chosen
model is adequate. It is evident from the fact that the size of the modified test statistic,
based on high-frequency information, approaches 0.05. In other words, the proportion
of this test statistic exceeding the 0.95 quantile of the derived chi-square distribution is
closer to 0.05. Furthermore, the power results from the simulation demonstrate that the
modified test statistic is more effective in rejecting the model when it is inadequate and the
sample size is small. In conclusion, the modified test statistic improved identification of the
adequacy of ARCH-type models.

Furthermore, empirical studies have provided evidence supporting the applicability of
the modified portmanteau test. The test results for the three indices indicate that when the
test statistic based on low-frequency data accepts the null hypothesis, the test statistic based
on high-frequency information does not always accept the null hypothesis. The discrepancy
suggests a difference between the tests based on high-frequency information and those
based on low-frequency data. Additionally, by examining the residual plots, it becomes
evident that the model test results based on high-frequency data are more reasonable.

However, despite the numerous advantages of the modified portmanteau test, there
are several challenges and barriers that need to be addressed. Firstly, ARCH-type models
based on high-frequency data often include the redundant parameter µH . In existing
studies, estimating this redundant parameter µH relies on the estimation results obtained
from low-frequency data. Secondly, the modified test statistic based on high-frequency data
is more intricate compared to the one based on low-frequency data, requiring additional
computational steps. Specifically, the derivation of the modified test statistic becomes
feasible when the asymptotic properties of parameter estimation for more complex ARCH-
type models are established. It implies a wider applicability of the modified portmanteau
test. However, the paper primarily focuses on simpler ARCH-type models, and the study
of more complex models or other types of models involving high-frequency data remains
unexplored. These areas will be explored in future studies.
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7. Conclusions

In conclusion, the modified portmantea test statistic provided a new idea for testing
the goodness of fit of the ARCH-type models. This statistic builds upon the principles of the
traditional test statistic and the asymptotic properties of QMLE based on high-frequency
data. The test statistic takes into account a redundant parameter in ARCH-type models. It is
the part left after high-frequency residual regularization, which is not present in traditional
portmanteau test. In spite of this redundant parameter, the modified test statistic have been
proven to follow a chi-square distribution.

Furthermore, the simulation study confirms that the modified portmanteau test fol-
lows a chi-square distribution. The size and power results indicate that the test based
on high-frequency data outperforms the test based on low-frequency data in assessing
model adequacy. In practical applications, the modified test based on high-frequency data
consistently performs well. A comparison of the results from the three indices reveals that
the results of tests based on high-frequency data sometimes differ from those based on
low-frequency data. Overall, the test based on high-frequency data is more effective in
identifying cases of incorrect model selection.

Lastly, it is worth noting that the applicability of the modified portmanteau test
extends beyond the simple ARCH-type models examined in this paper. Other ARCH-type
models, such as TGARCH and EGARCH models, can also benefit from this portmanteau
test. However, the current study focuses solely on the use of simple ARCH-type models. It
is important to recognize that leverage effects are prevalent in financial assets, and ARCH-
type models capable of capturing such effects should be taken into consideration. We will
leave this extension as a task of future study.
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Appendix A

Appendix A.1. Assumption

Assumption A1. Given the intial observations {y0, y−1, y−2, . . .}. Θ denotes the parameter
space. The parameter θ belongs to the interior of the compact set Θ. Let θ = (τ, γ, β)′ be the
parameter for models (8) and (9), let θ = (τH , γ1, . . ., γq)′ be the parameter for models (8) and (10).
θ0 = (τH0, γ0, β0)

′ and θ0 = (τH0, γ10, . . ., γq0)
′ denote their true value, respectively.

Assumption A2. τH > 0, γ > 0, β ∈ [0, 1), γi > 0, i = 1, 2, . . ., q.

Assumption A3. The sequence {εt} is i.i.d. with zero mean and unit variance. The sequence {ε∗t }
is also i.i.d.

Assumption A4. Eε4
t < ∞, Eε∗4

t < ∞.

Assumption A5. For models (8) and (9), γ0τ2
0 E(ε∗2

t ) + β0 < 1, for models (8) and (10),
γ10τ2

0 E(ε∗2
t ) +γ20τ2

0 E(ε∗2
t ) + . . . + γq0τ2

0 E(ε∗2
t ) < 1.

Note that under Assumption A5, Pan et al. (2008) [31] showed that the model we used
admits a strictly stationary solution.

Assumption A6. EH2(εt(u)) = 1.

Appendix A.2. Proof

Proof of Theorem 1. Since
√

nrM
d−→ N(0, IM), then

√
nCM

d−→ N(0, C2
0 IM).

By the Taylor expansion, it follows that

C̃(θ̃) ≈ C(θ0) +
∂C
∂θ

(θ̃− θ0),

∂Ck
∂θ

= − 1
n

n

∑
t=k+1

(
y2

t
σ4

t

∂σ2
t

∂θ
)(

y2
t−k

σ2
t−k

− 1)− 1
n

n

∑
t=k+1

(
y2

t
σ2

t
− 1)(

y2
t−k

σ4
t−k

∂σ2
t−k

∂θ
).

Since 1
n ∑n

t=k+1(
y2

t
σ2

t
− 1)(

y2
t−k

σ4
t−k

∂σ2
t−k

∂θ ) −→ 0 as n −→ ∞, hence we have

C̃(θ̃) ≈ C(θ0) + X(θ̃− θ0).

X = (X1, X2, . . ., Xm)
′
,

Xk = − 1
n

n

∑
t=k+1

(
1
σ2

t

∂σ2
t

∂θ
)(

y2
t−k

σ2
t−k

− 1), k = 1, 2, . . ., m.

To obtain the asymptotic distribution of
√

nC̃, the key is to calculate the covariance between√
nX(θ̃− θ0) and

√
nC. Before that, we first need to calculate E((θ̃− θ0)C

′
).

Applying Taylor’s expansion for the function ∂L(θ̃)
∂θ , it follows that

0 =
∂L(θ̃)

∂θ
=

∂L(θ0)

∂θ
+

∂2L(θ̃)
∂θ∂θ

′ (θ̃− θ0),
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then

θ̃− θ0 = −∂L(θ0)

∂θ
(

∂2L(θ̃)
∂θ∂θ

′ )
−1,

θ̃− θ0 = −(nG)−1 ∂L
∂θ

,

where G = E( 1
σ4

H,t

∂σ2
H,t

∂θ

∂σ2
H,t

∂θ
′ ), σH,t = vtτH . Through simple calculations, we have

E((θ̃− θ0)C
′
) = E(−(nG)−1 ∂L

∂θ
C

′
) = − 1

n
G−1E(

∂L
∂θ

C
′
).

According to Formula (11),

∂L
∂θ

=
n

∑
t=1

(1 − H2
t

σ2
H,t

)
1

σ2
H,t

∂σ2
H,t

∂θ
,

then

E(
∂L
∂θ

Ck) =
1
n

E{
n

∑
t=1

(1 − H2
t

σ2
H,t

)
1

σ2
H,t

∂σ2
H,t

∂θ

n

∑
t′=k+1

(
y2

t′

σ2
t′
− 1)(

y2
t′−k

σ2
t′−k

− 1)}

= − 1
n

E{
n

∑
t=1

(
H2

t
σ2

H,t
− 1)(

1
σ2

H,t

∂σ2
H,t

∂θ
)(

y2
t

σ2
t
− 1)(

y2
t−k

σ̃2
t−k

− 1)}

= E{( H2
t

σ2
H,t

− 1)(
y2

t
σ2

t
− 1)}E{− 1

n

n

∑
t=1

(
1

σ2
H,t

∂σ2
H,t

∂θ
)(

y2
t−k

σ2
t−k

− 1)}.

Denote

CH,0 ≜ E{( H2
t

σ2
H,t

− 1)(
y2

t
σ2

t
− 1)},

XH,k ≜ − 1
n

n

∑
t=1

(
1

σ2
H,t

∂σ2
H,t

∂θ
)(

y2
t−k

σ2
t−k

− 1).

Then
E(

∂L
∂θ

Ck) = CH,0XH,k,

cov(
√

nX(θ̃− θ0),
√

nC) = −CH,0XG−1X
′
H .

Owing to

var(ε∗2
t ) = E(

H2
t

σ2
H,t

− 1)2 = E(
H4

t
σ4

H,t
)− 1 ≜ CH ,

thus

var(
√

nC̃M) = var
√

nCM + var(
√

nX(θ̃− θ0)) + 2cov(
√

nX(θ̃− θ0),
√

nCM)

= C2
0 IM + CHXG−1X

′ − 2CH,0XG−1X
′
H ≜ V1.

Since
√

nC̃M
d−→ N(0, V1), then

nC̃
′
MV−1

1 C̃M
d−→ χ2(m).

Similarly, we have

nC̃
′
MṼ−1

1 C̃M
d−→ χ2(m),
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where

Ṽ1 = C̃2
0 IM + (C̃H − 2C̃H,0)XG−1X

′
,

C̃0 =
1
n

n

∑
t=1

y4
t

σ̃4
t
− 1,

C̃H =
1
n

n

∑
t=1

H4
t

σ̃4
H,t

− 1,

C̃H,0 =
1
n

n

∑
t=1

{( H2
t

σ̃2
H,t

− 1)(
y2

t
σ̃2

t
− 1)}.

This completes the proof of Theorem 1.

Proof of Lemma 1. The proof of Lemma 1 is similar to Theorem 1, except that there is no
need to define XH . Following Visser (2011) [9], suppose τ and τH are known, then

1
σ2

H,t

∂σ2
H,t

∂θ
=

1
τ2

Hv2
t

τ2
H∂v2

t
∂θ

=
1
v2

t

∂v2
t

∂θ
=

1
τ2v2

t

τ2∂v2
t

∂θ
=

1
σ2

t

∂σ2
t

∂θ
.

If we assume E(H2(εt(u))) = 1, which means µH = 1, we can weaken the condition. Even
if τ and τH are unknown, thanks to τH = τ, in this case, we can still have

1
σ2

H,t

∂σ2
H,t

∂θ
=

1
σ2

t

∂σ2
t

∂θ
.

Thus
E(

∂L
∂θ

Ck) = CH,0Xk,

cov(
√

nX(θ̃− θ0),
√

nC) = −CH,0XG−1X
′
.

Owing to

var(ε∗2
t ) = E(

H2
t

σ2
H,t

− 1)2 = E(
H4

t
σ4

H,t
)− 1 ≜ CH ,

then

var(
√

nC̃M) = var
√

nCM + var(
√

nX(θ̃− θ0)) + 2cov(
√

nX(θ̃− θ0),
√

nCM)

= C2
0 IM + CHXG−1X

′ − 2CH,0XG−1XX
′

= C2
0 IM + (CH − 2CH,0)XG−1X

′
≜ V2,

In view of
√

nC̃M
d−→ N(0, V2), thus

nC̃
′
MṼ−1

2 C̃M
d−→ χ2(m).

Then, we complete the proof of Lemma 1.
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Appendix B. Remaining Results
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Figure A1. Power for models (16), where γ3 takes 0.1, 0.2, 0.3, and 0.4. (a) The variation of power of
different volatility proxies as the parameter γ′

2 changes when the sample size is 200. (b) The variation
of power of different volatility proxies as the parameter γ′

2 changes when the sample size is 300.
(c) The variation of power of different volatility proxies as the parameter γ′

2 changes when the sample
size is 400. (d) The variation of power of different volatility proxies as the parameter γ′

2 changes
when the sample size is 500.
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Figure A2. Power for models (18), where γ2 takes 0.1, 0.2, . . . , 0.5: (a) The variation of power of
different volatility proxies as the parameter γ′

2 changes when the sample size is 200. (b) The variation
of power of different volatility proxies as the parameter γ′

2 changes when the sample size is 300. (c)
The variation of power of different volatility proxies as the parameter γ′

2 changes when the sample
size is 400. (d) The variation of power of different volatility proxies as the parameter γ′

2 changes
when the sample size is 500.
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Figure A3. The estimated volatility curves of SSE 50, where the black curve is the real data curve,
the blue curve is the estimated volatility curve of RV5, and the red curve is the estimation curve of
the model using low-frequency data.
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Figure A4. The residual plots of SSE 50, where (a) is of the model using low-frequency data and (b) is
of RV5.
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